
A Appendix

A.1 StarCraft II

Starcraft is a real-time strategy game in which players compete to control a shared map by gathering
resources and building units and structures. The game has several modes, such as team games or
custom maps. For instance, the StarCraft Multi-Agent Challenge [38] is an increasingly popular task
for Multi-Agent Reinforcement Learning and includes a collection of tasks. In this paper, we consider
StarCraft II as a two-player game, as this is the primary setting for StarCraft II, and it is played
at all levels, from casual online games to professional e-sport. It combines high-level reasoning
over long horizons with fast-paced unit management. There are numerous strategies for StarCraft II
with challenging properties presenting cycles and non-transitivity, especially since players start the
game by selecting one of three alien races, each having fundamentally different mechanics, strengths
and weaknesses. The game is played on large maps which have different terrain. Evaluation of the
agents can be done by playing against human players, including professional players, the built-in
bots, scripted bots from the community, or even the stronger online RL agents such as AlphaStar [50]
or TStarBot [19].

While human players use their mouse and keyboard to play the game, the agents use an API, called
the raw interface, which is detailed in the Appendix (Section A.3). In this interface, observations are
split into three parts, namely world, units and scalar_inputs which are enough to describe the
full observation. The actions are encoded into 7 parts, called arguments: function, delay, queued,
repeat, unit_tags, target_unit_tag and world. It is important to note that the arguments are
not independent of each other, in particular the function determines which other arguments are
used.

A.2 Dataset

To train our agents we apply filtering to the publicly available 20 million StarCraft II games to get
higher quality data. We use versions 4.8.2 to 4.9.2 and restrict the games to more skilled players with
an MMR greater than 3500. This leaves us with around 1.4M games (Table 4). These replays span
over two different balance patches, introducing some subtle differences in the rules of StarCraft II
between the older and the more recent games, which are small enough to be ignored8. In addition, the
map pool changed once during this period, so the games are played on a total of 10 different maps.

The average 2-player game is about 11 minutes long and has around 15482 frames in total which
poses a significant modeling challenge by making both supervised and offline RL training harder and
slower. Hence, the agent observes only the frames that have actions which cuts the effective length of
the episode by 12 times. Additional statistics on the data used in the train set can be found on Table 4.

The replays are provided by Blizzard and hosted on their servers. The data is anonymized, and does
not contain personal information about the players.

Table 4: Statistics of the replays used in the training set.

Number of replays 1388233
Number of frames across games 2.1e10

Number of frames with actions across episodes 3.5e9
Total game play time 30.4 years

A.3 StarCraft II Interface

StarCraft II features large maps on which players move their units. They can also construct buildings
(units which cannot move), and gather resources. At any given time, they can only observe a subset
of the whole map through the camera, as well as a coarse, zoomed-out version of the whole map
called the minimap. In addition, units have a vision field such that any unit owned by the other player
is hidden unless it is in a vision field. The player also receives some additional information, such as

8However, the version of the game is available for each episode, so one could decide to condition the agent
on the game version.
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the quantity of resources owned or some details about the units currently selected, and audible cues
about events in the game. We call this the standard interface. Players issue orders by first selecting
units, then choosing an ability, and lastly, for some actions, a target, which can be on the camera or
the minimap.

Our agents use an API that is exposed as a raw interface. It consists of three categories of observations:

• World: A single tensor called world which corresponds to the minimap shown to human
players. It is observed as 8 feature maps with resolution 128x128. The feature maps are:

– height_map: The topography of the map, which stays unchanged throughout the
game.

– visibility_map: The area within the vision of any of the agent’s units.
– creep: The area of the map covered by Zerg "creep".
– player_relative: For each pixel, if a unit is present on this pixel, this indicates

whether the unit is owned by the agent, the opponent, or is a neutral construct.
– alerts: This encodes alerts which show on the minimap of the standard interface, for

instance when units start to fight.
– pathable: The areas of the map which can be used by ground units.
– buildable: The areas of the map which where buildings can be placed.
– virtual_camera: The area currently covered by the virtual camera. The virtual

camera restricts detailed vision of many Unit properties, as well as restricts some
actions from targeting units/points outside the camera. It can be moved as an action.

