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Prompt-Guided Image-Adaptive Neural Implicit Lookup Tables
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ABSTRACT
In this paper, we delve into the concept of interpretable image en-
hancement, a technique that enhances image quality by adjusting
filter parameters with easily understandable names such as “Expo-
sure” and “Contrast”. Unlike using predefined image editing filters,
our framework utilizes learnable filters that acquire interpretable
names through training. Our contribution is two-fold. Firstly, we
introduce a novel filter architecture called an image-adaptive neu-
ral implicit lookup table, which uses a multilayer perceptron to
implicitly define the transformation from input feature space to
output color space. By incorporating image-adaptive parameters
directly into the input features, we achieve highly expressive filters.
Secondly, we introduce a prompt guidance loss to assign inter-
pretable names to each filter. We evaluate visual impressions of
enhancement results, such as exposure and contrast, using a vi-
sion and language model along with guiding prompts. We define a
constraint to ensure that each filter affects only the targeted visual
impression without influencing other attributes, which allows us
to obtain the desired filter effects. Experimental results show that
our method outperforms existing predefined filter-based methods,
thanks to the filters optimized to predict target results. We will
make our code publicly available upon acceptance.

CCS CONCEPTS
• Computing methodologies → Image processing; Computa-
tional photography.

KEYWORDS
Image enhancement, Lookup table, Implicit neural representation,
Vision and language, CLIP, Interpretablity

1 INTRODUCTION
Image enhancement has become an essential task in modern dig-
ital image processing, enhancing the visual quality of images by
adjusting their brightness and color. This process significantly in-
creases an image’s utility across various applications. This paper
focuses on image enhancement techniques, examining their scope
and potential in detail. Especially, we delve into the concept of in-
terpretable image enhancement, a technique that improves images
through the adjustment of filter parameters with easily understand-
able names, such as “Exposure”, “Contrast”, and “Saturation”. This
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approach allows the user to adjust the enhancement results accord-
ing to his or her preference and to learn and more effectively utilize
the image enhancement process itself. Consequently, interpretable
image enhancement is anticipated to substantially enhance users’
comprehension and manipulation of image processing.

Previous interpretable image enhancement methods [11, 15, 23,
24] employ predefined image editing filters, and convolutional neu-
ral networks (CNNs) are trained to determine the optimal parame-
ters for these filters. Since these filters are designed in a manner that
is understandable to humans, they facilitate interpretable image
enhancement. However, the effectiveness of enhancement may be
constrained by the limitations inherent in the design of these pre-
defined filters. For instance, the “Exposure” filter can be designed
in various ways, making it challenging to manually craft an opti-
mal Exposure filter for achieving specific results. In contrast, most
recent image enhancement methods [21, 35, 36, 39, 40] employ 3D
lookup tables (LUTs) [37], which are tables that record input RGB
values and corresponding output RGB values. Multiple 3D LUTs
are employed to apply various effects, and image-adaptive enhance-
ment is achieved by linearly summing these 3D LUTs, weighted by
image-adaptive parameters. Unlike predefined image editing filters,
3D LUTs are learnable filters optimized for predicting enhancement
results, enabling high quality enhancement. However, there are
two notable issues associated with the use of 3D LUTs. Firstly, the
expressive power is limited. This is because the multiple 3D LUTs
are merely summed in a linear fashion, weighted by image-adaptive
parameters, which means the image-adaptive parameters can only
adjust the enhancement effect in a linear manner. Secondly, 3D
LUTs lack interpretable names. Since they are optimized solely for
predicting target enhancement results, their effects may not be
intuitively understood by humans.

