A Algorithms

The pseudo-code of the greedy algorithm for solving Equation (6) in Wasserstein DRO is illustrated
in Algorithm 1.

Algorithm 1 Greedy Algorithm for the Wasserstein Worst-case Risk

Input: W, ~, (%)
Output: a solution & to Equation (6)
Initialize & = ()
for all (j,2%) € [n] x C; do
Get a random permutation 7 over [n] with 7, = j
for £k :=2tondo @
ot o argsup,, L (e, ) €@, — E@,)]
end for
if ! yields a greater objective than & then
Tz
end if
end for

B Optimization Details

Define

1
tw(X) = S [IE(X,) = WTEX)5.
The Lagrangian dual problem of the Wasserstein DRO problem is

inf f(W,7):=ne+ ). sup ( (2) —1€() — £(@) .

W,v=0 i—1 %€
One of its sub-gradients can be computed as
0

LS a0 e 6OV — £(a e (a0 O
m;awf (@ )TW — E(a)E(@))T e~

1 & , , 0
_ - 5 (1)) _ (i) o
T LIEED) €@ e 77

For the DRO problem based on the KL divergence:

- . 1 tw @)/
ngiof(Wﬂ) = vln[mie%:n]e wiEN] + e,

a sub-gradient of which can be computed as

Siepmy €7 @ (E@E@D )W — £(@D)e@)T) 4

ZiE[m] ezw(w(i))/y € an
tw (29) /v 0 (1)
1 i ie[m] € T 4%
In(— Z ol (@ >)/7) 7 Die[m] . (m(:)V/( ) fee if'
™ iem] Y Diem] €W K 20

C Technical Proofs

Proposition 11 (NP-hardness of Wasserstein DRO Supremum). The problem in Equation (6) is
NP-hard.

15



Proof. Recall the MAXQP problem:

Z Qi T;Tj, s.t.x; € {—1,1} Vi.
ij=1
In Equation (6), let v = 0, £(x,.) = 0, x5 correspond to n binary variables taking values in {-1, 1}
and £(x;) = @ Let W € R Forall i, j € [n],let k = (i — 1)n + j. The k-the column of W

satisfies W, = 1, Wi, = a,;/2 and O for the other elements. We have obtained a polynomial-time
reduction from an NP-hard problem to Equation (6). O

Proposition 5 (Regularization Equivalence). Let W := [W; —I, |7 € RP=*Pr with W, = —1I, .
Ify = py|W]
equivalent to

2., the Wasserstein distributionally robust regression problem in Equation (5) is

i 1

inf B S [1E(X,) = WTEXR)|S + eppn W%,
which subsumes a linear regression approach regularized by the Frobenius norm as a special case.
Proof. Recapitulating on Equation (6):

sup *Hf(xr) WTE(ar)|3 — vl (@) — E(@D)]r.

aceX

Observe that
€ (zy) = WTE() |13 2| WTE ()3
<wT H|oo,2
<||W||%2
ép[n]HWH%

<7.
Therefore, for any  # x(%),

SIE@) ~ WTE@) B~ AIE@) — £ — (G 1EED) ~ WTEE@D)|E ~ @) — £ )]1)

<36 ~ WTE@)I3 ~ E@?) ~ W) 3) ) — £@)),
<3(@) ~1E@) — £

<Y

=0

)

which implies that the supremum can always be achieved at & = z(¥). Minimizing over - leads to
) 1
inf B S[E(X,) = WTEXR)|S + eppn W3
O

Lemma 6. Suppose Z is separable Banach space and fix Py € P(Z’') for some =' < Z. Suppose
c: 2 — Ry is closed convex, k-positively homogeneous. Suppose f : = — Y is a mapping in the
Lebesgue space of functions with finite first-order moment under Py and upper semi-continuous with
finite Lipschitz constant lip (). Then for all € = 0, the following inequality holds with probability 1:

swp [ €0 < elip. () + [ RS,

Qe AL (Po),QeP(E)
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Proof. The result follows directly from Theorem 1 in Cranko et al. [2021]:
swp [ £(©Q() < clip(7) + [ F(EPde).
QeAl? (By),QeP(E)
Since &' < =, observe
ap [0 sw [f(©Qwe),
QeAl? (Py),QeP(2) QeAY? (Po),QeP(2)

]

Lemma 7. If Assumption 3 holds, for any Q € AN (I@’m) with probability at least 1 —

2|8, |2 exp (—%) we have

Apin(HE 5 ) = Mpin(Hs, s,) — 4¢|S,] —t.

