Response to Reviewers

ICLR 2022
Where Can Quantum Kernel Methods Make A Big Difference?

Reviewer 1 (Reviewer kXVf)

Comment 1: Last sentence of 2nd paragraph is unclear.

Response 1: Thanks for your suggestion. Yes, the last sentence of 2nd para-
graph is not clear enough and lacks some details. What I want to express is
that recently many quantum machine learning algorithms are not limited to
theory and many researchers get good results through their experiments. I
have listed many articles by others here, which I will not discuss in detail as
they are not the subject matter of the article. I will modify the sentence as
follow: For example, [1], [2], [3], [1], [7], and [6] have demonstrated the value
of quantum machine learning in different machine learning tasks by specific
experiments they designed, respectively.

Comment 2: 1st sentence of 3rd paragraph in unclear: kernel methods (and
not the kernel method) are a family of algorithms.

Response 2: Thanks for your reminder. I agree that kernel methods are a
family of algorithms. So this sentence will be modified as follow: On the
other hand, the quantum kernel methods are well-known machine learning
algorithms.

Comment 3: Kernel methods become (last word of p.1).
Response 3: Yes, the past tense is not needed here because the verb before is
made. The sentence should be: ”... made quantum kernel methods become
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Comment 4: We conjecture (1st contribution bullet point).

Response 4: Thanks for your advice. Yes, the word conjecture is more suit-
able here because it is not a method but a conjecture. The sentence should
be: We conjecture that the quantum kernel function is probabilistic and clas-
sify the existing kernel functions.



Comment 5: Please cite the SVM paper when introducing them (1st par. of
sec. 2).

Response 5: Thanks for the viewer’s advice. When we use a professional
term, we should cite it no matter how familiar we are with it. The sentence
is changed to: One of the most famous methods is the support vector ma-
chine (SVM) proposed by [7].

Comment 6: Kernel trick (2nd par. sec. 2).
Response 6: Thanks. It is a typo. It should be kernel trick.

Comment 7: SVM paragraph: remove kind of.
Response 7: Thanks for the reviewer’s suggestion. To make the meaning
simple and clear, I will remove kind of. The sentence becomes: Support
Vector Machine is a maximal margin classifier.

Comment 8: Eq. (4), a T is missing between the ¢ (also support vectors are
never defined).

Response 8: Thanks for your reminder, we want to express the inner product
of two functions so it should be ¢(s;)? ¢(x) in Eq.(4). Also, we should define
the support vectors since they appear in our paper. We will add a definition
of the support vectors: The samples closest to the separating hyperplanes
are those whose coefficients a; are nonzero. These samples are called support
vectors.

Comment 9: Top of page 4: there is a very clear theoretical answer about
what kernel is a valid or not. The good performances of the sigmoid kernel
(reference needed here) does not change anything.

Response 9: Thanks for reminding us of this point. I agree that there is a
very clear theoretical answer about what kernel is valid or not. In our paper,
we did not express the meaning clearly. What we want to express is that we
don’t have a theoretical standard to determine whether a kernel can be effec-
tively used or not. Because even a kernel that is not valid such as a sigmoid
kernel has a good performance as well. Also, we should add a reference for
the sigmoid kernel function here since it appears in our paper. The sigmoid
kernel was proposed by [3].

Comment 10: I cannot understand what authors mean by that expands the



family of kernel functions.

Response 10: Thanks for the time and efforts to review our work. What we
plan to do is to classify the family of kernel functions from a probabilistic
point of view, not to expand the family of kernel functions. The purpose of
it is to provide a better understanding of different kernel functions. Because
there is no detailed classification at present, especially when quantum kernel
functions are proposed recently. What’s more, some people may feel con-
fused when they first meet the quantum kernel function, so we just want to
express that the quantum kernel is similar to the classical kernel but based
on a different mechanism.

Comment 11: Fig.2 seems to imply that tree and graph kernels do not sat-
isfy Mercer’s conditions: why such a separation? Also, the ... boxes are not
relevant, and "Don’t satisfy...” would be a better legend.

Response 11: Thanks for your advice. Fig.2 is a picture of the kernel cat-
egory. There are two levels. The first level of classifying is by the data
structure. For example, vector, tree, graph, and so on. The second level of
classifying is two binary classifications, i.e., (1) probability /deterministic and
(2) satisfy/don’t satisfy Mercer’s condition. In our paper, we only apply the
second level of classifying to the vector kernels because the vector kernels are
the kernels that we usually use.