To achieve high-performing and interpretable enhancement
methods, we propose learnable and interpretable filters named
a Prompt-Guided Image-Adaptive Neural Implicit Lookup Table
(PG-IA-NILUT). Our contribution is twofold. Firstly, we introduce
a novel learnable filter architecture called an Image-Adaptive Neural
Implicit Lookup Table (IA-NILUT). Inspired by a previousmethod [7],
we utilize implicit neural representations [28] for a color transfor-
mation. While previous researchers have used 3D LUTs to explicitly
record input-output RGB value pairs, we employ a multilayer per-
ceptron (MLP) to implicitly define the transformation from input
feature space to output color space. The most significant distinction
from the 3D LUT-based methods is that we incorporate image-
adaptive parameters directly into the input features. Since an MLP
can represent nonlinear and complex relationships between inputs
and outputs, our approach enables these image-adaptive parame-
ters to exert a complex influence on the output RGB values, thereby
achieving highly expressive filter effects. Additionally, to address
the problem of high computational costs of MLPs, we introduce the

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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technique called LUT bypassing. Instead of applying the MLP di-
rectly to each pixel in the image, we convert the MLP into a 3D LUT,
which is then applied to each pixel. Color transformation through
the 3D LUT is computationally inexpensive, enabling cost-effective
image enhancement.

As a second contribution, we propose a prompt guidance loss
to assign interpretable names to each filter. This loss function uti-
lizes CLIP [25], a vision and language model capable of embedding
images and text within the same feature space. CLIP has demon-
strated its ability to quantify image impressions [30]. For example,
for an impression word such as “Exposure,” we prepare pairs of
positive and negative prompts (e.g., “Overexposed photo.” and
“Underexposed photo.”) and calculate the ratio of the distances
between the image feature and each prompt feature. This allows us
to quantitatively evaluate the “Exposure” impression conveyed by
the image. In this study, we propose using the pairs of positive and
negative prompts as guiding prompts to guide the filters toward
achieving the desired effects. Our prompt guidance loss ensures
that when the parameter associated with “Exposure” is altered, only
the “Exposure” score changes, while the scores for other impres-
sions remain unaffected. By minimizing this prompt guidance loss
in conjunction with a reconstruction loss of the target results, we
achieve high-performing and interpretable filters.

To evaluate the proposed method, we perform experiments with
the FiveK [4] and PPR10K [20] datasets. We show that the proposed
method achieves interpretable filters, which are understandable to
humans. In addition, the proposed method achieves higher perfor-
mance than existing predefined filter-based methods.

The contributions of this paper are as follows:
• For interpretable and learnable filters, we develop the IA-
NILUT, a highly expressive filter architecture.

• We introduce the prompt guidance loss to assign interpretable
names to each filter.

• The proposed method achieves higher performance than
existing predefined filter-based methods.

2 RELATEDWORKS
2.1 Encoder-Decoder-Based Methods
Early CNN-based image enhancement methods utilized encoder-
decoder-based CNNs. Gharbi et al. [8] achieved rapid image en-
hancement using a bilateral grid [5]. Chen et al. [6] modified U-
Net [26] to incorporate global features. Wang et al. [31] introduced
a loss function for spatial smoothness. Moran et al. [22] proposed
a lightweight model that employs local parametric filters. Kim et
al. [13] developed a sequential approach to image enhancement,
applying global and local adjustments in stages. Afifi et al. [1] pre-
sented a versatile model capable of correcting both overexposed
and underexposed images. Kim et al. [12] developed a representa-
tive color transform technique for improved color accuracy. Zhao
et al. [42] explored the use of invertible neural networks to restore
content accurately while avoiding bias. Zhang et al. [41] leveraged
Transformer [29] for structure-aware enhancement. Recognizing
the diversity in user preferences, some researchers have focused on
personalized image enhancement models [14, 17]. Because encoder-
decoder-based methods are computationally costly, filter-based
approaches have recently become more prevalent.

2.2 Predefined Filter-Based Methods
Predefined filter-based methods train CNNs to predict the parame-
ters of predefined image editing filters. Park et al. [24] employed
reinforcement learning to train an agent that iteratively determines
the parameters. Hu et al. [11] utilized generative adversarial net-
works (GANs) to generate more realistic results. Kosugi and Ya-
masaki [15] reproduced Photoshop filters, enabling more efficient
prediction of enhancement results. Bianco et al. [3] and Li et al. [19]
used color transformation curve for flexible enhancement. Ouyang
et al. [23] achieved local enhancement with region-specific color
filters. Some researchers proposed methods for crowd workers to
adjust the filter parameters [16, 18]. These methods can achieve in-
terpretable enhancements because the predefined filters are named
in a way that is understandable to humans, but the enhancement
performance can be limited by the design of these predefined filters.