Proof. The minimum eigenvalue of the true covariance matrix Hs, s, satisfies:

Amin(Hs,s,) = min 'UTHS SV
lv]l2=

= Hir)r”unlvTH s U+ vT(HS S, Hj%sr)v +vT(Hg,s, — IZISTST)U
2

Amin(HS ) +uT(Hs,s, — HS s Ju+uT(Hs,s, — Hs,s,)u
where ||u||2 = 1 is an eigenvector of ng s, With minimum eigenvalue.
Therefore, Amin( g s,) can be lower bounded as follows:
Amin(HS s ) >Amin(Hs,s,) —uT(Hs,s, — Hg g Ju—uT(Hs,s, — Hs, s, )u
>Amin(Hs,s,) — [uT(Hs,s, — Hg 5 Ju| — |(Hs,s, — Hs,s,)l|r,
due to the fact that

uTHu < Ao (H) < Z(Az(H))Q <

We can obtain an upper bound on |uT(Hs, s, — ng s, )u| based on Lemma 6:

~ 1
[T (Hs,s, — Hg s, )ul < 4/S|7¢,

because for function g(&(x)) := uTHg, s, u, it can be shown that for any ||£(x) — £(2)|1 = &
and some |S| = k,

9(E@)) — g(E@)) < Y D [Hik = Hjglusun + | Hyi — Higlugu; < 4K[S,[2.
keS €S,
Recall that we assume that the encoding schemes take values in B = {—1, 0, 1}. Therefore lip_.(g) =
48,2,

We derive an upper bound of ||(Hs,s, — Hs.s, )| r as follows. Consider a random variable and its
expectation

Zi; = (Hs,s,)i ZE Dyig(@!); e [~1/m,1/m]

EpZij = (Hs,s,)ij-

By Hoeffding’s inequality, we observe
2

~ m
Prob(|(Hs,s, )ij — (Hs,s,)ijl 2 1) < Zexp (—=—-),
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fort > 0. Setting t = |st ‘

~ mt2
Prob(||(Hs,s,) — (Hs,s,)|r > 1) < Q\ST\QGXP(—W) ®
To conclude, with probability at least 1 — 2|S,.|? exp (— 518 | 5 ), we have
Amin(Hgs,,.) = Amin(Hs,s,) — 4¢[S; ‘2 -t
O

Lemma 8. If Assumption 3 and Assumption 4 hold, for any Q € AN (P,,) and o € (0,1], with

probability at least 1 — O(exp (fpafjiglrp + log |S¢| + log |S,|)) and € < WCP/Z
- o
HHQgsT(HgTST) 1||B,1,oo <1- Fx

where C' only depends on o, Ayin(Hs, s, ).

Proof. We would like to obtain an upper bound for || H gc s, (H g s.) " 1B,1,00. We may write

Hg.s (HS s )" =Hses [(Hg s )" — (Hs,s,) ']

+ [Hg.s, — Hses,|(Hs,s,)™"
+ [Hj%sr — Hses [(HS s )" — (Hs,s,) ']
+ Hses, (Hs,s,) ™"

E

|HE. s (HS s ) 510 <|Hss, [(H% s5,) " = (Hs,s,) 10
+ [[[H, s s, — Hses 1(Hs,s,) ' B,1.0
+[|[HS.s, — Hses, J(HS 5,) " = (Hs,s,) 1.0
+||Hses, (Hs,s,) 51,00
By Hoeffding’s inequality,

~ mt?
Prob(|(Hses, )ij — (Hses, )ij| = t) < 2exp (—T),

for ¢ > 0. Taking ¢t = | — and applying the union bound over i € Co,., we observe that
) mt?
Prob(||Hs;s, — Hses, |1 > 1) < ) 2011 exp (—5rr5)
} 2075
i€Co,. ’
. mt?
<2|57]|Sr| exp (— ﬁ)
207 |Sr |
Similarly, taking ¢ = &,
Prob(|| Hs,s, — Hs,s, |l =) < Y, D) 2exp(— 2[S, |2)
€S, jES,
mt?
=2[S,|? —5ra3)
|Sr|* exp ( 2|5T|2)

In order to bound ||chsr — Hses, || B,1,00, for Q # P, consider
|Hg.s, — Hses, | 51,0 <|Hges |l5.1.00 + | Hses, | 5.1,
<Egl|€(X7)s:€(X7)§ IB,1,00 + Ep ||5(XF)S;:5(XF)ET||B,1,OO
= sup  [Eg&l€(Xr)s:E(XR)§, 181w — B &IE(Xr)s:E(XR)E [1B,1.0l,
B, Qe (®),)
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where Q' and P/, are probability measures on X x 2 with Z = {—1, +1} and identical marginals as Q
and P,,, respectively. We assume that Q s P because otherwise || H Qp s, — Hses, Il B,1,00 = 0 holds
trivially. In this way, the equality is always achieved by some Q’, P/, , i.e., setting Q' (X, & = 1) = 1
and P/ (X,&=—-1) =1

Define the transport cost function in the ambiguity set ALY (P!.) to be ¢/ ((X1,&1), (X2,&)) =
[€£(X1) — £(X2)[l1 with zero cost for &. Let g(X,§) = &1]|€(X7)s:E€(X7)§ || B,1,00. Consider

the Lipschitz constants of g: '

. |9(X7£)_9(X/7€/)|
lip,(g) < sup
Pe(9) < S oK, 8, (X7, 6))
b 1€(X7)s:€(X7)E 181,00 + 1E(XT)s:E(XE B0

< su
X, X’ [E(X) — E(X)[lx
<2Pmax|Sr|- 9
Therefore, by the Kantorovich-Rubinstein theorem [Kantorovich and Rubinshtein, 1958],
|Hg.s, — Hses, 1o < sup [Eqg(X, &) —Ep g9(X,6)|

P QIEAZVP (fﬁw )

m?

