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ABSTRACT

Masked autoencoders (MAEs) represent a prominent self-supervised learning
paradigm in computer vision. Despite their empirical success, the underlying
mechanisms of MAEs remain insufficiently understood. Recent studies have at-
tempted to elucidate the functioning of MAEs through contrastive learning and
feature representation analysis, yet these approaches often provide only implicit
insights. In this paper, we propose a new perspective for understanding MAEs by
leveraging the information bottleneck principle in information theory. Our theo-
retical analyses reveal that optimizing the latent features to balance relevant and
irrelevant information is key to improving MAE performance. Building upon our
proofs, we introduce MI-MAE, a novel method that optimizes MAEs through mu-
tual information maximization and minimization. By enhancing latent features to
retain maximal relevant information between them and the output, and minimizing
irrelevant information between them and the input, our approach achieves better
performance. Extensive experiments on standard benchmarks show that MI-MAE
significantly outperforms MAE models in tasks such as image classification, ob-
ject detection, and semantic segmentation. Our findings validate the theoretical
framework and highlight the practical advantages of applying the information bot-
tleneck principle to MAEs, offering deeper insights for developing more powerful
self-supervised learning models.

1 INTRODUCTION

Masked autoencoders (MAEs) (He et al., 2022; Xie et al., 2022; Bao et al., 2022) have emerged as
a powerful self-supervised learning paradigm, particularly in the realm of computer vision. Inspired
by the success of masked language models like BERT (Devlin et al., 2019) in natural language
processing, MAEs leverage a similar masking and reconstruction strategy to learn meaningful visual
representations. The fundamental concept involves masking a portion of the input image and training
a model to predict the missing parts, thereby enabling the model to capture the underlying structure
and semantics of the visual data. This approach has proven effective in numerous applications (Li
et al., 2022b; Kirillov et al., 2023; Tong et al., 2022; Fang et al., 2023b), showcasing the potential of
MAEs to learn robust and generalizable features from unlabeled data.

Despite their success, the understanding of how MAEs function and why they perform well remains
an open question. Recent research has sought to demystify the inner workings of MAEs, providing
valuable insights into their operation. Several studies have approached this task from various per-
spectives, including contrastive learning (Zhang et al., 2022; Kong & Zhang, 2023; Huang et al.,
2023) and feature representation analysis (Xie et al., 2023; Pan et al., 2023). Specifically, (Kong &
Zhang, 2023) proposed that MAEs inherently learn occlusion-invariant features by treating masked
patches as a form of data augmentation. This approach, also suggested by (Zhang et al., 2022; Yue
et al., 2023), aligns MAEs with contrastive learning frameworks, where the models learn to align
features between different masked views of the same image. Other studies such as (Xie et al., 2023;
Pan et al., 2023) analysed the latent feature representations learned by MAEs to understand how
these models capture and organize visual information. However, these efforts often provide only
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implicit insights and do not fully address the need for a comprehensive and systematic understand-
ing of the learning objectives and framework of MAEs.

In this paper, we propose a new perspective for understanding MAEs by leveraging information
theory, specifically the information bottleneck (IB) principle (Tishby & Zaslavsky, 2015). This
perspective provides a systematic and comprehensive framework for optimizing MAEs, offering
theoretical insights that can guide the development of more effective models. The IB principle posits
that any deep neural network can be understood as a system that balances the trade-off between
retaining relevant information and compressing irrelevant information. By applying this principle
to MAEs, we aim to provide a more robust understanding of their mechanisms and to identify key
areas for improvement.

Based on our findings, we introduce a novel masked image modeling method, dubbed MI-MAE, to
learn Mask Invariant Mutual Information for MAEs through the lens of the information bottleneck
theory. Our method systematically optimizes the latent features produced by the encoder, ensuring
that they contain maximal relevant information and minimal irrelevant information on the informa-
tion bottleneck of MAE. Concretely, we introduce two aspects of mutual information based losses on
the latent feature: (1) Mutual information maximization. To optimize the autoencoder in the latent
space, we derive a loss to maximize the mutual information between the latent features of multiple
orthogonal masks1. (2) Mutual information minimization. We optimize an upper bound of mutual
information between the input and latent space to minimize the irrelevant information in the latent
features and thus maximize the capacity of relevant information. This comprehensive optimization
strategy helps in achieving better feature representations and improved performance.

We conduct a series of evaluations on standard benchmarks, showing that our method performs
significant improvements over MAE in various tasks, including image classification, object detec-
tion, and semantic segmentation. For example, our 400-epoch model achieves 83.9% accuracy on
ImageNet-1K, surpassing the 1600-epoch MAE by 0.5%. The experimental results validate our the-
oretical findings and highlight the practical benefits of applying the information bottleneck principle
to masked autoencoders. Additionally, by providing a new perspective and a rigorous analytical
framework, our work paves the way for future research in this area, offering insights that can drive
the development of even more powerful self-supervised learning models.

2 RELATED WORKS

Contrastive learning. Contrastive learning (Chen et al., 2020; He et al., 2020; Chen & He, 2021;
Grill et al., 2020; Caron et al., 2021) stands out as the leading self-supervised representation learn-
ing approach in computer vision, achieving invariance by comparing different augmentations of the
same image. A notable example is SimCLR (Chen et al., 2020), which enhances semantic repre-
sentations by increasing the similarity between various views of the same image in the latent space.
MoCo v3 (Chen et al., 2021) applies contrastive learning techniques to pre-train vision transformers.
DINO (Caron et al., 2021) delves into novel properties of self-supervised vision transformers.

Masked image modeling. Masked image modeling (MIM) has gained significant traction in the
field of computer vision as an effective self-supervised learning paradigm. Recently, with the
widespread use of vision transformers (ViTs) (Dosovitskiy et al., 2021; Liu et al., 2021), a series of
notable methods such as BEiT (Bao et al., 2022), MAE (He et al., 2022), and SimMIM (Xie et al.,
2022) have been proposed to pre-train ViTs following the BERT-style masked modeling paradigm
used in natural language processing (NLP) (Devlin et al., 2019; Liu et al., 2019). Many follow-up
works extend masked pre-training by exploring data augmentations (Chen et al., 2023; Fang et al.,
2023a), mask strategies (Li et al., 2022a; Wang et al., 2023; 2024), and hierarchical structures (Xie
et al., 2022; Huang et al., 2022; Woo et al., 2023). Additionally, there is growing interest in un-
derstanding MAE and its connection with contrastive learning (Zhang et al., 2022; Xie et al., 2023;
Huang et al., 2023; Kong & Zhang, 2023; Pan et al., 2023). In this paper, we further investigate
MAE from an information bottleneck perspective.