2.3 Learnable Filter-Based Methods
Learnable filter-based methods optimize the filters using training
data. He et al. [9] successfully replicated an image editing process
using an MLP. Wang et al. [33] further enhanced these results by
applying sequential image retouching.

Recent learnable filter-basedmethods largely use 3D LUTs, which
are trainable tables that map input RGB values to corresponding
output values. Zeng et al. [37] utilized multiple 3D LUTs, combin-
ing them with image-adaptive weights. Wang et al. [32] introduced
spatial-aware 3D LUTs. Yang et al. [35] made the sampling points of
3D LUTs adapt to images, enhancing their expressiveness. Yang et
al. [36] incorporated a 1D LUT alongside 3D LUTs for complex color
transformations. Zhang et al. [39] proposed a compressed repre-
sentation of 3D LUTs to efficiently increase their number. Zhang et
al. [40] introduced hashing techniques to reduce parameters. Liu et
al. [21] defined 4D LUTs for local enhancement. Shi et al. [27] devel-
oped a network that considers cross attention between RGB values
and LUTs. Zhang et al. [38] combined 3D LUTs with local laplacian
filters [2] for advanced effects. Despite the high performance, they
lack interpretability, presenting a challenge for understanding the
modifications they make to the images.

3 PRELIMINARY
This section describes the key existing method: image-adaptive
3D LUTs [37]. 3D LUTs are learnable tables that record input RGB
values and the corresponding output RGB values. We denote the
matrix representing the sampling points by I ∈ R𝑁 3×3 and the
matrix recording the corresponding output values by O ∈ R𝑁 3×3,
where 𝑁 is the number of sampling coordinates. Given an input
RGB value of [𝑟x, 𝑔x, 𝑏x], an index 𝑠 is searched for such that the
vector in the 𝑠-th row of Imatches [𝑟x, 𝑔x, 𝑏x]; then, the 𝑠-th row of
O, denoted as [𝑟y, 𝑔y, 𝑏y], is returned. If the input RGB value is not
included in I, an interpolated value is returned based on the sur-
rounding RGB values. This process is performed on all pixels. Let X
and Y be input and output images, respectively, the transformation
is represented as Y = Lookup(X, {I,O}).

In image-adaptive 3D LUTs [37], multiple LUTs {I,O1}, ..., {I,O𝐽 }
are employed for different effects. To achieve the optimal enhance-
ment for each image, CNN-based weights predictor F is trained to
output weights for each LUT as w = F(X), where w ∈ R𝐽 . The
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Figure 1: Overview of our interpretable image enhancement method. For a highly expressive filter architecture, we propose an
IA-NILUT. By employing LUT bypassing, we can expedite the transformation process. Additionally, we introduce a prompt
guidance loss to assign interpretable names to each filter. As our method provides an interpretable and learnable framework
for enhancement, it outperforms other predefined filter-based methods in terms of performance.

enhanced result is represented as

Y = Lookup(X, {I,O1}) ×𝑤1 + · · · + Lookup(X, {I,O𝐽 }) ×𝑤 𝐽 . (1)

Each Lookup(X, {I,O𝑗 }) can be regarded as the result of applying
different filters toX, and each𝑤 𝑗 works as a filter parameter that de-
termines the strength of the filter effect. O1, ...,O𝐽 can be optimized
to predict enhancement results, which makes the lookup tables
as efficient image editing filters. Because pixels are transformed
independently, Eq. (1) can be simplified as

Y = Lookup(X, {I,O1 ×𝑤1 + · · · + O𝐽 ×𝑤 𝐽 }) . (2)

The weights predictor F processes images that are downscaled to a
fixed size, and Lookup function operates quickly. As a result, this
framework enables real-time enhancement for images of any size.