< sup  lipy(9)[Eqg(X, €)/lipy(9) — Eg g(X,€)/lipy(g)|
B el #)

< sup lipy(9)W(Q, B,
B eAl? (@)

glipc’ (g)g

<2<€pmax|5r|~

m

Similarly,
I HS, 5, — Hs, s, lloc,0 < 2|5, .
Based on the above two inequalities, we find that
1HS.s, — Hses,lp1o <|Hg.s, — Hses, | 1,00 + | Hses, — Hses, |31,
<2 P S| + 1, (10)
with probability at least 1 — 2|S¢||S,| exp (72[)12“’::7?;‘2), and
I1HS s, — Hs,s, llc.co < 2¢1S:] + 1, (11)

2
mt)

with probability at least 1 — 2|S,.|? exp (— 5872 )-

Based on Equation (8), we also have
I[Hs,s, — Hg 5 1llr < 2¢IS:] +1, (12)
with probability at least 1 — 2|S,.|? exp (7%)

Next we look at the upper bound on the difference between the inverses of Hg s, and Hs, s, .
Observe that

I(HE s )7 = (Hs,s,) oo =II(Hs,s,) " [Hs,s, — He s J(HE s ) oo 0
<V|S:|I(Hs,s,) ' [Hs,s, — H s 1(Hg 5 ) *|l2,2
<VISI(Hs,s.) 22 lI[Hs,s, — HE s |22l (HE s ) 2.2

|Sr|
Amin (HSTST )

2,2

< 2,2|

I[Hs,s, — H s 122 (HS 5) l2.2-
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According to Lemma 7, with probability at least 1 — 2|S,.|? exp (—%), we have
1
Amin(HS ) = Amin(Hs, s,) — 4¢|S,[? —t.

Let t = %Amin(H57,57,) and ¢ < % We get that, with probability at least 1 —
|2

bl

M (Amin (H. Sy 2
215, exp (—tgiggeenll)

1
Amin(ngsr) = ZAmin(HSTST)
— [I(H ) e (13)
e Amin(HSTST)

_ tAxnin(HS7~S7~) tAmm(HS S/y : : 13
Sett = WA 2and €< SIS /15,1 in Equation (12), we get that, with probability at least
mt= (Amin (H. Sy
1 — 2|8, [? exp (— " aHensn))7)
tAmin(HS S )
ITHs, 5. = Hg s, 1l < [[Hs,s, — H s, lllr < =25
rOr rOr rOr rOr 2\/@
Therefore, ~ with  probability at least 1 — 2[S,|? exp(—%) -
218, 2 _m(Amin(HSerT))z de < mi tAmin(Hs,s,) Amin(Hs,s,)
5,12 exp (~ 20500 an - < i () Sl
I(HS s.) 7" = (Hs,5,) oo < t. (14)

Now we are ready to obtain upper bounds for the four terms recapitulated here:
1H.s, (HE 5.) 31,0 <[ Hsgs, [(HS%SW — (Hs,s,) 1|51,
+ [H.s, — Hszs,1(Hs,s,) |10
+ H[Hsgsr — Hses [(HS s )™ — (Hs,s,) .10

+ || Hses, (Hs,s,) " | B.1.0-
We derive the bounds separately.

For the first term, based on Assumption 4, consider
|Hses, [(HE s )" = (Hs,s,) 'l
S, S-S, S,.Sr B,1,00
=|Hses, (Hs,s,) '[Hs,s, — Hg s |(HS 5.) 5.1
<|Hss, (Hs,s,) ' |p.1.wlHs,s, — Hg g lloo.0ll(Hg. 5,) " oo,0

<(1—a)||Hs,s, — HS s llo.coV/IS-II(HS 5 )7

SI(—a) A'“i“(gj’"s'”) and € < %y A’“i“(gs"sr in Equation (11) and adopting

Taking ¢t =

Equation (13), we conclude that, with probability at least 1 — 2|S,.|? exp (—%ﬁm) -

Anmin (H. )2 . Anin(Hs,s,) Amin(Hs,.

2‘5}‘2 exp (_m( 8‘(87«]5{57 ) ) and & < min (48(170;)“&' / (lsjrs, )7 1(; 37i57*) )’
|Sr|2

|Hses, [(Hg 5,)" = (Hs,s,) ' llB.1.» <

SHES

For the second term, rewrite it as
I[HS.s, — Hses,)(Hs,s,) ™ .10

<\|[H§csr — Hs:s, ]| (Hs,s,) o000
<|[HS.s, — Hses, 151,00Vl (Hs,s,)™

Sl
Amin (HSTST )

<I[Hs.s, — Hs;s 1|51
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o [Awin(Hs,s,) Anin(Hs,.s,.)