• Units: A list of units observed by the agent. It contains all of the agent’s units as well as
the opponent’s units when within the agent’s vision and the last known state of opponent’s
buildings. For each unit, the observation is a vector of size 43 containing all the information
that would be available in the game interface. In particular, some of the opponent’s unit
information are masked if they are not in the agent’s virtual camera. In addition, the list
also contains entries for effects which are temporary, localized events in the game (although
effects are not units in a strict sense, they can be represented as such). In our implementation,
this list can contain up to 512 entities. In the rare event that more than 512 units/effects exist
at once, the additional observations will be truncated and not visible to the agent.

• Scalar inputs: Scalar inputs are global inputs available in game interface. They are:
– player_id: The id of the player (0 or 1). This is not useful to the agent.
– minerals: The amount of minerals currently owned.
– vespene: The amount of vespene gas currently owned.
– food_used: The current amount of food currently used by the agent’s units. Different

units use different amount of food and players need to build structures to provide more
food.

– food_cap: The current amount of food currently available to the agent.
– food_used_by_workers: The current amount of food currently used by the agent’s

workers. Workers are basic units which harvest resources and build structures, but
rarely fight.

– food_used_by_army: The current amount of food currently used by the agent’s
non-worker units.

– idle_worker_count: The number of workers which are idle. Players typically want
to keep this number down.

– army_count: The number of units owned by the agent which are not workers.
– warp_gate_count: The number of warp gates owned by the agent (if the agent’s race

is Protoss).
– larva_count: The number of larva currently available to the agent (if the agent’s race

is Zerg).
– game_loop: The number of internal game steps since the beginning of the game.
– upgrades: The list of upgrades currently unlocked by the agent.
– enemy_upgrades: todo
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– unit_counts: The number of each unit currently owned by the agent. This informa-
tion is contained in the units input, but represented in a different way here.

– home_race: The race of the agent.
– away_race: The race of the opponent. If the opponent is has chosen a random race, it

is hidden until one of their unit is observed for the first time.

In the raw interface, actions are also different. Each raw actions combine up to three standard actions:
unit selection, ability selection and target selection. In practice, each raw action is subdivided into up
to 7 parts, called arguments, which are taken successively:

1. Function: This corresponds to the ability part of the StarCraft II API, and specifies the action.
Examples include: Repair, Train_SCV, Build_CommandCenter or Move_Camera.

2. Delay: In theory, the agent could take an action at each environment step. However, since
StarCraft II is a real-time game, the environment steps are very quick9 and therefore it
would not be fair to humans, which cannot issue action that fast. In addition, it would make
episodes extremely long which is challenging for learning. Therefore the agent specifies
how many environment steps will occur before the next observation-action pair. Throttling
is used to make sure the agent cannot issue too many actions per second.

3. Queued: This argument specifies whether this action should be applied immediately, or
queued. This corresponds to pressing the Shift key in the game interface.

4. Repeat: Some repeated identical actions can be issued very quickly in the standard interface,
by pressing keyboard keys very fast, sometimes even issuing more than one action per
environment step. The repeat argument lets the agent repeat the action up to 4 times in the
same step. This is mainly useful for building lots of Zerg units quickly.

5. Unit tags: This is the equivalent of a selection action in the standard interface. This
argument is a mask over the agent’s units which determines which units are performing the
action. For instance for a Repair action, the unit tags argument specify which units are
going to perform the repair.

6. Target Unit Tag: Which unit an action should target. For instance, a Repair action needs
a specific unit/building to repair. There are no actions in StarCraft II that target more than
one unit (some actions can affect more than one unit, but specify a target point).

7. World: Which point in the world this action should target. It is a pair of (x, y) coordinates
aligned with the world observation. For example Move_Camera needs to know where to
move the camera.

A.4 Architecture

The model we use for our baselines is illustrated on Figure 3. It is derived from the model used in
[50], with some improvements. As described in Sections A.1 and A.3, the StarCraft II API has three
types of inputs and output. We structure the model around them:

• Scalar inputs are embedded into a 1-d vector by the scalar encoder. The scalar arguments of
the previous action taken are also embedded here. This vector is transformed by successive
MLP blocks. This is a memory-less model, but in our ablation studies (and in [50]) this is
also where we add the LSTM modules. Eventually, logits are produced from this vector to
generate the function argument of the action. The sampled action is embedded again, and
the next argument (delay) is sampled, followed by queued and repeat.