Information bottleneck. Under information theory, any closed system can be quantified by the
mutual information between bottleneck and output variables (Tishby et al., 2000). A DNN with a

1Here, “orthogonal” means the inner productions between each mask are 0, which means we are completely
dividing the image into visible parts of multiple masks.
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given input can be considered as a closed system that introduces no other information. During the
forward propagation, the complexity of the intermediate variables usually decreases in a general
prediction model, as does the amount of information they contain. It is possible to measure the
goodness of each layer and even the whole prediction network by the mutual information that can be
used between the intermediate variables or the outputs and the network’s prediction target (Tishby
& Zaslavsky, 2015).

3 PRELIMINARIES

Masked Autoencoders (MAEs) (He et al., 2022) are a type of self-supervised model designed to
reconstruct masked patches in images. These autoencoders consist of two main components: an
encoder, which encodes the image into latent features, and a decoder, which predicts the masked
patches. During training, each input image is first embedded into a feature representation X , which
is divided into multiple patches. A random mask m is then generated to select a subset of these
patches as visible patches. The visible patches, represented as X · (1−m), are concatenated with a
learnable class token and fed into a Vision Transformer (ViT) encoder to obtain the latent feature z.

Subsequently, the latent feature z is concatenated with a set of learnable mask tokens representing
the masked patches and passed into a decoder to predict the original unmasked patches X̂ . Finally,
a linear projector is used to generate the reconstructed image ϕ(X̂). The loss function for training
MAEs is based on the reconstruction errors between the original masked pixels and the predicted
masked pixels:

Lrec = ||o(X ·m)− ϕ(X̂ ·m)||22, (1)

where o(X ·m) denotes the original pixel values of the image associated with the masked patches
X ·m.

Approaches in understanding MAEs. Recent studies have provided several insights into the func-
tioning of Masked Autoencoders (MAEs), with works mainly understanding MAEs from the per-
spective of contrastive learning. For instance, (Kong & Zhang, 2023) proposed that MAEs inherently
learn occlusion-invariant features by treating masked patches as a form of data augmentation. This
perspective aligns MAEs with contrastive learning frameworks, suggesting that MAEs implicitly
align features between different masked views of the same image. Similarly, U-MAE (Zhang et al.,
2022) established a theoretical connection between MAEs and contrastive learning, showing that the
reconstruction loss of MAEs aligns well with the alignment of mask-induced positive pairs, thereby
enhancing feature uniformity and diversity. However, these papers only provide implicit analyses of
MAEs by introducing additional views of the image to justify that the MAEs implicitly align with
contrastive learning, and the introduced methods only perform on par with the original MAE. For a
comprehensive understanding of MAEs, further analyses of the learning objective and autoencoder
framework are needed.

Taking the above approaches into account, we conclude that optimizing the latent features produced
by the encoder is crucial for improving MAEs. This motivates us to perform an in-depth analysis of
MAEs and the latent features using information theory. In this paper, we provide a more comprehen-
sive and theoretically sound analysis following the information bottleneck principle and show that
the key to improving MAEs is maximizing relevant information while compressing irrelevant infor-
mation in the latent space. Through our analysis with information theory, we find that the contrastive
learning on latent space can help minimize the IB distortion

4 METHOD

In Section 4.1, we introduce the information theorem to explain the workings of MAEs. The in-
formation bottleneck principle, as introduced by (Tishby & Zaslavsky, 2015), is employed and cus-
tomized for MAEs to elucidate the overall training objective via the information bottleneck frame-
work. In Section 4.2, we break down the overall objective and propose two new loss functions for
MAEs, based on the assumptions considering the information bottleneck within MAEs.
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Figure 1: Pipeline of MI-MAE for each mask mk. We introduces two losses l(max mi)
i,k and l

(min mi)
i

on the latency to maximize the relevant information and minimize the irrelevant information respec-
tively, and Lrec denotes the original MAE loss. The top sequence in the figure denotes forward
propagation and the bottom denotes back propagation. m denotes mask and X denotes the original
map. γ is the inverse function of a decoder, ζ is the output of the reduced target map of the MAE on
γ, and Z is defined as a latent feature on a small neighbourhood of ζ, and their bias εz is decided by
ϵy . ∇ in backpropagation represents gradients, while∇h is the gradient in layer h of the encoder.

4.1 MAE WITH INFORMATION BOTTLENECK PRINCIPLE

In information theory, deep neural networks suffer from information distortion as the information
complexity of intermediate variables decreases (Tishby et al., 2000; Tishby & Zaslavsky, 2015).

Definition 1. Based on the definition of notation in Section 3, the information distortion in MAEs is
defined as

DI = I(X · (1−m);X ·m|X̂ ·m), (2)

where X̂ ·m is the prediction and I(·; ·) denotes the mutual information between two variables.

The information distortion describes the portion of the mutual information between the masked
image and the unmasked image that is not captured by the recovered image. For a given preset,
training the neural network reduces the information distortion. The internal variable that captures
all the mutual information between the masked image and the recovered image is called the effective
description, with the one having the least information complexity referred to as the simplest effective
description (Tishby & Zaslavsky, 2015). For any given MAE and training data, the information
distortion is determined by the simplest effective distortion, denoted by ˜X · (1−m). The simplest
effective distortion is considered as the information bottleneck (IB) in MAEs. Thus, information
distortion is limited by the IB as DIB = I(X · (1−m);X ·m| ˜X · (1−m)). According to (Tishby
et al., 2000; Tishby & Zaslavsky, 2015), the goal of the MAE can be re-interpreted as minimizing a
Lagrangian term that includes DIB , formulated as:

L[p(x̂|x)] = I(X · (1−m); ˜X · (1−m)) + βDIB . (3)

In this Lagrangian term, the first sub-term represents the complexity of the simplest effective de-
scription of the samples, and the second sub-term represents the information distortion of the given
network. It is challenging to precisely find ˜X · (1−m) by training MAE on a given data distribu-
tion (Tishby & Zaslavsky, 2015). The MAE can only find a sub-optimal effective description in the
neighborhood of ˜X · (1−m).

Theorem 2. Denote ˜X · (1−m)+r as a biased simplest effective description found through train-
ing, where r is the bias. Let the predicted latent feature for the MAE be ẑ. The latent feature is
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the information bottleneck for the MAE, and thus ẑ = ˜X · (1−m) + r. The mutual information

I( ˜X · (1−m);X ·m) can be upper bounded by a generalization bound as:

I( ˜X · (1−m);X ·m) ⩽ Î(ẑ;X ·m) +O(
Kx|Y |√

nx
)− I(ẑ;X ·m|r), (4)

where Kx = |X̃| denotes the complexity of ˜X · (1−m), nx is the size of X · (1−m), and Î is the
empirical estimate of the mutual information from the given training set.