- (6% M
Using Equation (10) by setting ¢ = 3% —Er ande < 5 T S0 S we have, with
- . ma® Awin(Hs,.s,.) Anin(Hs,.s,.)
probability at least 1 — 2|S¢||S,| exp (_W) and & < 5 -2e EAE

«

I[HS.s, — Hsgs,[(Hs,.s,.) 100 < -

For the third term, we obtain the upper bound

I[HE.s, — Hses, J[(HE 5 )" = (Hs,s,) "' 1l5.1.
<||[Hf%sr - HS;:ST]HB,LOC‘H[(HS%ST)il - (H‘S,‘S,‘)il]momw

Taking ¢ = /% in Equation (14). Taking ¢t = 3./% and 2epmulS.| < 3
in Equation (10). @ We establish the upper bound that, with probability at least 1

c mao ma(Amin(Hs,.s, 2 m(Amin(Hs, s,
2|Sy[|Sx |eXP(—W) - 2|8, \Qexp(—W) _ 2|&-Pexp(—$

min H.S.,-ST « Amin(HSTST)
and £ < min (7 |\/g’ 8IS, | OISe 1" 165,12 )
«

I[Hs.s, — Hses JI(HS 5,) 7" = (Hs,s,) 510 < ¢

e

~—

For the fourth term, in accordance with Assumption 4,

|Hses, (Hs,s,) 1w <1—a.

mQQAmin(HSTST)) _
1152(1—)2[S, 3

AminHTT 2 2AminHrr
2\ST\2exp(fm(8‘(5—‘|szs)))*2‘Sc||S |6Xp(—%TW)—Q‘S;:HSAGXP(—%)f

2‘3r‘2exp(,w) — 2|8, [Zexp (— %W) and

In conclusion, we have shown that, with probability at least 1 — 2|S,|? exp (—

192[S, 3 8|Sy |
e < min( « Amin(HSTST) Amin(HSTST) « Amin(HSTST)
= 48(1 — a)[S, | |8.| ’ 16|S 12 24pmax|Sr| |Sr|

mm HS S @ Amin(HSTST))
4pmdx|5 |/\/ 8|S, | 6/S.”  16|S.z

the mutual incoherence condition holds for any worst-case distributions:

- !
|HSes, (HS 5) 100 <1 5.
Slmphfymg the above expressions, with  probability at  least 1 -
Olexp (=72 15 IS m +log|S7| +log|Sy|)) and e < m,
_ !
|HSes,(HS 5,) 510 <15,
where C' only depends on a, Apin(Hs, s, ). O

Lemma 12. If Assumption 1 holds, then for any Q € AXr (Ip’m) and « € (0, 1], with probability at
least 1 — |Sy|pr exp (— mi” )€ < Eand N > w, we have

202
Ao
Eof (X5 < ‘B-
IEqe (X7)s, o
With probability at least 1 — |Co,.|p, exp (— 2;‘22 ), € < Eand N > 732M£’”“"p", we have
Ao
||EQ5(XF)S::GTHB,2,00< g
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Proof. We start with ||[EgE (X7)s, €T ||2,00. After some algeraic manipulation, we find that
IEQE(Xr)s, €T l2,00 < max|[Eqé (Xr)iel
< r ]E XF 164
max /p, max [Eq€(X7)ie;|

<max +/p, max Eg|&(Xr);e]
€S, JEPr

<max /p, max Egle;|.
1€Sr JEPr

Since |e;]| is a bounded random variable according to Assumption 1, we apply Hoeffding’s inequality
to get

Prob(Ep lej| = p+1t) < exp (—m—t2)
- 252
Base on a similar argument as Equation (9), we can derive
Eqlej| — Eg, lej| < 2e0,
which leads to
mt?

Prob(Egle;| = 2e0 4+ p +t) < exp (——— ).

202

Taking the union bound over all ¢ € S, and j € p,., we find that

2

mt
Prob(||EqE (Xs)s, €7 ||z > v/pr(220 + p+ 1)) < IS, |pr exp (— 55

).

320,/pr(1—a/2)

Setting t = p and ¢ < £ while requiring \j; > . With probability at least 1 —

|S;|pr exp (—?T‘f), we have

Moo
E€(X7)s, €T [l2,00 < 3 B (15)

(1-a/2)
Then we consider |[EqE(X7)s:€T||B,2,00:
Eq€ (Xr)seeT|| 52,0 < max|[Eqf(Xi)eT||2,2

Smaxy/pipy  max |Egf(Xi);exl

ieCo,. JEpikEPr

< max +/p;pr inaXIE@|ek|.
€pr

i€Co,.