This approach faces two main issues. First, there’s the issue of
limited expressive power. The enhancement results are summed
linearly as shown in Eq. (1), meaning that image-adaptive param-
eters cannot produce complex effects. Second, the 3D LUTs lack
interpretable names. Since the 3D LUTs are optimized solely for
predicting target results, there’s no assurance that their effects will
be meaningful or understandable to humans. We address these chal-
lenges by introducing highly expressive and interpretable filters.

4 PROPOSED METHOD
To achieve a high-performing and interpretable image enhancement
method, wemake two contributions. First, we propose a novel learn-
able filter architecture called an IA-NILUT. Second, we introduce
a prompt guidance loss to give interpretable names to each filter.
We show the overview in Figure 1 and describe the contributions
in the following sections.

4.1 Image-Adaptive Neural Implicit Lookup
Table

We propose a novel filter architecture called an IA-NILUT. Inspired
by the existingmethod known as NILUTs [7], our approach employs

an implicit neural representation [28], wherein we implicitly define
the transformation from input space to output space using an MLP.
We visualize the difference between the 3D LUTs and our IA-NILUT
in Figure 2. The most significant distinction between the previous
image-adaptive 3D LUTs and our IA-NILUT is that the IA-NILUT
incorporates the image-adaptive parameters directly into the input
features. Given that an MLP is capable of capturing nonlinear and
intricate relationships between input and output variables, our
method allows the image-adaptive parameters to intricately affect
the output RGB values, thereby achieving highly expressive filter
effects. We define the color transformation process as follows,

[𝑟y, 𝑔y,𝑏y] = [𝑟x, 𝑔x, 𝑏x]
+ e

(
[𝑟x, 𝑔x, 𝑏x] ⊕ sort( [𝑟x, 𝑔x, 𝑏x]) ⊕ w

)
− e

(
[𝑟x, 𝑔x, 𝑏x] ⊕ sort( [𝑟x, 𝑔x, 𝑏x]) ⊕ 0

)
,

(3)

where e represents the MLP, and ⊕ denotes vector concatena-
tion. We make two improvements to the color transformation pro-
cess for interpretable filters. First, we use the sorted RGB values,
which are denoted by sort( [𝑟x, 𝑔x, 𝑏x]), because they play an im-
portant role in filter interpretability. For instance, in the HSV color
space, saturation is determined by the maximum and minimum
RGB values. Second, we add the difference between e

(
[𝑟x, 𝑔x, 𝑏x] ⊕

sort( [𝑟x, 𝑔x, 𝑏x]) ⊕w
)
and e

(
[𝑟x, 𝑔x, 𝑏x] ⊕ sort( [𝑟x, 𝑔x, 𝑏x]) ⊕0

)
into

the input RGB values. This ensures that the original RGB values are
retained in the output when w is set to 0, a common characteristic
of image editing filters. We define Ê as a function that applies Eq. (3)
to each pixel of image X, and the image transformation process is
represented as follows:

Y = Ê(X,w) . (4)

LUT bypassing. Since MLPs involve multiple nonlinear trans-
formations, the computational cost is significant, especially when
processing large sized images. To address this issue, we propose
LUT bypassing. Instead of directly applying the MLP to every pixel
of the image, we convert theMLP into an LUT and apply this LUT to
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Figure 2: Comparison between the 3D LUTs [37], the IA-NILUT, and the IA-NILUT with the LUT bypassing.

the image as shown in Figure 2(c). Eq. (4) is transformed as follows,

Y = E(X,w) = Lookup(X, {I,O}),
where O = Ê(I,w).

(5)

The sampling points I ∈ R𝑁 3×3 are considered as an image with
𝑁 3 pixels. This is then converted into O by the MLP. Following
this conversion, the input image X is transformed using the lookup
table comprising pairs of I and O. In our experiment, we set 𝑁 to
33, which results in I being treated as an image composed of 35,937
pixels. For comparison, a 512 × 512 image contains 262,144 pixels,
indicating that I represents a relatively small image. Even when
processing large-sized images, the MLP is applied only to I, which
means that the computational cost of the MLP remains constant.
Therefore, LUT bypassing leverages the expressive power of MLPs
while also benefiting from the low computational cost associated
with LUTs.

