
A Notations

Table 5: Summary of important notations

Notation Explaination
G A CTDG composed of a series of temporal interactions, i.e., G = {(ei, ti)}Ni=1

(e, t) A temporal interaction at time t between nodes u and v where e := {u, v}
Gu,t A dynamic subgraph composed of the 1-hop temporal neighbors of node u at time t

Xu, Xe The attributes of node u and interaction e at a particular time
W A (time-reversed) temporal walk composed of a sequence of temporal nodes
cW An anonymous temporal walk where node identities in W are replaced by positional

encodings (i.e., relative node identities)
Mu A set of temporal walks rooted at node u at a particular time

A(Mu) A set of anonymous temporal walks rooted at node u at a particular time
h

0

i The latent states of the continuous evolution process at time ti when encoding cW
hi The activated h

0

i with the instantaneous observation A(wi) 2 cW at time ti
hu The learned time-aware representation of node u at a particular time
A(·) The unitary (or binary) temporal walk anonymization
f(·, ✓) The ODE function parameterized by ✓ in Equation 8
g(·,�) The activation function parameterized by � in Equation 9
N The total number of temporal interactions in G

↵,�, � The intensities of temporal, spatial, and exploration & exploitation biases
l, C The walk length and the number of walks rooted at a temporal node

B Additional Model Details

B.1 Tree-Structured Walk Sampling

In practice, we sample walks with a tree-structured sampling algorithm, where temporal, topological,
and tree traversal properties are considered simultaneously (Section 4.2). In Algorithm 3, we configure
the sampling with a specific hyperparameter ngh that defines the sampling hops and the number of
temporal neighbors to be sampled per hop. For example, we sample 32 1-hop and 1 2-hop neighbors
if ngh = [32, 1], which forms C = 32 walks with the length l = 2. In other word, we have |ngh| = l

and
Q|ngh|�1

i=0 ngh[i] = C.

Algorithm 3 Tree-Structured Temporal Walk Sampling
Require: Root node w0, cut time t0, dynamic graph G, sampling configuration list ngh, temporal-biased

intensity ↵, spatial-biased intensity �, exploration & exploitation-biased intensity �
1: Initialize roots = [(w0, t0)], L0 = [(w0, t0)], empty lists Li for i in 1, 2, · · · , |ngh|
2: for i in 1, 2, · · · , |ngh| do
3: k = ngh[i]
4: for root in roots do
5: (wp, tp) = root, initialize dictionaries s = {w : 0 | w 2 Gwp,tp} and d = {w : 0 | w 2 Gwp,tp}

6: Prt = {w : exp
�
↵(t� tp)

�
| ({w,wp}, t) 2 Gwp,tp} /⇤ Temporal-biased probabilities ⇤/

7: for ({w,wp}, t) in Gwp,tp do
8: d[w] = |Gw,t|

9: end for
10: Prs = {w : exp(��/d[w]) | w 2 Gwp,tp} /⇤ Spatial-biased probabilities ⇤/
11: for j in 1, 2, · · · , k do
12: Pre = {w : exp(��s[w]) | w 2 Gwp,tp} /⇤ E&E-biased probabilities ⇤/
13: Sample one ({w,wp}, t) 2 Gwp,tp with prob. / Prt, P rs, P re
14: Li = Li||(w, t)
15: s[w] += 1
16: end for
17: end for
18: roots = Li

19: end for
20: return {Wc | 1  c  C} = Tree2Walk(L0, · · · , L|ngh|) /⇤ Output C walks with length l ⇤/
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B.2 Autoregressive Gated Recurrent Unit

Different from the gated recurrent unit (GRU) [4] whose hidden states are simultaneously activated
by inputs and previous states, we define the autoregressive GRU as follows:

zt = �(Wzht�1 + bz),

rt = �(Wrht�1 + br),

bht = tanh(Wh(rt � ht�1) + bh),

ht = zt � bht + (1� zt)� ht�1.