Similarly, applying Hoeffding’s inequality and the Kantorovich-Rubinstein theorem gives us

2

mi
Prob(||[Eq€ (X7)sc€T||B,2,0 = v/Pmaxpr (260 + p + 1)) < |Coy|pr exp (*@)-

Lett = p, e < £ and X§ > 324/ P pr. LnalPr hold, we have, with probability at least 1 —
|Co,|p, exp (— 2250,
2o
IEQé (Xr)s:€T||B,2,0 < %

O

Theorem 9. Given a Bayesian network (G,PP) of n categorical random variables and its skeleton
Gket = (V, Eer). Assume that the condition ||W*||p.21 < B holds for some B > 0 associated

with an optimal Lagrange multiplier X}, > 0 for W* defined in Equation (1). Suppose that Wisa
DRO risk minimizer of Equation (4) with a Wasserstein distance of order 1 and an ambiguity radius
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€ = ego/m where m is the number of samples drawn i.i.d. from P. Under Assumptions 1, 2, 3, 4, if the
number of samples satisfies

2 4 3
m— 0(0(60 + IOg (n/d) + IOg p[n])a pmuxp[n] )
min(u2, 1) ’

where C only depends on «, A, and if the Lagrange multiplier satisfies

B A

320Pmax
< \E < ,
« B (O(/(4 - 20&) + 2)pmax Pln] 4

then for any § € (0,1], r € [n], with probability at least 1 — §, the following properties hold:

(a) The optimal estimator W is unique.
(b) All the non-neighbor nodes are excluded: Co, < éor.
(c) All the neighbor nodes are identified: Ne, < Ner.

(d) The true skeleton is successfully reconstructed: Gyo = ,C';skgl.

Proof. We prove the statements in this theorem in several steps. In order to prove (a) and (b), we
will show that the DRO problem is strictly convex if true non-neighbors are known so that there
is an optimal solution. Next we would like to demonstrate that this solution with a non-neighbor
constraint is indeed unique for all the solutions without constraints. The proof for uniqueness comes
with a conclusion that we do not accidentally include any edge between the current node and its
non-neighbors. Next, to prove (c), we present a generalization bound for the DRO estimator in terms
of its true risk, which leads to a /., bound of the difference between the estimator W and the true
weight matrix W*. Combined with the assumption on the minimum weight, it implies that we
include all the neighbor nodes successfully. Finally, by taking a union bound for all the nodes, we
could conclude that the correct skeleton is recovered with high probability, which proves (d).

(i) Given the true non-neighbors, there is a unique solution.
We start with the Wasserstein DRO problem, which we recapitulate here for convenience:
. 1
Wearginf sup -Egll€(X,) — WTE(X,)|3.
W geal” #,.)
The objective is convex because it is a supremum of convex functions.

For now, we assume that the non-neighbor nodes Co,. are given. We can then explicitly restrict
W, = 0 for all ¢ € Co,. The Hessian of W, . is a block diagonal matrix reads

ngsr 0 o 0
Q .
V2RY(Ws, ) = ? Hs.rsr 0 € RP-PNer XD Ner
: : -
0 0 R HSTST

where
HQ = Eg[&£(X)E(X,)T] € RPr7Pr
is the covariance matrix of encodings of X under some distribution Q Al (I@’m).

Since Wise. is fixed to be zero and V2RQ(Ws,.) is a block diagonal matrix, we focus on showing
that HY 5 > 0.

We apply Lemma 7 to get the bound

Amin(Hi(g%Sr) = Amin(HSTST) - 45|Sr‘% —t,
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with probability at least 1 — 2|S,.|? exp (—%) Amin(Hs, s,) — 4¢|S,.|2 —t > 0 will guarantee
that the DRO problem in Equation (4) has a unique solution when the W; = 0 is satisfied for
non-neighbor nodes.

(ii) Given the true non-neighbors, the solution is optimal.

We would like to show that the solution to Equation (4) with true non-neighbor constraints is optimal.
In this way, we do not recover any non-neighbor nodes in the skeleton. We adopt the primal-dual
witness (PDW) [Wainwright, 2009] method to show optimality for the constrained unique solution.

Recall that we assume |W || 2.1 < B. To begin with, we write the dual problem as

~ 1 _
W e arginf sup EallE(X:) — WTE(XH)|5+ A \s({Z,W) — B)
W QeAl? () )| Zl|5 2.0<1 2520
(16)

st. VieCo, W, =0,
where \p is the Lagrange multiplier for the norm constraint on W.

W is optimal if and only if there exists (Q*, Z*, %) that satisfies the KKT condition:

Eg+&(Xr)E(Xy)TW — Egu&(X)E(X,)T + N\5Z% =0
Q* € A (Prn), [ Z¥|| B2 < LG =0, [|[W |21 < B
(Z* W) = |[W |21, Ns(IW]p21 — B) = 0.

Note that we assume that the constraint | W || g 2,1 < B is active such that A% > 0. This assumption
is only for convenience of theoretical analysis and not restrictive. If it is not active, we have

W21 = B < B for some B and A%, = 0, which leads to an unconstrained problem similar to
the ordinary least square problem, which is known to suffer from overfitting. Instead, we are usually
interested in solutions that have finite norms so we can always find B = B — € < B for some small
positive constant € > 0 to make the constraint active and thus A% > 0.