Comparison with advanced LUT-based methods. Recent re-
searchers have made various improvements to LUTs to enhance
their expressiveness. For example, AdaInt [35] makes the sampling
points I to be image-adaptive. CLUTNet [39] uses a compressed
representation of 3D LUTs. The most significant difference between
our method and these existing methods lies in the number of image-
adaptive parameters. The existing methods improve expressiveness
by increasing the number of image-adaptive parameters; for exam-
ple, AdaInt and CLUTNet use 99 and 20 image-adaptive parameters,
respectively. However, this approach makes interpretability more
complex. Too many parameters can make the image editing process
confusing for users. In contrast, our method boosts expressiveness
by using an implicit neural representation, without increasing the
number of image-adaptive parameters. In our experiments, we use
only five image-adaptive parameters. This results in a filter archi-
tecture that’s easier to understand.

4.2 Prompt Guidance Loss
We introduce a prompt guidance loss that assigns interpretable
names to each filter. In this loss function, we utilize CLIP [25], a
vision and language model that embeds images and text within

the same feature space. CLIP has demonstrated its ability to quan-
titatively assess visual impressions [30]. When evaluating an im-
age’s “Exposure,” we create pairs of prompts that contrast posi-
tive and negative aspects, such as “Overexposed photo.” versus
“Underexposed photo.” We denote the distances between the im-
age feature and each prompt feature as 𝑑+ and 𝑑−, respectively. The
image’s Exposure impression can be evaluated using the formula
exp(𝑑+)/(exp(𝑑+) + exp(𝑑−)).

We propose using the pairs of positive and negative prompts
as guiding prompts to guide the filters toward achieving the de-
sired effects. We illustrate our motivation in Figure 3. We prepare
𝐽 filter names along with pairs of corresponding guiding prompts,
assigning a filter name to each dimension of the 𝐽 -dimensional
image-adaptive parametersw. During the training phase, we assess
the impressions of the enhanced results with each guiding prompt.
When we assign the filter name “Exposure” to𝑤1, we expect that a
change in𝑤1 will only affect the Exposure score, without impact-
ing other scores such as “Contrast” or “Saturation” as shown in
Figure 3(b). If the Contrast and Saturation scores change as shown
in Figure 3(c), this could be considered undesired behavior for the
Exposure filter, potentially confusing users. Therefore, we propose
a constraint that ensures only specific scores are affected when
parameters are altered, while other scores remain unchanged.

We define randomly sampled weights asw, and denote the scores
c ∈ R𝐽 evaluated on 𝐽 prompt pairs as follows.

c = CLIPscore
(
E(X,w)

)
. (6)

To ensure that a specific filter effect is applied when𝑤 𝑗 is altered,
we define the prompt guidance loss. Instead of adding Δ𝑤 𝑗 to𝑤 𝑗 ,
we directly apply a constraint to the gradient in the following way.

LPG =

𝐽∑︁
𝑗=1

(
𝜆 𝑗

��� 𝜕𝑐 𝑗
𝜕𝑤 𝑗

− 1
��� + 𝜆

∑︁
𝑗 ′≠𝑗

��� 𝜕𝑐 𝑗 ′
𝜕𝑤 𝑗

− 0
���), (7)

where 𝜆 𝑗 and 𝜆 are hyperparameters. This constraint guarantees
that 𝑤 𝑗 affects only the targeted score 𝑐 𝑗 , while the remaining
scores 𝑐 𝑗 ′ ( 𝑗 ′ ≠ 𝑗) are unaffected. By minimizing LPG, we can
assign interpretable names to each filter.
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Figure 3: Motivation for our prompt guidance loss.

4.3 Training and Testing
The pairs of input and target images for training are denoted as
{X1, T1}, . . . , {X𝐼 , T𝐼 }. We divide the training steps into three stages.
In the first training stage, only the filters E are trained, using only
the prompt guidance loss LPG.