Comment 12: The Mersenne Twister distribution could be introduced and
commented before the theorem statement.

Response 12: Thank you for the helpful suggestion. The Mersenne Twister
distribution should be introduced before the theorem statement since it is a
terminology. We will add a introduction of Mersenne Twister distribution as
follow: The Mersenne Twister is a pseudo random number generator which
was first proposed by [9]. The Mersenne Twister is used as default pseudo
random number generator by many software, such as Python, R, and PHP.
The Mersenne Twister random distribution is a distribution that be gener-
ated by the Mersenne Twister method.

Comment 13: Eq. (5): I assume N, N,, instead of Ny, Nj.
Response 13: Yes, It is a typo. They should be N; and N,,.

Comment 14: The "number of observations belonging to class X” would be
more clear than the size.



Response 14: We agree with this point. ”Number of observations belonging
to class X” is far more clear than ”size”. So the corresponding sentence is
modified as: ” N; and N,,, are the number of observations belonging to class

C; and C,,".

Comment 15: The — vector notation is introduced once and is not consistent
with the rest of the paper.

Response 15: In our paper, we use the notation — to show a mapping pro-
cess. For example, f.:x; — ¢(z;) shows that the mapping function f. maps
a data x; into a higher dimensional feature space where x; is represented by
¢(z;). Similarly, f, : z; = |¢(z;)) shows that the mapping function f, maps
a data x; into a quantum feature space where z; is represented by |¢(x;)).

Comment 16: Expliciting the formulas in Euq.(7) is not necessary.
Response 16: Thanks for pointing out this point. Euq.(7) is tedious and we
will keep the first half, which will become to: §;,, = %.

Comment 17: Weird x notation.

Response 17: Thank you for the reminder. We make two changes. First,
we change the x to z; in the 8th line, 2nd paragraph, section 2. It is a
typo. Then, to make consistency we modify the Equ.(1), replacing the x
with z;: |¢(x;)) = U(x;)|0™). Second, to make the formula about the circuit
U clearer, we replace the x with the vector & in the 4th line at top of page
3: U(Z) = Uy(a HO Uz HO?.

Comment 18: f, is mapping x to ¢(z) 7!
Response 18: As we mentioned in our paper, f. is a mapping function which
maps data from a point in the original input space O to a higher-dimensional
Hilbert feature space F.. We use ¢(x) to represent the data z; in such a
higher-dimensional Hilbert feature space.

Comment 19: The dot product denoted with both T and .
Response 19: Thanks for your reminder, it is a typo. It should be: ¢(x;)"¢(z;).

Comment 20: Note also that to compute a distance, one would use ||¢(x) —
®(y)|| rather that < ¢(x), ¢(y) > as claimed by the authors.
Response 20: Thanks for your note. We assume that what you mean is



(p(x)|o(y)) rather than < ¢(x),d(y) > because there is no < ¢(x), p(y) >
appears in our paper. In our paper, we focus on the inner product. The
inner product between u and v can be interpreted as projecting u onto v (or
vice-versa), and then taking the product of the projected length of u (|ul)
with the length of v (Ju]). We can see the inner product as a measurement of
similarity of two vectors u and v. Mathematically, the similarity is a distance
in the data space. In quantum mechanics, we use the Dirac notation |-) to
represent a vector. The (¢(x)|¢(y)) is the inner product of two vector |¢(z))
and |¢(y)). As the inner product is a kind of measurement of similarity and
the similarity is a mathematical distance, we use (¢(x)|o(y)) to represent
such a distance in quantum space.

Comment 21: In the quantum paragraph, I assume F, means f,
Response 21: Yes, it is a typo. In the 5th line of the quantum paragraph,
the mapping function is f; rather than Fj.

Comment 22: It seems to me that the definition of f, from O to F; is re-
peated. Furthermore, I cannot see any difference from the standard kernel
definition

Response 22: Thanks for the time to view our work. They indeed have similar
mechanisms. The f; is a mapping function that can map a data point from
the original space O to a quantum space Fj,. The f, is a mapping function
that can map a data point from the original space O to a high-dimensional
feature space F.. The quantum space Fj, is different from a high-dimensional
feature space F,. For the purpose of clearly showing this point and avoiding
misunderstanding, we do not think it is repeated. Only the original space O
is the same.

Comment 23: f, is mapping x; to a quantity that depends on ;7!
Response 23: Thanks for your question. It is our mistake to make it con-
fused. The quantity will only depend on x;. We corrected the representation
in the 9th line in quantum kernel paragraph as follow: f, : z; — |¢(z;)).