Substituting £(X,) = W*TE(X) + e into the first-order optimality condition yields
Eg+E(XH)E(X)T(W — W*) — EgsE(Xr)eT + \5Z% =0

* s
HYs Hg|[Ws. — Wz | [Bgeé(Xr)s el z: 0
rSr rSy . S| — Q* 7)S, * S| ' 17
— [ngsr ch*sc [ 0 ] []E@*E(Xr)sgeT] + A5 [ng:] [0] (17)

Solving for Z%. , we find that
Ny ZE. = NgHEs (HS s )" 28— HE (HEs ) Box€(X5)s, €7 + Egu£(X;) sz,
which can be bounded such that

5125 |1 B.2,00

k % * k
=(NsHSos, (HS 5,) 7' 25 . — Hgos (HS 5) "Equé(Xr)s, €T + Equé(Xr)s:€T|| 2.0

* * * o
N5 HS.s, (HS 5,) 7' 28 \lpow + | Hos (HS s, ) Egs€(Xr)s, €752 + |EquE(Xr)sceT| 52,00

* * * *
N IHE s (HEs) 500l ZE oo + 1 HE s, (HES ) lp100 B € (Xr)s, €T [|2.ce
+ |Eq# E(X7)sceT || B,2,00-

Note that

125, Ml2.00 < 1271 B,2,00 < 1.
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Recall that 0 < o < 1 in Assumption 4. Based on Lemma 8 and Lemma 12, we may write
Bl Z3: 1 B.2,%
* *
NIHses, (Hs s) 7 lpawll 2,
+ [|[Eg+ &(X7)s:€T || B,2,0

* *
20 + | Hees, (H s,) " 15,1, [+ E(X7)s. €|

2,00

Ao Moo
<\ o o B B
SVIEEY
<\,

with high probability and certain conditions on A% and €.

Henceforth,

Z%. ||B2,x < 1 satisfies strict dual feasibility and we must have ||W5$. |21 =0

according to complementary slackness: (Z*, W) = ||W || 5.2.1. In other words, we have

Vie Co, W, =0,

with high probability. This guarantees that we do not recover any node that is not a neighbor of r
with high probability.

(iii) Without information about the true skeleton, we have a unique and optimal solution.

We follow the proof of Lemma 11.2 in Hastie et al. [2015].

We have shown that W satisfying W; =0 Vie Co, is an optimal solution with optimal dual
variables || Z%. ||p,2,0 < 1.

To avoid clutter of notations, we define

1
LPRO(W) := sup gEQHE(Xr)—WW(Xf)II?
QeAc P (Pr)

Let (W, \) be any other optimal solution to infy supy LPRO(W) + \(|W||p.2.1 — B). By defini-
tion,
LPYO(W) + A(|W |21 — B) = LO(W) + X5((Z*, W) — B)
= LPPOW) + A(|[W || p21 — B) — N5(Z*, W) = LPRO(W) + \5((Z*, W — W) — B).

The first-order optimality condition for wW says
VLPRO(W) + \5Z* = 0,
which implies
MW a1 — B) + \5(B —(Z*,W)) = LDRO(W) +(VLPRO(W), W — W) — LPRO(W).

By definition, |W| 521 — B = 0and A% > 0. Since LPRO() is convex, the RHS of the above
equation should be non-positive, or equivalently,

W21 <{(Z*W).
On the other hand,
(Z*\ W) <||Z*||p2xlW 21 < W21
Therefore, the equality holds for the above inequalities, which leads to
[Wpa21 =(Z* W).

B.2.w < 1. Inorder for |W| 521 = (Z*, W) to hold, we must have

Recall that | Z%..



In that wise, all the optimal solutions W have
W, =0 Vie Co,.

This implies that we have a unique solution that excludes all the non-neighbor nodes without
information about the true skeleton. Until now, we have proven properties (a) and (b).

(iv) The set of correct neighbors is recovered.

Consider again the first-order optimality condition in Equation (17),
Ws,. = W3 =(Hgs) ™ (Eqs€(Xr)s €T — N5 23, )
— [Ws, = WE B2 =|(HEs )" (Egr&(Xr)s,eT = N ZE,.) | 5.2.0
I(HEs ) Izl Bow (Xr)s, €T = X 23, |2,

N

* o
<I(HSs,) M0 (|BgxE(Xr)s, €T 2,0 + [INEZE, [l 2,0)
* o
<pmaxll(HS 5.) 7 oo (| B £ (X7)s, €7 [l2,00 + M%)
* o
< VISHI(HS s,) " ll2.2(|Ege £ (Xr)s, €T [l2,0 + A%)-

. . . - _ 2 _ m(Amin(Hs,.s,))*
According to Equation (13), with probability at least 1 — 2|S,.|? exp ( 815, % )and e <
Anin(Hs,s,.)