E = argmin
E

LPG . (8)

In the second stage, we introduce image-adaptive parametersw1, . . . ,
w𝐼 for the images X1, . . . ,X𝐼 . The training process is defined as

E, w1, . . . ,w𝐼 = argmin
E,w1,...,w𝐼

LPG

+
𝐼∑︁

𝑖=1
MSE(T𝑖 , E(X𝑖 ,w𝑖 )) +

𝐼∑︁
𝑖=1

MSE(X𝑖 , E(T𝑖 ,−w𝑖 )),
(9)

where MSE represents the mean squared error function. The third
term is a constraint ensuring that the input image is reconstructed
from the target image when the parameters w𝑖 are reversed, a
property that existing filters also possess. In the final stage, the
parameter prediction model F is trained as

F = argmin
F

𝐼∑︁
𝑖=1

MSE(T𝑖 , E(X𝑖 , F(X𝑖 ))) . (10)

At test time, the enhancement results are generated using the
trained E and F, as Y = E(X, F(X)). The filters E can achieve fast
transformations through the LUT bypassing, and the parameter
prediction model F resizes the input image to a fixed resolution
before processing, resulting in real-time enhancement.

Table 1: Guiding prompts.

Filter name Positive prompt Negative prompt

𝑤1 Exposure “Overexposed photo.” “Underexposed photo.”

𝑤2
(FiveK) Contrast “Clear photo.” “Unclear photo.”
(PPR10K) Contrast “High contrast photo.” “Low contrast photo.”

𝑤3 Saturation “Full color photo.” “No color photo.”

𝑤4 Color temperature “Yellow tinted photo.” “Blue tinted photo.”

𝑤5 Tint correction “Magenta tinted photo.” “Green tinted photo.”

5 EXPERIMENTS
5.1 Datasets and Implementation
We utilize two widely used datasets: FiveK [4] and PPR10K [20].
FiveK contains 5,000 images, each retouched by five experts. Fol-
lowing the setting of previous papers [35, 39], we use 4,500 of these
images for training and the remaining 500 for testing, employing
the images retouched by Expert C as the target images. We con-
duct experiments in both 480p resolution (where the shorter side
is resized to 480 pixels) and the original 4K resolution. To train
efficiently, we perform the training at 480p resolution and use the
original 4K resolution only for testing. PPR10K includes 11,161
portrait images, each retouched by three experts. We conduct our
experiments using the results retouched by Expert A. According to
the official setup, we have 8,875 pairs for training and 2,286 pairs
for testing. All images are used in a resized format at 360p. We
evaluate each method using PSNR, SSIM [34], and the L2-distance
in CIE LAB color space (Δ𝐸𝑎𝑏 ). When measuring runtime, we use
the NVIDIA RTX A6000 GPU.

In the IA-NILUT, we employ an MLP consisting of five fully
connected layers. The hidden features within this MLP are 256-
dimensional, and we utilize the hyperbolic tangent as our activation
function. For the parameter prediction model F, a five-layer CNN is
used on FiveK, and ResNet18 [10] is applied to PPR10K, following
the configurations reported in previous studies [20, 35].

Inspired by the basic filters in Adobe Lightroom, we define five
filter names and employ five corresponding guiding prompt pairs as
outlined in Table 1. For the Contrast filter, we use different prompts
for each dataset, tailoring them to achieve the desired effects.

5.2 Visualization of Filter Effects
To demonstrate that the proposed method achieves interpretable
filter effects, we visualize filter effects in Figure 4. In these visual-
izations, only certain parameters are varied while others are held
constant at 0. These results indicate that each filter produces a
specific effect associated with the corresponding guiding prompts.
Figure 5 shows examples of sequential application of predicted
parameters, where the enhancement process is visualized in a way
that is easy for humans to understand. The sequential application
of the filter effects in Figure 5 is for visualization purposes only,
and the all filter effects are applied simultaneously in practice.