Comment 24: The |. > notation is very confusing for people used to kernel
dot products. Even if it is the standard notation in the quantum literature,
why don’t we have two | in the definition of f, 7

Response 24: Yes, it is the standard notation in the quantum literature. It
is called the bra—ket notation or Dirac notation. For example, a ket looks



like |v). Mathematically it denotes a vector, and physically it represents a
state of some quantum system. To keep both the mathematical meaning and
physical meaning, we use the standard notation in our paper.

Comment 25: The circuit U is never defined.

Response 25: Thanks for the reminder. A quantum kernel function are be
realized by the corresponding quantum circuit. The quantum gates are the
basic element for a quantum circuit, just like a logic gate for a digit circuit.
Even though our main work is not to design a quantum circuit, we make some
introductions in our paper. For example, in the ”Quantum Kernel Method
Based On Pauli Feature Map” paragraph, we introduced the mathematics of
the quantum circuit behind the Z-ZZ quantum kernel method. In Fig.1(B)
we showed the circuits which are printed by the IBM quantum computing
platform.

Comment 26: How can the proof of Theorem 3.1 begin by ”we assume” ?! If
you have an extra assumption, just put it in the theorem statement.
Response 26: Thanks for this comment. Some researchers already proved
that the quantum kernels can be superior to classical kernels when learning
a DLP problem. Also, we know learning a Mersenne Twister distribution
is a DLP problem. That’s why we assume that the Z-ZZ feature map can
effectively simulate the efficacy of the feature map proposed by [10] in the
beginning. However, we cannot provide a rigorous mathematical proof of
how the Z-ZZ feature map can effectively simulate the efficacy of the feature
map proposed by [10] at present. We will continue to focus and work on this
in the future.

Comment 27: The same goes for the proof of Theorem 3.2.
Response 27: Thanks for this comment. We will do more research and con-
tinue to improve it.

Comment 28: The exact statement of Theorem 3.2 should be "there exists
0o such that...”

Response 28: Thank you for the helpful advice. We will modify the expres-
sion of Theorem 3.2. It is going to be: In the case of a balanced number of
the two classes, there exists dg such that the quantum kernel method will not
be better than the classical kernel method in handling classification problems
when 0 > dy. In practice, dqy is usually taken as 0.6.
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Comment 29: The CLT does not imply the existence of a R such that the
distribution is the standard Gaussian (what if the empirical mean is 1/n for
instance?)

Response 29: Thanks for this comment. Our expression may confuse some
readers and we will reconsider this theorem. As far as I know, although the
actual distribution of the data varies, as the sample size increases, the mean
of the sample will be close to the overall mean.

Comment 30: What are the "measurements” referring to?

Response 30: Thanks for your reminder. We should ass some introduction
for the measurements in a quantum system. In quantum physics, a measure-
ment is a test or manipulation of a physical system to produce a numerical
result. The predictions made by quantum physics are generally probabilistic.

Comment 31: Where do o and p play a role?

Response 31: Thanks for this question. In the theorem, o is the mean and
the pu is the variance of the total measurements. Just for the convenience of
expression.

Comment 32: Please prove it is easy for a deterministic kernel [...] with
small error”.

Response 32: Thanks for this suggestion. We get this idea from empirical
experience. For a binary classification problem, when the inner-class distance
is large enough and the intra-class distance is small enough, the two classes
can easily be separated. For example, a classical linear classifier will have a
good performance in this case.

Comment 33: Theorem 3.1 only states that quantum kernels are superior
than standard kernels on this example because the latter cannot learn any-
thing. Can we prove that quantum can learn something in this case, i.e., are
strictly better. Otherwise the statement is pretty vacuous.

Response 33: Thanks for this comment, and we will think about it carefully.
Theorem 3.1 shows that quantum kernels are superior to classical kernels
when meeting a random distribution based on Mersenne Twister Generator.
To show this point, we designed an experiment, and the results are shown
in Fig.4(B). The results show that the quantum kernels are almost always
better than the classical kernels. As the number of data increases, the quan-
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tum kernels will maintain a stable advantage over classical kernels. We think
it is an interesting phenomenon. Some researchers already proved that the
quantum kernels can be superior to classical kernels when learning a DLP
problem. Also, we know learning a Mersenne Twister distribution is a DLP
problem. That’s why we assume that the Z-ZZ feature map can effectively
simulate the efficacy of the feature map proposed by [10] in the beginning.
However, we cannot provide a rigorous mathematical proof at present. We
will continue to focus and work on this in the future.