The proof of Theorem 2 is in Appendix A.1. From the upper bound, it can be seen that mitigating
the bias on the information bottleneck helps in achieving better MAE performance. Unfortunately,
optimizing the latent feature encounters the problem of difficulty in finding the optimal latent feature.
In the following, we will analyse how to learn using a sub-optimal latent feature.

4.2 MULTIPLE OBJECTIVES WITH INFORMATION THEOREM

Define an optimal simplest effective description as ζ = ˜X · (1−m). Maximizing the mutual infor-
mation between the latent feature and ζ will help reduce I(ẑ;X · m|r). Unfortunately, it is chal-
lenging to find a precise ζ in the latent space for all samples. One approach is to use a sub-optimal
latent feature.

Assumption 3. The MAE loss has been minimized on the given training set, i.e. Lrec ⩽ ϵl. Denote
Y as the ground truth of the MAE, and Ŷ as the prediction. An upper bound of the information
distortion at the output layer can be found as:

H(Y |Ŷ ) ⩽ ϵY , (5)

where H(Y ) is the information in Y , ϵl is a small constant, and ϵY is determined by ϵl.

Proof of the validity of Assumption 3 is shown in the Appendix. Under Assumption 3, we can find
a set of sub-optimal latent features for X · (1 − m), defined as Z, as the target for the samples
whose latent feature is similar to Z. Furthermore, |Z − ζ| ⩽ ϵz . This idea is similar to contrastive
learning. For a set of samples with similar relevant information in the ground truth, the relevant
information in the information bottleneck is also similar in the same MAE. To make such a set,
we consider generating multiple masks for a certain image before training and keeping the masks
invariant. Consider the following case: for a given image X , generate N mutually orthogonal masks
as a pre-selected set M = {m1,m2, ...,mN}. For each generated mask mi, the input is denoted
Xi = X · (1−mi). In particular, represent X0 as the part of X that is not included in any input, i.e.,

X0 = X −
n∑

i=1

Xi. Then the ground truth can be expressed as X ·mi =
j=0∑
n;j ̸=i

Xj . Let each mask

mi correspond to an optimal latent feature zi = ζ, whose prediction is ẑi. Note that the prediction
of the latent feature is the biased simplest effective description of Xi, and the optimal latent feature
is the simplest effective description of Xi.

Corollary 4. With Assumption 3 standing, there exists a certain mask mi, whose predicted latent
feature ẑi = Z. The mutual information between the prediction and the optimal latent feature for
the other masks is

I(ẑk; zk) ⩽ li + I(ẑk; ẑi)− I(ẑi;X0|zk)−
j=1∑

n;j /∈{i,k}

[I(ẑi;Xj |zk)− I(ẑk;Xj |zi)], (6)

where li = I(ẑi;X0) +
j=1∑

n;j /∈{i,k}
I(ẑi;Xj). For a given zi, li is a fixed value. I(ẑk; zk) can be

maximized only when the three following conditions are satisfied: (1). I(ẑk; ẑi) is maximized;
(2). I(ẑi;X0|zk) is minimized; (3). for any j that satisfies j ∈ Z ∩ [1, N ] and j /∈ {i, k},

j=1∑
n;j /∈{i,k}

I(ẑk;Xj |zi) is maximized, where Z denotes the set of integers.
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Algorithm 1 Self-supervised pre-training with MI-MAE. Our changes to MAE are marked with *.
Input: Encoder E, decoder D, variational distribution approximation network V with parameters θ,

training dataset Dtr, number of masks per image N .
1: for iteration in total iterations do
2: X ← Dtr; # Sample a batch of images from training set
3: * Generate N orthogonal masks M = {m1,m2, ...,mN} for each image;
4: Encode the masked images, ẑi ← E(X · (1−mi)),∀1 ≤ i ≤ N ;
5: Decode the latents, Ŷ ← D(ẑi);
6: * Predict variational distribution qθ(ẑ|X)← N (ẑ;µ(X; θ), σ(X; θ));
7: Compute Lrec, Lmax mi, and Lmin mi with X,M, ẑ, qθ(ẑ|X);
8: * Optimize encoder E with∇(λ1Lrec + λ2Lmax mi + λ3Lmin mi) (Eq. 11);
9: Optimize decoder D with∇λ1Lrec;

10: * Optimize approximation network V with∇Lapprox;
11: end for
Output: Trained encoder E and decoder D.

From the first condition of the mutual information maximization in Corollary 4, we can adopt In-
foNCE, a widely-used loss to maximize the lower bound of mutual information (Oord et al., 2018),
i.e.,

l
(max mi)
i,k = − log

exp(sim(ẑi, ẑk)/τ)∑NB
c=1 1[c ̸=i] exp(sim(ẑi, ẑc)/τ)

, (7)

where sim(u, v) = u⊤v/∥u∥∥v∥ denotes the cosine similarity between two feature vectors, 1[c ̸= i]
is an indicator function that evaluates to 1 if and only if c ̸= i, B denotes the batch size, NB is the
total number of masked images with N masks per image, and τ is a temperature factor. We set
τ = 0.07 in all experiments. Therefore, the final MI maximization loss among all the image pairs is
formulated as

Lmax mi =
1

N2

N∑
i=1

N∑
k=1

1[i ̸=k]l
(max mi)
i,k . (8)

Considering the first term in Eq. 3, we also need to minimize the mutual information between the la-
tent feature and the masked image. Unlike l(max mi)

i,k , the mutual information about ẑj and Xj cannot
be represented by the cosine similarity, since they are not in the same feature space. Therefore, for
the minimization of MI, we use the Mutual Information Neural Estimator (MINE) (Belghazi et al.,
2018) to represent the mutual information in KL divergence. This I(ẑk;Xj) representation requires
prior probability p(ẑj |Xj). Since the prior probability is intractable, we follow (Kingma & Welling,
2013; Cheng et al., 2020) and use an approximation neural network to estimate the variational distri-
bution of p(ẑj |Xj), where the loss function for minimizing it is the negative log-likelihood between
zi and Xi, i.e.,

Lapprox =
1

N

N∑
j=1

− log qθ(zj |Xj), (9)

where θ is the parameters in the approximation network. With the estimated posterior probability,
we use the upper bound of MI presented in CLUB (Cheng et al., 2020) to minimize I(ẑk;Xj), for
all j, we aim to minimize:

Lmin mi =
1

N

N∑
j=1

l
(min mi)
j with l

(min mi)
j = log qθ(ẑj |Xj)−

1

N

N∑
k=1

log qθ(ẑk|Xj). (10)

Detailed derivations for the upper bound can be found in Appendix A.4. Additionally, we find that
by optimizing Eq. 10, the third condition in Corollary 4 is also satisfied.