• Unit features, as well as the Units arguments of the previous action, are embedded into a 1-d
vector per unit, resulting in a fixed-length list of embedding (as well as a mask indicating
which elements of the list are not used). They are processed by three layers of transformers,
then used to produce the unit_tags and target_unit_tag arguments, through pointer
networks [52]. To generate the unit_tags argument, which can select up to 64 units, we
iteratively apply the pointer network 64 times, so conceptually, the unit_tags represent 64
arguments.

922.4 steps per second.
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• World features are embedded into feature planes. The world argument of the previous
action is not embedded, as we found this leads to overfitting. The embedded world features
are processed by Residual Convolutional Networks (ResNet) [20]. Part of the ResNet
downscales the input into 128 feature planes with size 16⇥ 16. The world action is obtained
by upscaling the feature planes into a single plane of logits, with resolution 256⇥ 256 (to
match the resolution of the game world).

Information flows between the scalar, units and world part of the model through special operations.
After the transformer layers, units vectors are aggregated (averaged) and merged into the embedding
of the scalar inputs. Units are also embedded into the world feature planes through a scatter operation,
which merges the embedding of each unit with the corresponding (x, y) coordinate of the feature
planes. Feature planes are down-scaled and reshaped into a 1-d vector to be merged with the
embedding of the scalar inputs. Pointer networks naturally merge scalar embeddings (they form
the query) with units embeddings (they form the keys). Finally, the scalar embedding, along with
the selected unit_tags argument, are reshaped into the world feature planes. Note that the world
argument is not conditioned on the target_unit_tag, because no action in the API can use a
target_unit_tag and a world argument at the same time.

We will open-source our architectures and the exact hyperparameters and details of our architecture
can be found in the released agent.

A.5 Details on Evaluation Metric

Let us assume that we are given an agent to evaluate p and a collection of reference agents
Q = {qj}Nj=1.

Each of these players can play all three races of StarCraft II:
R = {terran, protoss, zerg}.

We define an outcome of a game between a player p and a reference player q as

f(p, q)
def
= Erp,rq⇠U(R)P[p wins against q|r(p) = rp, r(q) = rq],

where r(·) returns a race assigned to a given player, and the probability of winning is estimated by
playing matches over uniformly samples maps and starting locations.

A.5.1 Robustness computation

We define robustness of an agent p with respect to reference agents Q as

robustnessQ(p)
def
= 1�min

q2Q
f(p, q).

Note, this is 1 minus exploitability [10], simply flipped so that we maximise the score. In particular,
Nash equlibrium would maximise this metric, if Q contained every mixed strategy in the game.

A.5.2 Elo computation

We follow a standard Chess Elo model [12], that tries to predict f by associating each of the agents
with a single scalar (called Elo rating) e(·) 2 R and then modeling outcome with a logistic model:

dfElo(p, q)
def
=

1

1 + 10[e(p)�e(q)]/400
.

For consistency of the evaluation we have precomputed ratings e(q) for each q 2 Q. Since ratings
are invariant to translation, we anchor them by assigning e(very_hard) := 1000.

In order to compute rating of a newly evaluated agent p we minimise the cross entropy between true,
observed outcomes f and predicted ones (without affecting the Elo ratings of reference agents):

EloQ(p)
def
= argmin

e(p)

"
�
X

q

f(p, q) log
⇣
dfElo(p, q)

⌘#
= argmax

e(p)

X

q

f(p, q) log
⇣
dfElo(p, q)

⌘
.

Note, that as it is a logistic model, it will be ill defined if f(p, q) = 1 (or 0) for all q (one could say
Elo is infinite). In such situation the metric will be saturated, and one will be in a need of expanding
Q to continue research progress.
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Robustness Median Best  outcome

Figure 4: Percentile curve of reference agents.