Comment 34: The definition of § is based on empirical quantities, is it suit-
able? Shouldn’t a quantity in expectation make more sense?

Response 34: Thank you for this suggestion. In our paper we try to provide
a threshold to decide which one is better to use a quantum kernel method or
a classical kernel method. This threshold dy is a empirical quantity that be
determined through several datasets. It is not a average value or an expec-
tation, but a threshold based on our observation. The "true” value of J, is
unknown, since it is a value determined by as many datasets as possible.We
cannot try all the datasets to make sure of this. But, the existence of ¢ still
make sense. At least, we know a phenomenon that the variable § can has
some influence to decide whether a quantum kernel method is better or not
when compared with a classical kernel method. Based on our experience in
81 datasets, the oy will take 0.6.

Comment 35: What happens for kernels defined on non-vectorial inputs? Do
they have a quantum analog? It should be discussed.

Response 35: Thanks for the interesting questions, and we will think about
them carefully. To start with, we think it is a very interesting topic to dis-
cuss. We list several formats of kernels in Fig 2 though we only discussed
the vector kernels in our paper. Take the graph kernel as an example. The
idea of graph kernel is to map a graph to some Hilbert space, and the sim-
ilarity between two graphs can be obtained by the inner product operation
in Hilbert space. As far as we can embed a graph into a vector format and
use the inner product to represent the similarity, we can apply the quantum
kernels methods to it.

Comment 36: Can we use another distance than the Euclidean one?

Response 36: Thanks for this comment. Definitely, we can. There are many
ways to represent a distance, and the Euclidean distance is a popular one.
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We only try the Euclidean distance to calculate the inner-class distance and
the intra-class distance in our paper. However, we can also try another dis-
tance to do some experiments.

Comment 37: If we add an offset to the distance, it seems that the 0.6 thresh-
old exhibited changes, making me dubious about such an absolute value.
Response 37: We appreciate it for pointing it out. Let me make it clear. We
assume what you mean is adding some offset to the distance in the dataset.
Yes, the 0 of this dataset will be changed because the ¢§ is a value related
to distances. However, the threshold dy will not be changed. The §y is
not a value that is determined by a specific dataset, but an empirical value
that is determined by several datasets (In our experiment, 81 datasets). For
example, assume the ¢ of a dataset D is 0.55 at first. Based on our theo-
rem, the quantum kernels will be superior to the classical kernels, since the
0.55 < 09 = 0.6. Then, we add an offset to the distance, and the ¢ of the
dataset D will be changed, for example, 0.7. Since 0.7 > dy = 0.6, in the new
case using a classical kernel will be a better choice.

Comment 38: Theorem 3.2 actually only shows that quantum kernels are
worse than standard ones in a precise regime, not that they are better in the
opposite scenario.

Response 38: Yes, it is. That’s why we make the name ”Deficiencies of the
QKM”. We think this work is still worthwhile. Suppose we get the § of a
specific dataset D, if the ¢ for the D is larger than ¢y, we have enough reason
to believe that we can use classical kernels to learn this dataset. On the other
hand, suppose the ¢ for the D is less or equal to dg. Even though we cannot
directly say that the quantum kernels will be better, it at least provides us a
choice to use quantum kernels. Whether the quantum kernels will be better
depends on the data pattern. For example, as we mentioned in the paper,
if we meet the Mersenne Twister random distribution, the quantum kernels
will be superior.

Reviewer 2 (Reviewer DX2D)

Comment 1: The introduction of the article is well-written and reflects a
good knowledge of the literature. However, the authors restrict the compar-
ison between quantum kernel methods and classical kernel methods to the
case of binary classification. Moreover, the theoretical results are presented
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informally.

Response 1: Thanks for the time and efforts to review our work. Yes, we only
restrict the comparison to the case of binary classification. The binary clas-
sification problem is the basic classification problem. Any multi-class clas-
sification problem can be divided into binary classification problem. There
are two methods to transfer a multi-class classification problem into a binary
classification problem, i.e., one vs one” and "one vs rest”. We will continue
to do expand the content of our paper. What’s more, the theoretical results
are almost based on our experiments. The threshold dq is a empirical value
based on our experiments. We will try our best to make the results more
formally.

Comment 2: The analysis concerns binary classification, which is one among
many learning tasks to study. It is not clear how to deal with other learning
tasks.