In addition, Assumption 3 needs the MAE loss to be limited to a small value. Thus, we should also
add the original MAE loss as a part of the training loss. Considering Assumption 3, with both parts
of the Lagrangian term minimized, our final loss becomes

LMI-MAE = λ1Lrec + λ2Lmax mi + λ3Lmin mi, (11)
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Table 1: Results on ImageNet classification task. The backbone for SimMIM-based methods is
Swin-B (Liu et al., 2021), while others are ViT-B (Dosovitskiy et al., 2021). ∗: The 800-epoch
MAE results are reported by MFF (Liu et al., 2023) based on running the official code of MAE.

Method Epochs ImageNet ACC (%)
FT LIN FT1%

Supervised - 81.8 - -

DINO (Caron et al., 2021) 800 82.8 78.2 -
MoCo v3 (Chen et al., 2021) 300 83.2 76.7 63.4
BEiT (Bao et al., 2022) 800 83.2 - -

C-MAE (Kong & Zhang, 2023) 400 83.2 - -
SemMAE (Li et al., 2022a) 800 83.3 65.0 -
MFF (Liu et al., 2023) 800 83.6 67.0 48.0
MAE∗ (He et al., 2022) 800 83.3 65.6 45.4
MI-MAE 200 83.9 (+0.6) 67.9 (+2.3) 48.2 (+2.8)
MAE (He et al., 2022) 1600 83.6 68.0 51.1
MI-MAE 400 84.1 (+0.5) 69.3 (+1.3) 52.3 (+1.2)

PixMIM (Liu et al., 2024) 800 83.5 67.2 47.9
SimMIM (Xie et al., 2022) 800 83.8 56.7 -
MI-SimMIM 400 84.1 (+0.3) 59.1 (+2.4) 49.1 (+1.2)

where λ1, λ2, and λ3 are hyper-parameters for balancing the loss terms. Considering all the losses,
the pipeline of our MI-MAE is shown in Fig. 1. To be more specific, for the major MAE, we
add Lmin mi and Lmax mi to the latent features after the forward propagation of the encoder. Be-
fore Lmin mi is calculated, the approximation network is deployed to get the posterior probabilities
qθ(ẑj |Xj) and qθ(ẑk|Xj). Note that the gradient of Lmin mi and Lmax mi will only influence the
encoder in back propagation. After that, the decoder will recover the latent feature to the image
space. Lrec will then be used to influence the whole MAE in back propagation. The training process
of our model is illustrated in Algorithm 1. Specifically, the size of X0 in our method is set to 0 to
satisfy the second condition in Corollary 4.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

To sufficiently validate the efficacy of our method, we conducted a series of experiments on image
classification, object detection, and semantic segmentation tasks.

Image classification. Our method is developed based on the official code of MAE (He et al.,
2022). We strictly adhere to the original pre-training and fine-tuning settings on ImageNet-1K (Rus-
sakovsky et al., 2015).

• Pre-training. Since our method samples four masks for every image, for fair comparisons,
we reduce our training epochs to one-quarter of the epochs used in the compared models.
Specifically, we pre-train the models using an AdamW optimizer (Loshchilov & Hutter,
2019) with β1 = 0.9, β2 = 0.95, and a weight decay of 0.05. The total batch size is 1024
(equivalent to 4096 as we augment each image with 4 masks inside the model). We use a
cosine decay learning rate schedule with a 10-epoch warmup and a base learning rate of
1.5 × 10−4. For the hyper-parameters introduced by our MI-MAE, we set λ1 = λ2 = 1
and λ3 = 10. For Assumption 3, ϵl is set to 0.5. This means that we only use Lrec before
Lrec is less than 0.5, and the entire loss is used after Lrec meets the assumption. We set
N = 4, which means four orthogonal masks are generated in each iteration for each image
with a masking ratio of 0.75. We also conduct experiments on SimMIM (Xie et al., 2022)
architecture with a masking ratio of 0.5, and the N is set to 2 accordingly.

• Fine-tuning. The base learning rate for fine-tuning is set to 1 × 10−3. We warm up
the learning rate for five epochs and train the models for a total of 100 epochs with an
overall batch size of 1024. Stronger augmentations and regularization such as RandAug-
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Table 2: Results on COCO instance segmentation and ADE20K semantic segmentation. The back-
bone of all methods is ViT-B. The results of MoCo v3 and BEiT are from MAE (He et al., 2022).
The COCO results of MAE are from ViTDet (Li et al., 2022b), and our method uses the same archi-
tecture and training strategy.

Method Pre-train data COCO ADE20K
APbox APmask mIoU

Supervised IN1K w/ labels 47.9 42.9 47.4
MoCo v3 IN1K 47.9 42.7 47.3
BEiT IN1K+DALLE 49.8 44.4 47.1
MAE IN1K 51.2 45.5 48.1
MI-MAE IN1K 52.0 46.1 49.3

ment (Cubuk et al., 2020), label smoothing (Szegedy et al., 2016), and mixup (Zhang et al.,
2018) are adopted.

• Linear probing. For linear probing, we use the pre-trained and fixed feature of the class
token to learn a linear predictor. We use the LARS optimizer (You et al., 2017) with a base
learning rate of 0.1 and a batch size of 16384. The weight decay is set to 0. We train the
linear probing for 90 epochs with a 10-epoch warmup. All our experiments use NVIDIA
V100 GPUs.

Object detection. We transfer the pre-trained ViT models to COCO (Lin et al., 2014) dataset. We
adopt Mask R-CNN framework (He et al., 2017), which predicts detections and instance segmen-
tations simultaneously. We follow the model setup and training strategy used in ViTDet (Li et al.,
2022b).

Semantic segmentation. We conduct semantic segmentation experiments on the ADE20K (Zhou
et al., 2017) dataset, using the same settings as in MAE (He et al., 2022). Specifically, we fine-tune
UperNet (Xiao et al., 2018) for 160k iterations with a batch size of 16.