B Percentile curve

A percentile curve [47] allows us to look in a single picture at the whole spectrum of outcomes of our
agents. Instead of aggregating scores f(p, q) we plot percentiles of these values in Figure 4, and can
define that an agent is better than another agent if and only if it pareto dominates it over percentiles
between 0 and 50 (domination beyond 50, which represents median score would simply put weight
on overspecialisation towards a tiny fraction of reference opponents). In particular robustness metric
from previous sections is a percentile 0 on this curve. It is worth noting, that this approach imposes a
partial ordering, some agents might be not comparable, if one is more robust, and the other is better
in median. Maximisation of the progress using it would thus encourage development of agents which
are both robust, and good on average. When it comes to our reference agents, they can be fully
ordered using percentile curves, placing MZS-MCTS at the top, followed by E-OAC, OAC, FT-BC,
MZS-P, BC and finally very_hard bot, an ordering consistent with the one given by robustness.

B.1 Implementation details

In this section we provide pseudo-code for our methods, as well as the hyperparameters used for
training. In the algorithms, the data at a time step t is denoted as X . We refer to different part of the
data X: Xs is the observation at time t, Xa is the action at time t, Xr is the reward at time t, XR is
the MC return (in the case of StarCraft II, this is equal to the reward on the last step of the episode),
and Xgame loop delta is the number of internal game steps between t� 1 and t (and 0 on the first step).
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B.1.1 Behaviour Cloning

Algorithm 1 Behaviour Cloning (with rollout length K set to 1)
Inputs: A dataset of trajectories D, a mini batch size M , an initial learning rate �, the total number
of observations processed nframes, and the initial weights used ✓ to parameterise the estimated
policy µ̂✓.
for i = 0..nframes/M � 1 do

Set the gradient accumulator gacc  0.
for j = 0..M � 1 do

Sample a trajectory T ⇠ D
Sample k in [0, length(T )�K]
Set X  T [k]

Set gacc  gacc +
1
M · @Lcross entropy(µ̂✓(·|Xs),Xa)

@✓ ,
where Xs, Xa are the observation and action parts of X , respectively.

end for
Set �i  �

2

⇣
cos

⇣
i⇡

nframes/M�1

⌘
+ 1

⌘

Set ✓  ✓ � �i ·Adam(gacc)
end for
return ✓

The BC agent is trained by running Algorithm 1 with the following inputs: D is the full set of episodes
with MMR>3500, M = 32, 768, � = 10�3, nframes = 1010, ✓ is initialized randomly.

The FT-BC agent is trained by running Algorithm 1 with the following inputs: D is the set of episodes
with MMR>6200 and a winning outcome, M = 32, 768, � = 10�5, nframes = 109, ✓ is initialized
set as the weights of the trained BC agent.

B.1.2 Offline Actor-Critic

Algorithm 2 Behaviour Cloning with value function training (with rollout length K set to 1)
Inputs: A dataset of trajectories D, a mini batch size M , an initial learning rate �, the total number
of observations processed nframes, and the initial weights used ✓ to parameterise the estimated
policy µ̂✓ and value function V µ̂✓ .
for i = 0..nframes/M � 1 do

Set the gradient accumulator gacc  0.
for j = 0..M � 1 do

Sample a trajectory T ⇠ D
Sample k in [0, length(T )�K]
Set X  T [k]

Set gacc  gacc +
1
M ·

⇣
@Lcross entropy(µ̂✓(·|Xs),Xa)

@✓ + @LMSE(V µ̂(Xs),Xr)
@✓

⌘
,

where Xs, Xa are the observation and action parts of X , respectively.
end for
Set �i  �

2

⇣
cos

⇣
i⇡

nframes/M�1

⌘
+ 1

⌘

Set ✓  ✓ � �i ·Adam(gacc).
end for
return ✓
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Algorithm 3 Offline Actor-Critic (with fixed critic V µ)
Inputs: A dataset of trajectories D, the mini batch size M , the rollout length K, an initial learning
rate �, the weights of the estimated behavior policy and value function from BC ✓0 (such that
µ̂✓0 is the BC policy, and V µ̂✓0 is the behaviour value function), the total number of observations
processed nframes, the bootstrap length N , the IS threshold ⇢̄, a per-game step discount �0.
Set ✓  ✓0
for i = 0..nframes/M � 1 do