5.3 Ablation Studies
Filter architecture. We use the IA-NILUT for a highly expressive
filter architecture. To assess the significance of the IA-NILUT, we
train 3D LUTs [37] instead of the IA-NILUT using the prompt
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Figure 4: Visualization of learned filter effects. Only certain parameters are varied while others are held constant at 0. The
images on the left and right are samples from FiveK and PPR10K, respectively.
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Figure 5: Sequential application of predicted parameters. This sequential application is for visualization purposes only, and the
all effects are applied simultaneously in practice. The top and bottom images are samples from FiveK and PPR10K, respectively.

guidance loss. To ensure the original image is preserved when w is
set to 0, we modify Eq. (1) as follows,

Y = X + Lookup(X, {I,O1}) ×𝑤1 + · · ·
+ Lookup(X, {I,O𝐽 }) ×𝑤 𝐽 .

(11)

As shown in Table 2, the IA-NILUT achieves higher performance,
indicating the higher expressive power of the IA-NILUT. The fil-
ter effects of the 3D LUTs trained with the prompt guidance loss
are shown in Figure 6. The desired filter effects are not achieved,
indicating that the IA-NILUT is essential for interpretable filters.

LUT bypassing. We use the LUT bypassing to reduce the computa-
tional cost. To demonstrate the effectiveness of the LUT bypassing,
we present a comparison of PSNR and runtime in Table 3, and a com-
parison of the required GPU memory in Figure 7. When processing
some 4K images that require more memory than the available limit

in Table 3, we divide the image into four patches and sequentially
apply the MLP to each patch. Given that an MLP is computation-
ally intensive, the absence of the LUT bypassing leads to increased
computational costs, particularly when processing large-sized im-
ages. In contrast, by employing the LUT bypassing, the MLP is
only applied to sampling points, the size of which are independent
of the overall image size. In addition, the LUT bypassing has little
effect on the PSNR. This approach leads to computationally efficient
enhancement that is nearly unaffected by the image size.

Prompt guidance loss. We employ the prompt guidance loss
to assign interpretable names to each filter. To demonstrate the
significance of the prompt guidance loss, we present the effects of
filters when training the IA-NILUTwithout this loss in Figure 8. It is
difficult to assign interpretable names to these filters. For instance,
the first filter influences both exposure and color simultaneously.
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Table 2: Comparison of filter architecture using FiveK (480p).

Method PSNR↑ SSIM↑ 𝚫𝑬𝒂𝒃↓
3D LUTs [37] w/ prompt guidance loss 24.92 0.924 8.23
IA-NILUT w/ prompt guidance loss 25.22 0.930 7.76

Exposure

Contrast

Saturation

Color temperature

Tint correction

Figure 6: Filter effects of 3DLUTs [37] trained with the
prompt guidance loss.

Table 3: Effectiveness of the LUT bypassing on FiveK.

Method
480p Full Res. (4K)

PSNR↑ Runtime↓ PSNR↑ Runtime↓
Ours w/o LUT bypassing 25.22 1.9 ms 25.06 7.8 ms
Ours w/ LUT bypassing 25.22 1.9 ms 25.05 2.0 ms

Similarly, the second filter affects exposure and saturation together,
while the fourth filter impacts color and contrast at the same time.
Both the third and fifth filters are able to modify the image’s con-
trast; if both filters had the same “Contrast” name, users would
be confused. These results highlight the prompt guidance loss’s
critical role to assign interpretable names to each filter.

5.4 Comparison with the State-of-the-Arts
We employ four interpretable methods: D&R [24], Exposure [11],
UIE [15], and RSFNet [23]. For a fair comparison, we utilize only the
filters adopted in these methods and apply the same parameter pre-
dictor as ours. For the filters fromUIE, we exclude non-differentiable
filters. Additionally, we include three uninterpretable methods:
our baseline method (3D LUTs [37]), and the two state-of-the-art
methods (AdaInt [35] and CLUTNet [39]). Since the pre-trained
weights for CLUTNet with PPR10K are not publicly available, we
only show the performance on FiveK. The performance of these
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Figure 7: Required GPU memory w/ and w/o LUT bypassing.

Figure 8: Filter effects of the IA-NILUT without the prompt
guidance loss.

uninterpretable methods is provided solely for reference, as our
primary focus is on interpretable image enhancement.