5.2 MAJOR RESULTS

Image classification. We conduct pre-training on the ImageNet dataset and report the fine-tuning,
linear probing, and low-shot (1% samples) fine-tuning accuracies in Tab. 1. After pre-training ViT-B
for 200 epochs (equivalent to 800 epochs of MAE), our method achieves significant improvements
of 0.6, 2.3, and 2.8 percentage points on fine-tuning, linear probing, and low-shot fine-tuning, re-
spectively. Compared to the optimal 1600-epoch MAE, our method still surpasses it by 0.5, 1.3, and
1.2 percentage points, obtaining an outstanding final fine-tuning accuracy of 84.1%. We also imple-
ment our method on SimMIM (Xie et al., 2022) framework, another typical masked image modeling
method with hierarchical Swin model (Liu et al., 2021). The results show that, our MI-SimMIM
achieves 84.1% accuracy, outperforming previous methods such as PixMIM and SimMIM.

To evaluate the transfer learning performance of our method, we apply our pre-trained 400-epoch
model to downstream tasks on the COCO and ADE20K datasets.

Object detection and instance segmentation. Tab. 2 reports the bounding box AP and mask AP
performance on COCO detection. Compared to MAE, our method achieves significant improve-
ments of 0.8 and 0.6 in APbox and APmask, respectively. This validates our method’s superiority in
dense prediction tasks.

Semantic segmentation. We also report the performance on the ADE20K segmentation task in
Tab. 2. Our method achieves a notable improvement of 1.2 mIoU compared to MAE, demonstrating
its superiority in discriminating semantic pixels.

5.3 ABLATION STUDY

To investigate the contributions of each innovation in our method and aid in determining the design
choices, we conduct ablation experiments on our method. All experiments are performed with ViT-
B on ImageNet-1K. We pre-train the models for 50 epochs, while for our MAE baseline, we train
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Table 3: Ablation experiments with ViT-B on ImageNet-1K. All the models are pre-trained for 50
epochs and fine-tuned for 100 epochs. We run the original MAE for 200 epochs for comparison.
Default settings are marked in gray .

(a) Losses.

Combination Lrec l
(max mi)
i,k l

(min mi)
i Lapprox ACC

(a) ✓ - - - 82.2
(b) ✓ ✓ - - 82.5
(c) - ✓ - - Collapse
(d) ✓ ✓ ✓ - 82.4
(e) ✓ - ✓ ✓ 82.4
(f) ✓ ✓ ✓ ✓ 82.8

(b) Loss weights.
λ2 λ3 ACC

1 1 82.6
1 10 82.8
1 20 82.7

0.1 10 82.5
0.5 10 82.7
10 10 82.6

(c) Mask generation.
Type ACC

Independent 82.6
Orthogonal 82.8

the model for 200 epochs to match the number of mask samples in our methods. We compare the
100-epoch fine-tuning accuracies of the models.

Ablation on the proposed losses. As reported in Tab. 3 (a), we pre-train the models with different
combinations of losses proposed in our method and obtain the following findings:
(1) Compared to the original MAE (a), maximizing the mutual information between the latent fea-
tures of an image in (b) results in a 0.3 percentage point improvement.
(2) Using l

(max mi)
i,k only in (c) results in a collapse of training, i.e., the autoencoder cannot

reconstruct the image and has low linear probing accuracy, as the effective maximization of
I(zi|Xi · (1−m)) requires a small reconstruction loss as per Assumption 3.
(3) Further adding l

(min mi)
i in (d) reduces the accuracy of (b) by 0.1 percentage points, since the

approximation network needs to be trained by Lapprox to predict the correct conditional relation of
p(zi|Xi · (1−m)).
(4) Optimizing the complete losses of mutual information minimization boosts the accuracy by 0.2
percentage points in (e) and by 0.3 percentage points in our complete method (f).

Loss weights. We conduct experiments to tune the loss weights λ2 and λ3 for l(max mi)
i,k and l

(min mi)
i ,

respectively. For the loss weight λ1 of the original reconstruction loss, we keep it at 1. As summa-
rized in Tab. 3 (b), the optimal result occurs when λ2 = 1 and λ3 = 10.

Orthogonal masks vs. independent masks. In our method, we generate four orthogonal masks
for an image, with each randomly covering 75% of the pixels, and the remaining 25% of the visible
pixels from each mask do not overlap (i.e., when combined, these masked images reveal the entire
original image). We compare the results of the orthogonal masks and the independently generated
masks. As summarized in Tab. 3 (c), the pre-training with independently generated masks drops the
accuracy by 0.2%, suggesting that complete mutual information learning of all the image patches
helps MI-MAE to learn better representations. This phenomenon makes sense since in the indepen-
dent case, there is no guarantee that X0 is 0. Thus, the second condition in Corollary 4 worsens
compared to the orthogonal case.

81.0

81.4

82.4

82.8

82.0
82.1 82.2

82.6

82.8

81.7

Complete masking
Fixed 4 masks

AC
C 

(%
)

81.0

81.5

82.0

82.5

83.0

Masking ratio (%)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 2: Ablation of masking ratios.

Masking ratios. We design experiments to ex-
plore the influences of masking ratios. Un-
like the original MAE, which generates one
mask for each image, our MI-MAE generates
4 masks for each image with a masking ratio of
0.75. For other masking ratios, we design two
masking strategies: (1) Complete masking: the
number of orthogonal masks is determined by
min(1/(1−ratio), 2). For the number N lower
than 2, we set it to 2 to utilize our losses. This
ensures every iteration processes all the patches
of each image. (2) Fixed 4 masks: all ratios use
the same 4 masks. The training epochs are ad-
justed to match the same number of mask sam-
ples.
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As summarized in Fig. 2, we observe optimal performance with a masking ratio of 0.75. For other
ratios, complete masking shows superiority at a ratio of 0.9, while for smaller ratios, the fixed 4
masks strategy gains advancements. The difference between these two strategies is that complete
masking generates 10 masks at a 0.9 ratio, while only 2 masks at ratios 0.1 ∼ 0.5. This indi-
cates that more positive samples in MI maximization loss l(maxmi)

i,k leads to better performance. We
also investigate the selected 0.75 ratio with 6 and 8 masks, finding minor differences in the results
(82.9%, 82.7%). This is reasonable as we find the l

(min mi)
j of all the numbers are close to 0 and the

third condition of Corollary 4 is well satisfied for each N . This means that the third condition of
Corollary 4 only relies on I(ẑk;Xj |zi), which is already considered in l

(min mi)
j . For simplicity, we

keep our complete masking strategy.

We also find that the reconstruction loss does not change much, while l
(min mi)
j remains at a low

level. This means ϵl in Assumption 3 can always be satisfied as observed in Appendix A.2.