Response 2: Thanks for your constructive comments. In this paper, we only
focus on a very common problem, the binary classification problem. For
machine learning tasks, the two most popular tasks are classification and
regression. Classification tasks include binary classification problems and
multi-class classification problems. Multi-class classification problems can
be transferred to binary classification problems using "one vs one” or ”one
vs rest” methods. As far as we know, there exist some quantum kernel meth-
ods that can deal with regression tasks, with a similar quantum mechanism.
In our paper, we would like to reveal some laws to evaluate quantum kernel
methods and classical kernel methods. So, we just start from a basic situa-
tion (the binary classification problem). We know there is still a lot of work
to do and we will continue to work on other learning tasks.

Comment 3: The presentation of the theoretical results (Theorem 3.1 and
Theorem 3.2) is poor and informal, and the proofs lack rigor. For example,
the threshold 0.6 in Theorem 3.2 is mysterious and does not seem to stem
from any grounded argument.

Response 3: Thanks for your comments. We will think about them care-
fully and reconsider the presentation. We also want to make clear about the
threshold 0.6 in Theorem 3.2. In our paper, we try to provide a threshold
to decide which one is better to use a quantum kernel method or a classical
kernel method. This threshold §j is a empirical quantity that be determined
through several datasets (81 datasets in our experiment). The ”true” value
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of 9y is unknown, since it is a value determined by as many datasets as pos-
sible. We cannot try all the datasets to make sure of this. But, the existence
of § still make sense. At least, we know a phenomenon that the variable ¢
can has some influence to decide whether a quantum kernel method is better
or not when compared with a classical kernel method. Based on our expe-
rience, the dy will take 0.6. To illustrate how it works, we give an example
here. Suppose we get the § of a specific dataset D, if the ¢ for the D is larger
than dy, we have enough reason to believe that we can use classical kernels
to learn this dataset. On the other hand, suppose the ¢ for the D is less or
equal to dyp. According to theorem 3.2, even though we cannot directly say
that the quantum kernels will be better, it at least provides us a choice to use
quantum kernels. Whether the quantum kernels will be better depends on
the data pattern. For example, as we mentioned in the paper, if we meet the
Mersenne Twister random distribution, the quantum kernels will be superior.

Reviewer 3 (Reviewer cR4C)

Comment 1: The writing quality of the paper is not ideal. Sections 2 and 3
are long but not informative. The figures in experiments are hard to under-
stand. The paper has a lot of grammar errors.

Response 1: Thanks for the time and efforts to review our work. We will
reconsider the whole paper carefully and continue to improve our work. We
use much space to introduce the related work in section 2 since it involves
much knowledge. In section 3 we try to introduce our contributions in detail.
Fig.4, Fig.5, Fig.6, and Fig.7 are mainly about the comparison of quantum
kernel methods and classical kernel methods based on different datasets. The
high-level variable is the dataset. We will continue to make our work more
readable and correct the grammar errors.

Comment 2: The paper seems to focus on the classification problems. Quan-
tum kernels can be applied to a much wider range of problems. The termi-
nology “quantum kernel methods” in the title may need to be changed to
quantum kernel based classification methods.

Response 2: Thanks for the helpful suggestion and we will modify the title.
The title is going to be: ”Where Can Quantum Kernel-Based Classification
Methods Make A Big Difference?”.

Comment 3: The proof of theorem 3.1 is just a summary of statements in
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the literature. The proof of theorem 3.2 is just an application of CLT (and
with some errors). For example, the first sentence in the proof of Theorem
3.2. “Suppose our measurement independent identical distribution ... where
M is the random variable, R is the number of measurement shots.” is not
correct in both English and mathematics. Also, I am not sure if the proof
really did the job to prove the statements in Theorem 3.2.

Response 3: Thanks for the advice. We will reconsider and continue to
improve our theorems. Here we just want to make our theorems clearer.
(1). Theorem 3.1 shows that quantum kernels are superior to classical kernels
when meeting a random distribution based on Mersenne Twister Generator.
To show this point, we designed an experiment, and the results are shown
in Fig.4(B). The results show that the quantum kernels are almost always
better than the classical kernels. As the number of data increases, the quan-
tum kernels will maintain a stable advantage over classical kernels. We think
it is an interesting phenomenon. Some researchers already proved that the
quantum kernels can be superior to classical kernels when learning a DLP
problem. Also, we know learning a Mersenne Twister distribution is a DLP
problem. That’s why we assume that the Z-ZZ feature map can effectively
simulate the efficacy of the feature map proposed by [10] in the beginning.
However, we cannot provide a rigorous mathematical proof at present. We
will continue to focus and work on this in the future.

