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APPENDICES

A EXPERIMENTAL DETAILS

We follow prior work on each dataset for the architectures and hyperparameters of our experiments.
For each dataset, all methods compared use hyperparameters initially validated with the ERM
baseline. All experiments use early stopping i.e. recording metrics for each run at the epoch of highest
ID or worst-group validation performance (for Wild-Time and waterbirds/civilComments datasets
respectively). Each dataset/method is run with 9 different seeds unless otherwise noted. The bar
charts report the average over these seeds and error bars represent ± one standard deviation.

We noticed considerable variability in the results reported in prior work, sometimes for
datasets/methods supposedly identical (e.g. resampling baselines on waterbirds). Therefore we
only make comparisons across results obtained within a unique code base after re-running all base-
lines in the same setting.

We also found some issues in existing code that we could not clear up with their authors despite
multiple requests. This includes inconsistent preprocessing and duplicated data in the preprocessing
of civilComments in Idrissi et al. (2022), “magic constants” in the implementation of selective mixup
(LISA) in Yao et al. (2022b), inappropriate architectures for MIMIC in Yao et al. (2022a). We
fixed these issues in our codebase. Therefore we refrain from claims or direct comparisons with the
absolute state of the art.

Dataset-specific notes:
• On waterbirds, we use ImageNet-pretrained ResNet-50 models. The results in the main paper use

linear classifiers trained on frozen features. We report similar results with fine-tuned ResNet-50
models in Figure 11.

• On CivilComments, we use a standard pretrained BERT. To limit the computational expense for
our large number of experiments, we use the BERT-tiny version (2 layers, 2 attention heads,
embeddings of size 128). The results in the main paper use linear classifiers on frozen features.
We report similar results with fine-tuned models in Figure 17 (using only one seed).

• On Wild-Time Yearbook, we train the small CNN architecture described in Yao et al. (2022a)
from scratch. In the analysis of Figure 5, we measure the distance between the training and test
distributions of inputs (vectorized grayscale images). To do so, we measure the distance between
every pair across the two sets. For each test example, we keep the minimum distance (i.e. closest
training example), then average these distances over the test set.

• On Wild-Time arXiv, we use random subset of 10% of the dataset. We verified on a small number
of experiments that this produces very similar results to the full dataset at a fraction of the
computational expense.

• On Wild-Time MIMIC-Readmission, the baseline transformer architecture proposed in Yao et al.
(2022b) seems inappropriate. Its ID and OOD performance is surpassed by random guessing or
even by constant predictions of the majority training class. The issue probably went unnoticed
because the standard accuracy metric is misleading with imbalanced data (70% ID accuracy of
that ERM baseline is worse than chance).
To remedy this, we first switch to the AUROC metric. It gives equal weight to the classes and 50%
is then unambiguously equivalent to random chance.
Second, we use a much simpler architecture. We train a “bag of embeddings” where each token
(diagnosis/treatment code) is assigned a learned embedding, which are summed across sequences
then fed to a linear classifier.

All experiments were run on a single laptop with an Nvidia GeForce RTX 3050 Ti GPU.
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B ADDITIONAL RESULTS

We show below results from the main paper while including in-domain (ID), out-of-distribution
(OOD) average-domain/average-group, and OOD worst-domain/worst-group performance. The
OOD metrics are always strongly correlated across methods and training epochs, but ID and OOD
performance sometimes require a trade-off, as noted in Teney et al. (2023).
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Figure 11: Results on waterbirds (top) with linear classifiers on frozen ResNet-50 features and
(bottom) with fine-tuned ResNet-50 models (selected methods only).
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Figure 12: Results on yearbook.
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Figure 13: Results on yearbook-reversed (swapping ID and OOD data) to test the predicted failure
mode. The “regression toward the mean” does not hold, therefore the methods that improved OOD
performance on the original dataset are now detrimental (methods presented in the same order as
Figure 12).
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Figure 14: Results on arXiv. Interestingly, the methods with selective sampling without mixup are
much better than selective mixup on in domain (ID) but worse out of domain (OOD). This shows a
clear trade-off between these two objectives.
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Figure 15: Same analysis as in Figure 7 of the main paper, performed on every test domain. In all
cases, we observe a strong correlation between the improvements in accuracy and the reduction in
divergence of the class distribution due to resampling effects.
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Figure 16: Results
on civilComments with
linear classifiers on
frozen embeddings.
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Figure 17: Results
on civilComments with
fine-tuned BERT mod-
els (single seed, re-
duced set of methods).
These results are qual-
itatively identical to
those with frozen em-
beddings above.
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Figure 18: Results on
MIMIC-Readmission.

C TESTING THE PREDICTED FAILURE MODE

The explanations proposed in this paper state that the resampling effects with selective mixup are
beneficial because a “regression toward the mean” is present in the datasets. As a corollary, it implies
that the effect would be detrimental if the opposite property holds (i.e. increased imbalances in the
test data).

We test this prediction on the yearbook dataset by switching the ID and OOD data. More precisely,
whereas the original dataset uses data from years 1930–1970 as training data and ID test data (as
shown in Figure 10), we use this data as the OOD test data. Vice versa for data from years 1970–2010.
As a result, the training! test label shift is now an increased imbalance rather than a regression
toward a uniform one.

The results on yearbook-reversed confirm the predicted failure (comparing Figures 12–13). The
methods that improved OOD performance on the original dataset are now detrimental.
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D PROOF OF THEOREM 3.1

Theorem D.1 (Restating Theorem 3.1). Given a dataset D={(xi,yi)}i and paired data eD sampled
according to the “different class” criterion, i.e. eD = {(exi, eyi) ⇠ D s.t. eyi 6= yj}, then the
distribution of classes in D [ eD is more uniform than in D.

Formally, the entropy H
�
pY(D)

�
 H

�
pY(D [ eD)

�
.

Proof. Let us define the shorthands p def
= pY(D) and ep def

= pY( eD).

In eD, the ith class gets assigned, in the expectation, on a proportion of points equal to the proportion
of all other classes j 6= i in the original data D.

Looking at the individual elements of ep, we therefore have, 8 i=1 . . . C:

epi = ⌃C
j 6=i pj / (C�1) (6)

epi = (1�pi) / (C�1) (7)

We will show that every element of ep is closer to 1
C than the corresponding element of p:

|pi � 1
C | � |epi � 1

C | (8)

|C pi�1
C | � | (1�pi)C�(C�1)

C (C�1) | (9)

|C pi � 1| � | 1�C pi

(C�1) | (10)

|C pi � 1| � |C pi � 1
(C�1) | (11)

Therefore ep is closer to a uniform distribution than p, and

H(p)  H(ep) (12)

Since pY(D [ eD) =
�
pY(D) � pY( eD)

�
/ 2, we also have

H
�
p
�
 H

�
(p � ep)/2

�
(13)

H
�
pY(D)

�
 H

�
pY(D [ eD)

�
(14)

with an equality iff pY(D) is uniform.
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