(12)

In Equation 12, the hidden states ht only depend on ht�1, where zt, rt, and bht are update, reset, and
candidate activation states. Specifically, Wz , Wr, and Wh are trainable weights. bz , br, and bh are
trainable biases. �(·) and tanh(·) denote the sigmoid and hyperbolic tangent activation functions.

B.3 Batching and Complexity Analysis

Walk encoding in batches For C different length-l anonymous walks with various time intervals,
we normally have to solve C ⇥ l different ODEs to encode each walk, which is computational
expensive. Now take C walks with l = 1 (i.e., the walks composed of only two temporal nodes) for
example, we suppose the timestamps of two (i.e., source and target) nodes are tcstart and tcend for
c in 1, 2, · · · , C. Inspired by Chen et al. [3], we aim to construct a substitute variable s for each
continuous evolution process that unify their integral intervals to a specific range, e.g., 0 to 1, so that
makes it possible to encode all C walks at once in parallel.

Considering the c-th walk in the above example, we intend to integrate from tcstart to tcend with the
initial states h0 and an ODE function f(ht, t, ✓) to learn the latent spatiotemporal dynamics. To
integrate from 0 to 1, we transform ht to ehs with s = (t� tcstart)/(t

c
end � tcstart). In other word, we

have t = s(tcend � tcstart) + tcstart and the following equation:

ehs = hs(tcend�tcstart)+tcstart
(13)

The corresponding ODE function ef(ehs, s, ✓) then follows:

ef(ehs, s, ✓) :=
dehs

ds
=

dht

dt

����
t=s(tcend�tcstart)+tcstart

dt

ds

= f(ht, t, ✓)

����
t=s(tcend�tcstart)+tcstart

(tcend � tcstart)

= f(ehs, s(t
c
end � tcstart) + tcstart, ✓)(t

c
end � tcstart)

(14)

On this basis, we have the following equation w.r.t. the facts that eh0 = htcstart
= h0 and eh1 = htcend

htcend
= ODESolving(h0, ef✓, 0, 1) = ODESolving(h0, f✓, t

c
start, t

c
end), (15)

where ODESolving(·) denotes a black-box ODE solver, e.g., Euler or Runge-Kutta 3/8 method.
With the above reparameterization trick, we can solve C different continuous evolution processes in
parallel, thus allowing our method to be trained more efficiently.

Time interval normalization There may be some large time intervals between two temporal
nodes in real-world dynamic graphs, e.g., Figure 6(a), which makes solving the continuous evolution
process (i.e., Equation 8) intractable. A good idea to address this challenge is to scale time intervals
without violating the inductive biases that the relative differences between time intervals reflect
essential temporal clues. On this basis, various transformations can be applied, such as logarithmic
transformations or divided by a large constant, to scale down the range of time intervals and make
solving Equation 8 tractable. In practice, we empirically find that using the base 10 logarithmic
scaling, as shown in Figure 6(c), is sufficient for our method to achieve good performances on
dynamic graph modeling. Compared with other alternatives, e.g., divided by a large constant as
shown in Figure 6(b), the logarithmic transformation with a properly selected base can scale down the
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(a) Distribution of raw time intervals in sec-
onds.

(b) Distribution after constant-based scaling
with the denominator 5⇥ 104.

(c) Distribution after logarithmic scaling
with the base 10.

Figure 6: Average time intervals between temporal nodes in a batch of walks on the Reddit dataset.
Specifically, we let batch size B = 32 and the number of walks C = 64 per root node with the walk
length l = 2.

range of time intervals while well preserving the variances between most small intervals. Although
the variances between very large intervals are compressed in such a case, we conjecture the key
is retaining the relative differences between small and large time intervals, which reveals critical
temporal patterns in dynamic graph modeling.

Complexity analysis We analyse the time complexity of the main components in NeurTWs, as
shown in Table 6.