Table 4: ImageNet results on different ViTs.
Model Method FT LIN

ViT-B MAE 83.3 65.6
MI-MAE 83.9 67.9

ViT-S MAE 78.4 50.5
MI-MAE 79.8 53.1

Pre-train with ViT-S. To validate our efficacy
on other model size, we perform pre-training
on a smaller ViT-S model. As summarized
in Tab. 4, with ViT-S, our MI-MAE obtains
79.8% accuracy on ImageNet, which still obvi-
ously outperforms MAE by 1.4%. This further
demonstrate the effectiveness of our method.

5.4 ARCHITECTURE OF APPROXIMATION NETWORK

Following CLUB (Cheng et al., 2020), we design an approximation network to estimate the pos-
terior distribution of p(ẑj |Xj). Similar to VAE works (Kingma & Welling, 2013; Pu et al., 2016),
the approximation network has two branches to predict the mean µ(Xj) and variance σ(Xj) of
the Gaussian distribution, respectively. Then, the approximation is determined by qθ(ẑj |Xj) =
N (ẑj ;µ(Xj), σ(Xj)).

We use simple architectures in these two branches to predict the mean and variance. For the µ(Xj)
branch, taking Xj as input, we adopt a multi-layer perceptron (MLP) consisting of two fully-
connected layers and an intermediate GELU activation function to encode the feature, then predict
µ(Xj) by another fully-connected layer and a LeakyReLU activation. Similarly, the σ(Xj) branch
has a similar architecture but with the last activation LeakyReLU replaced by ReLU. We train the
approximation network simultaneously with the autoencoder as in Algorithm 1.

Note on the computation cost. The approximation network is light-weight and is optimized by
reusing the input X and latent feature ẑ obtained in autoencoder training. Hence, we did not observe
noticeable increment in the training time.

6 CONCLUSION

In this paper, we introduced a new perspective for understanding and improving masked autoen-
coders (MAEs) by leveraging the information bottleneck (IB) theory. Building on these insights, we
proposed MI-MAE, a novel method that enhances MAEs through mutual information maximization
and minimization losses on the latent features. We conducted extensive theoretical and empirical
analyses of our method, and experiments on tasks such as image classification, object detection,
and semantic segmentation demonstrated its effectiveness. Our findings validate the theoretical
framework and highlight the practical advantages of applying the information bottleneck principle
to MAEs, providing deeper insights for developing more powerful self-supervised learning models.
Future research could build on our findings to further explore and enhance the capabilities of MAEs,
potentially leading to new advancements in self-supervised learning and computer vision.

ACKNOWLEDGEMENTS

This work was supported in part by the Australian Research Council under Projects DP240101848
and FT230100549.

10



Published as a conference paper at ICLR 2025

REFERENCES

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. BEit: BERT pre-training of image trans-
formers. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=p-BhZSz59o4.

Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua Bengio, Aaron
Courville, and Devon Hjelm. Mutual information neural estimation. In International conference
on machine learning, pp. 531–540. PMLR, 2018.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
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A APPENDIX

A.1 PROOF OF THEOREM 2

A.1.1 PROOF OF HOW EQUATION 4 INFLUENCE THE LAGRANGIAN TERM

From Eq. 3, to minimize the Lagrangian term, I(X · (1 −m); ˜X · (1−m)) should be minimized.

Since I( ˜X · (1−m);X ·(1−m)) = I(X ·m;X ·(1−m))−(H(X ·m)−I( ˜X · (1−m);X ·m)).

As I(X · m;X · (1 − m)) is determined only by the data, we minimize I( ˜X · (1−m);X · m))
which is the left-hand side of Eq. 4.

A.1.2 PROOF OF BIAS IN THE ESTIMATION OF MUTUAL INFORMATION

According to the IB principle (Tishby & Zaslavsky, 2015), where I(X̂;Y ) ≤ Î(X̂;Y ) + O(K|y|√
n
),

we derive the mutual information bound for the decoder of MAE. In this case, the decoder takes the
latent feature ˜X · (1−m) as the input and X ·m as the output, so a generalization bound for the
mutual information between the simplest effective description and the output as,

I( ˜X · (1−m);X ·m) ⩽ Î( ˜X · (1−m);X ·m) +O(
Kx|Y |√

nx
). (12)

However, it is hard to find the precise simplest effective description ˜X · (1−m) due to the follow-

ing reasons: (1) The computation of ˜X · (1−m) is based on empirical data, which is influenced by
sample size and distribution. This introduces biases and approximations into the optimization pro-
cess. (2) The prediction of ˜X · (1−m) is constrained by the model capacity of the encoder-decoder
structure, which limits its ability to fully capture the optimal representation. As a result, in lim-
ited data distribution and model capacity, we can only find empirical estimation of biased simplest
effective description as Î(ẑ, ;X ·m), where ẑ = ˜X · (1−m) + r and r is the bias term.

We now provide formal proof to the existence of bias r. The mutual information between the optimal
effective description ˜X · (1−m) and the observed unmasked data X ·m is defined as:

I( ˜X · (1−m);X ·m) = H( ˜X · (1−m))−H( ˜X · (1−m)|X ·m), (13)

where H is the entropy function. For the predicted latent feature ẑ, the empirical estimation of the
mutual information is

Î(ẑ;X ·m) = Ĥ(ẑ)− Ĥ(ẑ|X ·m), (14)

where Ĥ and Ĥ(·|·) are empirical estimates of entropy and conditional entropy, respectively.
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We compare the true and empirical mutual information as

∆MI := E[Î(ẑ;X ·m)]− I( ˜X · (1−m);X ·m)

= [E[Ĥ(ẑ)]−H( ˜X · (1−m))]− [E[Ĥ(ẑ|X ·m)]−H( ˜X · (1−m)|X ·m)].
(15)

As a result, the bias r arises from two components:

1. Bias in the entropy term: E[Ĥ(ẑ)]−H( ˜X · (1−m)).

2. Bias in the conditional entropy term: E[Ĥ(ẑ|X ·m)]−H( ˜X · (1−m)|X ·m).

From the paper on entropy estimation (e.g., Paninski, 2003; Belghazi et al., 2018), we have

E[Ĥ(ẑ)]−H( ˜X · (1−m)) = O

(
Kz√
nz

)
, (16)

where Kz is the complexity of the latent space representation ẑ, and n is the number of training
samples. Similarly, for the conditional entropy term, we have

E[Ĥ(ẑ|X ·m)]−H( ˜X · (1−m)|X ·m) = O

(
Kz√
nz

)
. (17)

Combining the above results, the total bias in the estimation of mutual information can be bounded
as O

(
Kz√
nz

)
, which can prove that there indeed exists a bias.