16]5,.|2
4
H? —_—.
m( SrSr ) Amin(HSTST)

According to Equation (15), with probability at least 1 — |S,.|p, exp (— m“ ), e < Eand A% >

g

732“‘/‘7051 o ), we have
Aba
Eq€(Xr)s, €T |l2,00 € git—r-
H‘ Q ( )Sre |H2-,CO 8(1 — 01/2)
On that account, with probability at least 1 — 2|S,.|? exp (—%jf})z) — |Srlprexp (=3 C‘r‘;)

AminHT r
(henlllsnsc) 2

320 /Fr(1—a/2)
16|5,|2 o ’

while requiring A% >

< PmaxV/ |8 A mm 5o T 1 — a/Q) 1).

mm (HS7 Sr )

and € < min

IWs,. —

By Assumption 2, if the condition A% < is satisfied, the follow-

2(8(1 a/2) +1)Pm1x'\/ |Sr
ing inequality holds:

[Ws,. = WE |lB2w < B/2.
In this way, we are able to recover all the neighbor nodes with a threshold 3/2. This proves (c).
(v) The true skeleton is recovered with high probability.

The above arguments tell us that with high probability and certain conditions for ¢ and A% satisfied,
for each node r, we do not recover any non-neighbor and we do recover all the neighbor nodes. The
correct Ne,. and Co,. are thus identified. Now we are ready to prove (d).

Putting everything together and taking the the union bound for all nodes r € [n], with prob-

C m p, Cu 32 u Prmax *
e —|— 21o < and < Ny <

ability at least 1 — O(nexp (—=

%, where C' only depends on «, A, we have

B
2( saary T 1) pmax~/P[n]

gskel = gskel .
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Setting ¢ = =2 and making the dependence on the sample size more explicit. We draw the conclusion
that, if the number of samples satisfies

_0 0(50 + log (n/é) + log p['rL])JQpéaxpz[))n]
m = N D) )7
min(2, 1)

where C only depends on «, A, and if A% satisfies

324 P <)\h < A wé,
« (a/(4 - 20&) + 2)pmax«/p[n] 4

then with probability at least 1 — § for ¢ € (0,1]:

gskel = gskel .

Moreover, if we assume that the target graph has a bounded degree of d, the sample complexity
becomes logarithmic in n:

0(50 + log (n/(S) + 1og n + log pmax)02pr711axd3

m =0 win(2, 1)

).

Theorem 10. Suppose that W is a DRO risk minimizer of Equation (4) with the KL divergence and
an ambiguity radius € = €o/m. Given the same definitions of (G,P), Gyer, B, A%, m in Theorem 9.
Under Assumptions 1, 2, 3, 4, if the number of samples satisfies

. C(go + log (n/é) + log p[n])02p3wxpi[))n] )
= . 2 :
min(p?, 1)

where C' depends on «, A while independent of n, and if the Lagrange multiplier satisfies the same
condition as in Theorem 9, then for any 6 € (0,1], r € [n], with probability at least 1 — 4, the
properties (a)-(d) in Theorem 9 hold.

Proof. Define

tw (X) := SIE(X,) ~ WTECK) .

According to Theorem 7 in Lam [2019], the worst-case risk with a KL divergence ambiguity set can
be bounded as follows:

Bobw (X) <Bs lw(X) +vE, |~ 3 (bw(a®) — 3 2 1 g il [w (&) — tw [?
sup  Eolw (X) <Ep Iw — w —tw =
QeAD (B,,) v m ie[m] Zie[m] (bw (53( )) —lw)?

<E; (w(X)+ vEmax [ty (@) — b | + Ce max 10w (D) — by |,

i€[m]

where (y = L Die[m] lw (2D) and C' > 0 is constant independent of 7.
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Consider

max 10w (D)) — by | <  max lw (x) — bw ()]
i€[m] W' e,z

< max [fw ()]

T

1
<5 ax( [E(X)ll2 + [WTE(XF)|2)?
1
<3 max (Vomax + [WT|[o,2)?
1
<5 max(m + |[W]12)?
1
< nax X(v/Pmax + /P IW || 7)?
1
<5 x(v/Pmax + /A1) [W .2, 1)?
<5<m+ VP B)?
=B,.

Define epax := max(4/g, €). Therefore, we find that

sup Ewa(X) < EﬂimgW(X) + C’<‘3mapr‘
QeAP (Pr)

Similar to the Wasserstein robust risk, we observe that the following results hold for any Q €
AP (P,,).
With probability at least 1 — 2|5, [? exp (— 5% |2) we have
Anin(HS 5,) = Anin(Hs, s,) — Cmas|S,|F -
With probability at least 1 — 2|S¢[[S,| exp (— 52" ),
||Hg;3r — Hses, ||B,1,0 < CemaxPmax|Sr| + t.
With probability at least 1 — 2|S,.|? exp (—%),
H|Hgsr — Hs, s, 00,00 < Cemax|Sr| + ¢

With probability at least 1 — 2|S,.|? exp (——m it ;‘2“‘(;"?37 ) ) —2|S,|? exp (— —m(A‘“‘gfgfgs”V) and

tAmin(Hs,s,) Amin(Hs,s,.)

< .
Emax & len( 8[S, | /7|87‘| ) 16|$r\% )’

‘H(Hgs )7t = (Hs,s,) oo <t
With probability at least 1 — O(exp (— m + log |S¢] + log |S,|)) and egmax <

_C
Pmax|Sr[3/27

— (6%
HHQgsT(HgsT) 1||B,1,oo <1- 5
where C' only depends on a, Apin(Hs, s, ).