Table 6: Time complexity analysis

Component Time Complexity
Temporal-biased walk sampling O(BC)
Spatial-biased walk sampling O(BCks)
E&E-biased walk sampling O(BC)
Subtotal (Algorithm 3 and anonymization) O(BC(ks + l))

Continuous evolution O(lFd2h)
Instantaneous activation O(ld2h)
Subtotal (Algorithm 2) O(lFd2h)

Total (Algorithm 4) O
�
K(BC(ks + l) + lFd2h)

�

We start from analysing the time complexity of the proposed temporal walk sampling based on
Algorithm 3 with the following assumptions: (1) We have a batch of B interactions; (2) The sampling
configuration ngh = [k1, k2, · · · , kl] s.t. the number of walks C =

Q|ngh|
i=1 ki and the walk length

l = |ngh|; (3) The time of neighborhood finding is constant; (4) The average number of spanned
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temporal neighbors is ks. On this basis, the time complexity of temporal-biased, spatial-biased, and
exploration & exploitation-biased walk sampling are O(BC), O(BCks), and O(BC), respectively.
Thus, the time complexity of our sampling algorithm is O(BCks). For walk anonymization, we
analyze the upper bound time complexity based on a simple brute-force implementation. We first
identify unique nodes among C temporal walks with the length l by traversing all nodes in walks.
Then, we traverse again to acquire exact node positional encodings, thus resulting in the complexity
of O(Cl) for processing an interaction in a batch.

We then analyse the time complexity of the proposed continuous evolution and instantaneous
activation processes with the aforementioned and the following additional assumptions: (1) We
instantiate g(·,�) and f(·, ✓) with a standard and autoregressive GRU (See Appendix B.2), respec-
tively.; (2) We assume the input and hidden dimensions are di and dh, i.e., A(wi) 2 Rdi⇥1 and
A

0
(wi), h

0

i, hi 2 Rdh⇥1; (3) We assume the number of function evaluations (i.e., how many times the
ODE function is called in a single forward pass when solving an ODE) in the continuous evolution
process is F . On this premise, the time complexity of solving the continuous evolution process
over B ⇥ C walks is O(BClFd2h). However, the aforementioned batching mechanism allows those
different ODEs to be solved in parallel, which reduces the time complexity to O(lFd2h). Regarding
the instantaneous activation process, the time complexity is O(ld2h) when training in batches.

Since our model is trained by optimizing a contrastive objective function, the overall time complexity
of our method is O

�
K(BC(ks + l) + lFd2h)

�
, where K denotes the number of negatives.

B.4 Model Training

Algorithm 4 Training NeurTWs
Require: Training subgraph Gtrn, batch size B, sampling configuration ngh, temporal intensity ↵, spatial

intensity �, exploration & exploitation intensity �, number of negatives K, learning rate ⌘
1: Initialize epoch = 1
2: repeat
3: Split all interactions in Gtrn into m batches eE = {eEi | 1  i  m, |eEi| = B}

4: for i in 1, 2, · · · ,m do
5: Initialize h

K
V 0 = {}

6: /⇤ TWS(·) stands for temporal walk sampling (see Algorithm 3) ⇤/

7: Temporal walk sampling MU = {Muj  TWS(uj , tj ,Gtrn, ngh,↵,�, �) | ({uj , vj}, tj) 2 eEi},
MV = {Mvj  TWS(vj , tj ,Gtrn, ngh,↵,�, �) | ({uj , vj}, tj) 2 eEi}

8: Anonymization A(MU ) = {A(Muj ) | Muj 2MU}, A(MV ) = {A(Mvj ) | Mvj 2MV }

9: /⇤ TWE(·) stands for walk encoding (see Algorithm 2). Pool(·) denotes sum-pooling ⇤/

10: Walk encoding and pooling hU = {huj  Pool
⇣

TWE
�
A(Muj )

�⌘
| A(Muj ) 2 A(MU )},

hV = {hvj  Pool
⇣

TWE
�
A(Mvj )

�⌘
| A(Mvj ) 2 A(MV )}

11: /⇤ Negative sampling and calculate the time-aware node embedding of negatives ⇤/
12: for k in 1, 2, · · · ,K do
13: Randomly sample a batch of nodes V 0 = {v0j 2 Gtrn | 1  j  B, ({uj , v