A.1.3 PROOF OF GENERALIZATION BOUND VIA BIASED BOTTLENECK

Unlike general discriminative networks, the target effective dimension of MAE is usually considered
higher than the input effective dimension. Thus the bottleneck should be in the middle. The relevant
information contained in the intermediate variables of the decoder is derived from the latent feature
extracted by the encoder, despite the increment in the complexity. Intuitively, the latent feature is the
information bottleneck in MAE. To further analyse the changes in effective information, we analyse
the encoder and decoder of MAE separately.

Denote by z the latent feature of the latent space, whose simplest effective description is denoted by
ẑ. For the decoder, z is the input and (X ·m) is the ground truth. Denote the empirical estimation of
mutual information by Î(·), and according to section 4.1, the upper bound on the input-ground truth
mutual information is,

I(ẑ;X ·m) ⩽ Î(ẑ;X ·m) +O(
Kz|X|√

nz
), (18)

where nz is the size of the output, and Kz is the complexity of the simplest effective descrip-
tion. In Eq. 18, the term O(Kz|X|√

nz
) describes the IB distortion, and goes worse with K. Since

I( ˜X · (1−m);X · m) = I(ẑ − r;X · m) = I(ẑ;X · m) − I(ẑ;X · m|r). We can expand the

left-hand side of the formula 18 to get an upper bound of I( ˜X · (1−m);X ·m) as

I( ˜X · (1−m);X ·m) ⩽ Î(ẑ;X ·m) +O(
Kx|Y |√

nx
)− I(ẑ;X ·m|r), (19)

It can be seen that this upper bound is better as the size of z decreases. The decoder needs z to
capture as much information as possible, while the size of z has to stay on the smallest possible
scale. Thus, for decoder, the optimal case is that the simplest effective description of the hidden
layer is the latent feature itself. Using the internal variables in encoder to take the place of latent
feature, the decoder will suffer a worse generalization bound by a worse O(Kz|X|√

nz
).
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A.1.4 PROOF OF BIASED GENERALIZATION BOUND

This means that for a given masked image, there exists an unknown but optimal latent feature,
denoted by ζ. Assume that there exists an ideal mapping process from ground truth X · m to the
optimal solution of the hidden layer as γ(·), the decoder, which takes latent feature as the input and
approximates X ·m, can be interpreted as the inverse process of γ(·) (see the bottom part of Fig. 1),
such that on a well optimized MAE, we can get an approximated latent Z ≈ γ(X · m) from the
decoder and X ·m, which satisfies

I(ζ;X ·m)− I(Z;X ·m) = ϵi, (20)

where ϵi is a small constant.

Meanwhile, using the IB theory, taking the X · (1 − m) as the input of the encoder, whose sim-
plest effective description is denoted by χ, and z as the predicted latent feature of the encoder, the
generalization bound of the encoder is

I(χ; ζ) ⩽ Î(χ; ζ) +O(
Kx|ζ|√

nx
), (21)

where nx denotes the size of the sample X · (1 − m), and Kx denotes the length of the simplest
effective description. Thus, considering both Eq. 20 and Eq. 21 and using the internal variables in
decoder to take the place of latent feature, the encoder will also suffer a worse generalization bound
by a worse O(Kx|ζ|√

nx
). In conclusion, the latent feature is the simplest effective description for the

whole MAE.

A.2 PROOF OF ASSUMPTION 3
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Figure 3: The curve of reconstruction loss Lrec during the 400-epoch training of MI-MAE. We set
ϵl to 0.5.

Fig. 3 shows that Lrec satisfies Assumption 3. This means the L2 distance between Y and Ŷ can be
limited. The mutual information between Y and Ŷ is negatively relevant to the L2 distance between
them. Assume that when Lrec = ϵl, I(Y ; Ŷ ) = α. When Lrec ⩽ ϵl, I(Y ; Ŷ ) ⩾ α. When Y is
given, H(Y |Ŷ ) can be calculated from I(Y ; Ŷ ) as,

H(Y |Ŷ ) = H(Y )− I(Y ; Ŷ ). (22)

where H(Y ) is fixed. Since I(Y ; Ŷ ) ⩾ α, for ϵY = H(Y )− α, we have H(Y |Ŷ ) ⩽ ϵY
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A.3 PROOF OF COROLLARY 4

For a normal MAE consider mi ∈ M , the mutual information between the prediction Ŷi and the
ground truth Yi can be denoted as I(Ŷi;Yi). We have,

I(Ŷi;Yi)

=I(Ŷi;X0 +

n∑
j=1;j ̸=i

Xj)

⩽I(Ŷi;X0) +

n∑
j=1;j ̸=i

I(Ŷi;Xj)

(23)

With Assumption 3, we can easily find another sample whose input is X · (1 −mk) and output is
Yk, where mk ∈M is orthogonal to mi. THe mutual information between Ŷk and Yk is,

I(Ŷk;Yk) ⩽ ιk + I(Ŷk;Xi), (24)

where ιk = I(Ŷk;X0) +
j=1∑

n;j /∈{i,k}
I(Ŷk;Xj).

The upper bound described in Eq. 24 is approximate to the upper bound described in Eq. 23. The
objectives of the other samples in M differ from those of i by less than I(Yk;Xi) − I(Yi;Xk),
which is also a small constant. Thus, for networks with the same initial state, the information about
the intermediate variables in the network inference process is very close when sampling different
masks in M . This shows the possibility of using latent feature of a neighbourhood as objective.

Encouraged by Theorem 2, we can write the similar mutual information on latent space. For and k
that satisfies k ∈ Z ∩ [1, N ] and j ̸= i, the mutual information I(ẑk; zk) is,

I(ẑk; zk)

=I(ẑk;

j=0∑
n;j /∈{i,k}

Xj) + I(Xi; ẑk)

⩽I(ẑk;X0) +

j=1∑
n;j /∈{i,k}

I(ẑk;Xj) + I(ẑk; ẑk)− ϵz + I(ẑk, Xi).

(25)

Taking the known zi into Eq.25, the upper bound can then be rewritten as,

I(ẑk; zk)

⩽[I(zi, X0)− I(ẑk, X0|zi)] + [

j=1∑
n;j /∈{i,k}

I(ẑi;Xj)−
j=1∑

n;j /∈{i,k}

I(ẑi;Xj |zk)] + I(zi; zk).

=I(ẑk; zk) ⩽ li + I(ẑk; ẑi)− I(ẑi;X0|zk)−
j=1∑

n;j /∈{i,k}

[I(ẑi;Xj |zk)− I(ẑk;Xj |zi)].