"

Thanks to the boundedness of the error term e, we have similar conclusions to Lemma 12 if £, < ’;
holds.
In such wise, the properties in Theorem 9 hold with the same condition on A% and the condition on

Emax that Emax < ﬁ Since we set ¢ = 22 and define emax := max(4/¢, €), the condition on
max [ ]

€max implies that
500202pr2naxp%n] EOCJPmaxP?,/L]Q
G ’ 1t

).

m = max(
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Table 2: Comparisons of F1 scores for benchmark datasets and BIC for real-world datasets (backache,
voting). BIC is not applicable to skeletons. The best and runner-up results are marked in bold.
Significant differences are marked by | (paired t-test, p < 0.05).

Dataset n m Noise ¢ ‘Wass KL Reg MMPC  GRASP Wass+HC KL+HC Reg+HC MMPC+HC GRASP+HC HC
asia 8 1000  Noisefree 0 0.7800f 0.7897f  0.9067  0.8167 0.5123 0.6367 3 0.6667 0.6583
asia 8 1000 Huber 0.2 0.7333f 0.7124f  0.72971 0.3943 0.3724 0.2907 3664
asia 8 1000 Independent 0.2 0.6933  0.6797  0.6868 0.2676 0.2632 0.2469 0.1794 .
cancer 5 1000 Noisefree 0 1.0000f 1.0000f 1.0000f 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800
cancer 51000 Huber 0.5 0.9156f 0.8933f 0.9092f 0.6133 0.4333 0.3833 0.4143 0.2589 0.2714 0.2589
cancer 5 1000 Independent 0.2 0.9048f 0.9029f 0.8992f  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
earthquake 5 1000 Noisefree 0 0.8447f  0.9333f 0.9778 1.0000 0.9778 0.2000 0.2500 0.2500 0.2500 0.2500 0.2278F
earthquake 5 1000 Huber 0.2 0.7509f 0.7509f 0.7509f 05978  0.6583F 0.4618 0.4618 0.4618 0.3860 0.4547 0.3860
earthquake 5 1000 Independent 0.2 0.6786f 0.6350f 0.6350f 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
sachs 1000 Noisefree 183571 0.8402f  0.8374f  0.9697 0.4310f 0.45351 0.5935 0.4112f 0.5873
sachs 1000 Huber 0.8064  0.7893  0.7498 0.5194 0.4815 0.4736 0.2380 0.5028
sachs 1000 Independent 0.5208f  0.5172f  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
survey 1000 Noisefree 0.6545  0.6506 0.1789 0.1789 0.1789 0.0571 0.1789
survey 1000 Huber 0.6778F  0.70951 0.1444 0.1444 0.1444 0.1516 0.1444
survey 1000 Independent 0.67051  0.6220f 0.0000f 0.1071 0.1071 0.0000 0.1071
alarm 1000 Noisefree 0.7863F  0.8042f 0.68241 0.4949t 0.5635 0.4976 0.44941
alarm 1000 Huber 0.1619F  0.6571f 0.1680f 0.2774 0.2092f 0.2582
alarm 1000 Independent 0.1448F  0.54581 0.0000 0.0000 0.0000
barley 1000 Noisefree i 0.4913f 0.5636 0.1970f 0.2526
barley 1000 Huber 0.1592f  0.40271 0.4000f 0.1151 0.1658 0.1685
barley 1000 Independent 015011 0.2767f 0.4923f 0.0769 0.0838 0.0838
voting 216 Noisefree N/A N/A N/A —2451.8631 —2453.2737 —2453.4091 456.1489
voting 216 Huber N/A N/A N/A —4418.9731 —4418.9731 —4487.4544 —4418.9731
voting 216 Independent N/A N/A N/A —4453.8298 —4453.8298 —4522.5521 —4453.8298
backache 90 Noisefree N/A N/A N/A —1729.8364 —1726.8465 —1710.7248 —1719.5002 —1713.7583 —1729.7991
backache 90 Huber N/A N/A N/A —3186.5001 —3186.5001 —3186.5001 —3186.5001 —3186.5001 —3186.5001
backache 90 Independent N/A N/A N/A —2800.9386 —2800.9386 —2800.9386 —2800.9386 —2800.9386 —2800.9386
connect-4_6000 43 6000  Noisefree N/A N/A N/A —38956.4300  —38956.4300  —38954.9501  —3 - 6041t —38956.4300
connect-4_6000 43 6000 Huber N/A N/A N/A —99616.2848  —99616.2848  —102878.2766 —99673.532 —100212.9773  —99616.2848
connect-4_6000 43 6000 Independent N/A N/A N/A  —107403.2543 —107403.2543 —107403.2543 —107403.2543 —107403.2543 —107403.2543

The final sample complexity becomes

. Cleo +1og (n/d) +10g ppa)) 0% pax) )
e min(u2, 1) '

D More Empirical Results

Table 2 lists the complete experimental results.
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