(2) In theorem 3.2, we try to provide a threshold to decide which one is better
to use a quantum kernel method or a classical kernel method. This thresh-
old dy is a empirical quantity that be determined through several datasets
(81 datasets in our experiment). The ”true” value of ¢y is unknown, since
it is a value determined by as many datasets as possible. We cannot try
all the datasets to make sure of this. But, the existence of ¢ still make
sense. At least, we know a phenomenon that the variable § can has some
influence to decide whether a quantum kernel method is better or not when
compared with a classical kernel method. Based on our experience, the dg
will take 0.6. To illustrate how it works, we give an example here. Suppose
we get the ¢ of a specific dataset D, if the d for the D is larger than dy,
we have enough reason to believe that we can use classical kernels to learn
this dataset. On the other hand, suppose the 0 for the D is less or equal
to dg. According to theorem 3.2, even though we cannot directly say that
the quantum kernels will be better, it at least provides us a choice to use
quantum kernels. Whether the quantum kernels will be better depends on
the data pattern. For example, as we mentioned in the paper, if we meet the
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Mersenne Twister random distribution, the quantum kernels will be superior.

Comment 4: The experiments are not convincing. Many implementation
details are missing. The results, figures, and explanations are hard to under-
stand. No replication codes are provided. My guess is the experiments are
done by simulations run on the classical computer rather than real quantum
computers?

Response 4: Thanks for the time and work to review our work. We will
continue to improve our work. We can also apply the replication codes. The
experiments are run on our local computer, but with the help of the IBM
quantum platform where the bottom layer is a quantum computer.

Reviewer 4 (Reviewer 3XVL)

Comment 1: I have some difficulties with section 3: proof of theorem 3.1.
The proof hinges on an assumption - "the Z-Z7Z feature map can effectively
simulate the efficacy of the feature map proposed by Liu et al. (2021)” - but
I don’t see any proof of this conjecture, at least in the mathematical sense.
If this is axiomatic to the theorem then it should be presented as such in the
theorem: otherwise the proof doesn’t work afaict. Have I missed something
here?

Response 1: We appreciate the reviewer for recognizing our work. Some re-
searchers such as [10] already proved that the quantum kernels can be supe-
rior to classical kernels when learning a DLP problem. In our paper, we know
learning a Mersenne Twister distribution is a DLP problem. That’s why we
assume that the Z-ZZ feature map can effectively simulate the efficacy of
the feature map proposed by [10] in the beginning. Our experiments showed
that the quantum kernel methods are superior to classical kernel methods.
However, we cannot provide any proof of this conjecture at present. We will
continue to focus and work on this in the future.

Comment 2: theorem 3.2: Why is §p usually taken as 0.67 Is this based
on the experimental results alone, or is there some intuition as to why this
particular threshold is important?

Response 2: We appreciate for the time and efforts to review our work. We
want to make clear about the threshold 0.6 in Theorem 3.2. In our paper,
we try to provide a threshold to decide which one is better to use a quantum
kernel method or a classical kernel method. This threshold ¢y is a empirical
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quantity that be determined through several datasets (81 datasets in our ex-
periment). The "true” value of §y is unknown, since it is a value determined
by as many datasets as possible. We cannot try all the datasets to make
sure of this. But, the existence of 0 still make sense. At least, we know a
phenomenon that the variable § can has some influence to decide whether
a quantum kernel method is better or not when compared with a classical
kernel method. Based on our experience, the g will take 0.6. To illustrate
how it works, we give an example here. Suppose we get the J of a specific
dataset D, if the ¢ for the D is larger than &y, we have enough reason to
believe that we can use classical kernels to learn this dataset. On the other
hand, suppose the d for the D is less or equal to dy. According to theorem
3.2, even though we cannot directly say that the quantum kernels will be
better, it at least provides us a choice to use quantum kernels. Whether the
quantum kernels will be better depends on the data pattern. For example,
as we mentioned in the paper, if we meet the Mersenne Twister random dis-
tribution, the quantum kernels will be superior.

Comment 3: However the experimental section is very thorough and quite
convincing, so I am willing to overlook my misgivings regarding the theo-
rems. Minor point: In the paragraph before equation (1), is the definition of
the feature map f, : x; — (¢(z;)|¢(x;)) correct? And if so, how does z; fit
here?

Response 3: Thanks for recognizing our work. We will continue to im-
prove our work. There is a typo in the f,. We modified it as follow:

fq i i = |o(xi)).
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