(26)

Rearranging the above equation gives the equation in the corollary. li is decided only by I(ẑi; zi).
I(ẑk, X0|zi)] is decided only by X0 when zi is given. So a small H(X0) can help get bigger
I(ẑk; zk). For any j that satisfies j ∈ Z ∩ [1, N ] and j /∈ {i, k} I(ẑi;Xj |zk)], when zi is given,
I(ẑi;Xj) and I(ẑi;Xj |zk) is fixed, while I(ẑk;Xj |zi) ∝ I(zk;Xj) ∝ I(zk; zj). Thus, the three
conditions about maximizing I(ẑk; zk) given in Corollary 6 holds.

A.4 DERIVATIONS OF THE UPPER BOUND OF MI

To minimize the mutual information between predicted latency Xj and its corresponding input Xj ,
we leverage an upper bound of MI defined in CLUB (Cheng et al., 2020) is (we will show the proof
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of this upper bound later):
I(Xj , ẑj) ≤ Ep(Xj ,ẑj)[log p(ẑj |Xj)]− Ep(Xj)p(ẑj)[log p(ẑj |Xj)]. (27)

However, the conditional relation p(ẑj |Xj) is intractable. We can instead use a variational distribu-
tion qθ(ẑj |Xj) parameterized by θ to approximate it. Consequently, the upper bound Î(Xj , ẑj) of
mutual information in Eq. 27 becomes:

Î(Xj , ẑj) := Ep(Xj ,ẑj)[log qθ(ẑj |Xj)]− Ep(Xj)p(ẑj)[log qθ(ẑj |Xj)]. (28)

Nevertheless, Î(Xj , ẑj) in Equation 28 no longer guarantees an upper bound of I(Xj ; ẑj) due to the
variational approximation. Fortunately, we can prove that Î(Xj , ẑj) can be a reliable upper bound
estimator when the difference between p(Xj , ẑj) and qθ(Xj , ẑj) is small.

We first compare the difference between them as

∆ := I(Xj , ẑj)− Î(Xj , ẑj), (29)

With H(Xj) being the entropy of variable Xj , and using the Mutual Information Neural Estimator
(MINE) (Belghazi et al., 2018), we can rewrite mutual information I(Xj , ẑj) as

I(Xj ; ẑj) := H(Xj)−H(Xj |ẑj)
= Ep(Xj ,ẑj)[log p(ẑj |Xj)− log p(ẑj)].

(30)

Therefore, with qθ(Xj , ẑj) = qθ(ẑj |Xj)p(Xj) being the variational joint distribution induced by
qθ(ẑj |Xj), Eq. 29 can be reformulated by Eq. 30 and Eq. 28 as

∆ :=I(Xj , ẑj)− Î(Xj , ẑj)

=Ep(Xj ,ẑj)[log p(ẑj |Xj)− log p(ẑj)]− Ep(Xj ,ẑj)[log qθ(ẑj |Xj)] + Ep(Xj)p(ẑj)[log qθ(ẑj |Xj)]

=Ep(Xj ,ẑj)[log p(ẑj |Xj)− log qθ(ẑj |Xj)]− Ep(Xj ,ẑj)[log p(ẑj)] + Ep(Xj)p(ẑj)[log qθ(ẑj |Xj)]

=KL(p(Xj , ẑj)||qθ(Xj , ẑj))−KL(p(Xj)p(ẑj)||qθ(Xj , ẑj)).
(31)

The above equation shows that, (1) when KL(p(Xj , ẑj)||qθ(Xj , ẑj)) ≤
KL(p(Xj)p(ẑj)||qθ(Xj , ẑj)), we can directly get I(Xj , ẑj) ≤ Î(Xj , ẑj), and Î(Xj , ẑj)
is already an upper bound of MI. (2) Otherwise, if KL(p(Xj , ẑj)||qθ(Xj , ẑj)) >
KL(p(Xj)p(ẑj)||qθ(Xj , ẑj)), by learning a good variational approximation qθ(Xj , ẑj) that closes to
p(Xj , ẑj), we have minimized KL(p(Xj , ẑj)||qθ(Xj , ẑj)) < ϵq , then |Î(Xj , ẑj)− I(Xj , ẑj)| < ϵq ,
Î(Xj , ẑj) can become an MI estimator whose absolute error is bounded by the approximation
performance KL(p(Xj , ẑj)||qθ(Xj , ẑj)).

Derivation of Lapprox in Eq. 9. We show that KL(p(Xj , ẑj)||qθ(Xj , ẑj)) can be minimized by
minimizing the negative log-likelihood of qθ(ẑj , Xj), because of the following equation:

min
θ

KL(p(Xj , ẑj)||qθ(Xj , ẑj))

=min
θ

Ep(Xj ,ẑj)[log(p(ẑj |Xj)p(Xj))− log(qθ(ẑj |Xj)p(Xj))]

=min
θ

Ep(Xj ,ẑj)[log p(ẑj |Xj)]− Ep(Xj ,ẑj)[log qθ(ẑj |Xj)].

(32)

Eq. 32 equals to maximizing the second term maxθ Ep(Xj ,ẑj)[log qθ(ẑj |Xj), as the first term has no
relation to θ, and hence the learning object Lapprox of θ is

Lapprox =
1

N

N∑
j=1

− log qθ(ẑj |Xj). (33)

Derivation of l(min mi)
j in Eq. 10. The MI upper bound Î(Xj ; ẑj) has an unbiased estimation as

Î(Xj , ẑj) = log qθ(ẑj |Xj)−
1

N

N∑
k=1

log qθ(ẑk|Xj), (34)

which reflects our l(min mi)
j in Eq. 10.
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A.5 ROBUSTNESS EVALUATION

Compared to MAE, our method with explicit mutual information optimization based on information
bottleneck, would have better robustness, as the IB helps guide latent features to suppress noise
while retaining semantic information. To validate this, we test our fine-tuned model on two popular
ImageNet variants for robustness evaluation, ImageNet-A (Hendrycks et al., 2021) and ImageNet-
C (Hendrycks & Dietterich, 2019). As summarized in Tab. 5, we report the top-1 accuracy on
ImageNet-1K and ImageNet-A, and mean corruption error (mCE, lower is better) on ImageNet-C.
The results show that, our MI-MAE significantly improves the performance of MAE, indicating
better robustness.

Table 5: Robustness evaluation results.
Method ImageNet-1K ACC ImageNet-A ACC ImageNet-C mCE

MAE 83.3 35.9 51.7
MI-MAE 83.9 37.4 49.5
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