Set the gradient accumulator gacc  0.
for j = 0..M � 1 do

Sample a trajectory T ⇠ D
Sample k in [0, length(T )�K]
Set X  T [k : k +K � 1]
Compute the TD errors � and clipped IS ratios ⇢̄ with clipping threshold ⇢̂
for t = 0..K � 2 do

Set �[t] Xr[t+ 1] + �t+1V µ̂✓0 (Xs[t+ 1])� V µ̂✓0 (Xs[t])

Set ⇢̄[t] min(⇢̄, ⇡✓(Xa[t]|Xs[t])
µ̂✓0 (Xa[t]|Xs[t])

)

Set �[t] �p
0 where p = Xgame_loop_delta[t].

end for
Compute the V-Trace targets v:
for t = 0..K �N � 1 do

Set v[t+ 1] V µ̂✓0 (Xs[t+ 1]) +
Pt+N�1

u=t (
Qu�1

k=t ⇢̄[k]�[k + 1]) ⇢̄[u]�[u]
end for
Set gacc  gacc+

PN�1
t=0 ⇢̄[t](Xr[t+1]+�[t+1]v[t+1]�V µ̂✓0 (Xs[t])

@ log ⇡✓(Xa[t]|Xs[t])
@✓ .

end for
Set �i  �

2

⇣
cos

⇣
i⇡

nframes/M�1

⌘
+ 1

⌘

Set ✓  ✓ � �i ·Adam(gacc)
end for
return ✓

The OAC agent is trained by first running Algorithm 2 to obtain ✓V , with the following parameters: D
is the full set of episodes with MMR>3500, M = 32, 768, � = 10�4, nframes = 109, ✓ is initialized
with the weights of the BC agent.
Then we run Algorithm 3 with the following parameters: D is the full set of episodes with MMR>3500,
M = 512, K = 64, � = 2 · 10�5, nframes = 109, ✓0 is set to ✓V , N = 32, ✓̄ = 1, �0 = 0.99995.
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B.1.3 N-steps Emphatic Traces

Algorithm 4 Emphatic Offline Actor-Critic (with fixed critic V µ)
Inputs: A dataset of trajectories D, the mini batch size M , the rollout length K, an initial learning
rate �, the weights of the estimated behavior policy and value function from BC ✓0 (such that
µ̂✓0 is the BC policy, and V µ̂✓0 is the behaviour value function), the total number of observations
processed nframes, the bootstrap length N , the IS threshold ⇢̄, a buffer B containing M empty lists,
a per-game step discount �0, initial emphatic traces 8j < N,F [j] = 1.
Set ✓  ✓0
for i = 0..nframes/M � 1 do

Set the gradient accumulator gacc  0.
for j = 0..M � 1 do

if B[j] has less than K + 1 elements then
Sample T ⇠ D
B[j] concatenate(B[j], T )

end if
Set X  B[j][0 : K + 1]
Set B[j] B[j][K :]
Compute the TD errors �, clipped IS ratios ⇢̄ and V-Trace targets v with clipping threshold ⇢̂
as in Alg. 3.
Compute the emphatic trace F :
for t = 0..K �N � 1 do

Set F [t] =
QN

p=1(�[t� p+ 1]⇢̂[t� p])F [t�N ] + 1
end for
Set gt = ⇢̄[t](Xr[t+ 1] + �[t+ 1]v[t+ 1]� V µ̂✓0 (Xs[t])

@ log ⇡✓(Xa[t]|Xs[t])
@✓

Set gacc  gacc +
PN�1

t=0 F [t]gt
end for
Set �i  �

2

⇣
cos

⇣
i⇡

nframes/M�1

⌘
+ 1

⌘

Set ✓  ✓ � �i ·Adam(gacc)
end for
return ✓

The E-OAC agent uses the same BC agent as the OAC training in the previous section, that is, ✓0 is
also set to ✓V . Then we run Algorithm 4 with the same hyper-parameters as the OAC agent. However,
unlike the OAC agent, it uses sequentially ordered trajectories in their order of interactions with the
MDP, and reweight the policy gradient updates with the emphatic trace F .

B.1.4 MuZero

In this section we will provide further details about our MuZero algorithm applied in the Offline RL
setting, which we call MuZero Supervised.