We present quantitative comparisons in Table 4 and visual com-
parisons with other interpretable methods in Figure 9. Because
our filters are learnable and optimized to predict the ground truth,
our method achieves better performance than other predefined
filter-based methods. While the runtime for Exposure’s filters and
UIE’s filters is long due to their complex color transformations,
the runtime of our method is almost unaffected by the image size
thanks to the LUT bypassing. Our method achieves comparable
performance to that of uninterpretable methods on some metrics.
These results highlight the potential of our method to bridge the
gap between interpretability and high performance.

5.5 Various Filter Effects
By using different guiding prompts, we can achieve various filter
effects. In addition to the guiding prompts listed in Table 1, we
assign additional guiding prompts to𝑤6 and then train the filters
using only the prompt guidance loss. Figure 10 displays examples
of some guiding prompts and their corresponding filter effects. Our
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Table 4: Quantitative comparisons on (a) FiveK and (b) PPR10K. The top three methods are uninterpretable methods, while the
bottom five are interpretable methods.

(a) FiveK (b) PPR10K

Method
480p Full Resolution (4K) 360p

PSNR↑ SSIM↑ 𝚫𝑬𝒂𝒃↓ Runtime↓ PSNR↑ SSIM↑ 𝚫𝑬𝒂𝒃↓ Runtime↓ PSNR↑ SSIM↑ 𝚫𝑬𝒂𝒃↓
3DLUTs [37] 25.36 0.927 7.56 1.5 ms 25.32 0.933 7.61 1.5 ms 26.29 0.961 6.58
AdaInt [35] 25.50 0.930 7.47 1.5 ms 25.50 0.935 7.46 1.5 ms 26.29 0.961 6.59
CLUTNet [39] 25.55 0.931 7.50 1.9 ms 25.50 0.935 7.53 2.1 ms - - -
D&R’s filters [24] 23.86 0.903 9.07 1.9 ms 23.76 0.907 9.16 1.9 ms 24.27 0.934 8.11
Exposure’s filters [11] 25.04 0.920 7.83 4.3 ms 24.91 0.924 7.92 15.9 ms 25.53 0.954 7.55
UIE’s filters [15] 24.74 0.923 8.06 5.0 ms 24.61 0.928 8.14 58.9 ms 25.45 0.956 7.53
RSFNet’s filters [23] 24.86 0.924 7.89 2.8 ms 24.82 0.928 7.96 2.8 ms 25.41 0.946 7.48
PG-IA-NILUT (ours) 25.22 0.930 7.76 1.9 ms 25.05 0.934 7.88 2.0 ms 26.00 0.957 6.81

Input D&R’s filters Exposure’s filters UIE’s filters RSFNet’s filters Ours Ground truth

Figure 9: Visual comparisons of interpretive methods, with the top image from FiveK and the bottom from PPR10K.

Figure 10: Filter effects by various guiding prompts.

filter is highly expressive, enabling us to achieve various effects and
demonstrating its practical utility for image editing applications.

6 LIMITATION
Although our method achieves interpretable and high-performing
enhancement, it encounters a drawbackwhere the use of the prompt

Table 5: Impact of the prompt guidance loss on FiveK.

Method PSNR↑ SSIM↑ 𝚫𝑬𝒂𝒃↓
Ours w/o prompt guidance loss 25.46 0.930 7.60
Ours w/ prompt guidance loss 25.22 0.930 7.76

guidance loss slightly deteriorates performance as shown in Table 5.
A potential approach to improve performance while preserving in-
terpretability involves refining the selection of the guiding prompts.
We selected the prompts listed in Table 1 heuristically; however, it
remains uncertain whether they are optimal for both interpretabil-
ity and performance. The development of an automatic prompt
selection mechanism is identified as an avenue for future research.

7 CONCLUSUION
In this paper, we explored interpretable image enhancement. We
proposed a highly expressive filter architecture named an IA-NILUT.
Additionally, we introduced the prompt guidance loss to assign
interpretable names to each filter. Our experiments demonstrated
that our method not only provides interpretability but also achieves
higher performance compared to existing interpretable filters.
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