MuZero Supervised is trained using supervised learning on the dataset described in Section A.2.
Trajectories of length K are sampled from games from the dataset consisting of K consecutive
observations, actions, and rewards starting at some time t, i.e. (xt, at, xt+1, at+1, ..., xt+K , at+K),
along with the player-relative game result r 2 {1, 0,�1} corresponding to whether the player won,
drew, or lost the game. For simplicity we remove t and use superscripts to refer to this trajectory,
(x0, a0, x1, a1, x2, a2, ..., xk, ak).

The architecture consists of a representation function s0 = h✓(x0) which computes the internal
state given the initial observation, a dynamics function sk+1 = g✓(sk, ak) which computes the next
internal state given the current internal state and action, and a prediction function ⇡k, vk = f✓(sk)
which predicts the policy and the value function.

We used AlphaStar’s encoders and action prediction functions in the MuZero architecture. AlphaStar’s
action prediction functions are notably autoregressive to handle the complex and combinatorial action
space of StarCraft II. We predict and embed the full action in the representation function, i.e. for the
root node in MCTS. To improve inference time, we only predict the function and delay components
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of the action in the prediction heads in the model, i.e. for non-root nodes in MCTS. We found that
using as few as 20 actions for Sampled MuZero worked well, and increasing it did not improve
performance.

The model parameters ✓ are estimated by minimizing the following loss

LMuZero(✓, x
0, a0, ..., ak�1, xn) =

K�1X

k=0

⇥
lv(zk, vk) + l⇡(ak,⇡k)

⇤
. (2)

Here, ak is the action taken at time t+ k in the dataset. zk is the n-step bootstrapped return. Since
StarCraft II does not have non-terminal rewards, this is simplified into either the value function
prediction at time t + n, v�t+n, if the game length is at least t + n, or the final game result r if the
game length is smaller than t+ n. We use a target network ✓� which is updated to ✓ every 100 steps,
to compute the bootstrapped target value v�t+n. We found that n = 512 worked best, which is notably
large and roughly corresponds to half of the average game length. Unlike the offline actor critic, we
only estimate the behavioural value function vµ and thus don’t need any off-policy corrections.

Note that here we differ from MuZero and MuZero Unplugged by training with action and value
targets obtained from the offline dataset. MuZero and MuZero Unplugged use the result of MCTS as
the action and value targets.

We use Adam optimizer [27] with additive weight decay [30], with a cosine learning rate schedule
starting from 1⇥ 10�3 and dropping to zero at the end of training.

Algorithm 5 MuZero Supervised
Inputs: A dataset of trajectories D, the mini batch size M , the rollout length K, the temporal
difference target distance n, an initial learning rate �, the total number of observations processed
nframes, and the initial weights used ✓ to parameterise the representation function h✓, the dynamics
function g✓, and the prediction function f✓.
for i = 0..nframes/M � 1 do

Set the gradient accumulator racc  0.
for j = 0..M � 1 do

Sample a trajectory T ⇠ D
Sample k in [0, length(T ))
Set X  T [k : k +K]
Set XTD  T [k + n]

Set racc  racc +
1
M · @LMuZero(✓,Xs[k],Xa[k:k+K],XTD)

@✓ .
end for
Set �i  �

2

⇣
cos

⇣
i⇡

nframes/M�1

⌘
+ 1

⌘

Set ✓  ✓ � �i ·Adam(gacc).
end for
return ✓

B.2 Additional Figures
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Figure 5: Comparison of critics for the OAC agent. Keeping the critic fixed as V µ leads to stable
training, whereas using V ⇡ degenerates. Left: performance against the very_hard bot, the peak
performance is similar. Right: critic accuracy.

Figure 6: Evolution of the importance sampling ratios over the course of offline RL using V-Trace
Actor-Critic. The solid part represents the spanning interval between the lowest and highest values.
Left: unclipped ⇢̂. Right: clipped ⇢̂, used to train the policy ⇡.
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Figure 7: Win-rate of the MuZero agent against the very_hard bot of the behavioural policy (µ)
and MCTS using the behvaioural policy µ and behavioural value function vµ, as a function of data
consumed while training. Notably MCTS performance exceeds policy performance throughout
training.
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