0
j}, tj) /2 Gtrn}

14: Temporal walk sampling MV 0 = {Mv0
j
 TWS(v0j , tj ,Gtrn, ngh,↵,�, �) | v

0
j 2 V 0

}

15: Anonymization A(MV 0) = {A(Mv0
j
) | Mv0

j
2MV 0}

16: Walk encoding and pooling hV 0 = {hv0
j
 Pool

⇣
TWE

�
A(Mv0

j
)
�⌘

| A(Mv0
j
) 2 A(MV 0)}

17: h
K
V 0 = h

K
V 0 || hV 0

18: end for
19: /⇤ Calculate the contrastive loss w.r.t. Equation 10 ⇤/

20: Compute L = loss(hU , hV , h
K
V 0) and the stochastic gradients of model parameters w.r.t. L

21: Update model parameters w.r.t. their gradients and the learning rate ⌘
22: end for
23: epoch += 1
24: until convergence
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C Experimental Setting

C.1 Datasets

We list the introduction of six datasets used in this paper as follows. We also discuss how they are
preprocessed for use in our method.

• CollegeMsg 3 collects the message interactions between the users in an online social media
platform at the University of California, Irvine. Specifically, this dataset consists of 59,835
message interactions and 1,899 unique users, where these unattributed temporal interactions
are in the format of (u, v, t), denoting that user u sent a message to user v at time t. Since the
format of the interactions in this dataset naturally matches the definition of continuous-time
dynamic graphs in Section 3, so we do not need to preprocess the dataset intentionally. We
provide the ready-to-use dataset files with our code, as well as a script to transform the raw
dataset file to the data files used in our model.

• Enron 4 is an email network dataset consisting of around 0.5 million email interactions
between about 150 senior employees in a corporation over several years. In this paper, we
build the Enron dataset based on the preprocessed version in [36] by using the first half
of interactions, which composes of 62,617 unattributed email interactions and 143 unique
employees. We provide the preprocessed dataset files with our code.

• Taobao 5 is an user behavior dataset that originally collected for the research of recommen-
dation systems, which consists of 100,150,807 user-item interactions, 987,994 users, and
4,162,024 items. Notably, each interaction in this dataset has a specific action type, i.e.,
a user browses/buys/favorites an item or adds it to the shopping cart. To incorporate this
information, we one-hot encode each interaction’s action type as the interaction attributes.
In this paper, we build the Taobao dataset with a subset of the original user-item interaction
network, which composes of 77,436 interactions and 64,703 unique nodes. We provide the
preprocessed dataset files with our code, as well as a script to preprocess and transform the
raw dataset files to the data files used in our model.

• MOOC 6 is an user action dataset that has a collection of actions taken by the users on the
MOOC platform. This dataset consists of 7,047 users, 97 items, and 411,749 attributed
interactions over the duration of about a month. Specifically, the user-item interactions
in this dataset denote the access behavior of students to online course units. Similar to
CollegeMsg, the format of this dataset naturally matches our definition of continuous-time
dynamic graphs, so we have not preprocessed it intentionally. We provide the ready-to-use
dataset files with our code.

• Wikipedia 7 is an user action dataset that has a set of interactions between users and
wikipedia pages. This dataset records 157,474 attributed interactions in one month between
8,227 users and 1,000 pages. Specifically, an interaction denotes that an user edits a page,
where the editing texts have converted into LIWC-feature vectors. Similar to CollegeMsg
and MOOC, we have not preprocessed this dataset intentionally. Also, we provide the
ready-to-use dataset files with the code.

• Reddit 8 is an user action dataset that collects one month of posts made by different users
on the Reddit platform. Similar to Wikipedia, an interaction in this dataset denotes that an
user makes a post on subreddits, where the texts are embedded into LIWC-feature vectors.
Specifically, this dataset consists of 672,447 interactions, 10,000 most active users and 984
subreddits. We have not preprocessed this dataset intentionally, and we also provide the
dataset files with the code.

3https://snap.stanford.edu/data/CollegeMsg.html
4http://www.cs.cmu.edu/~enron/
5https://tianchi.aliyun.com/dataset/dataDetail?dataId=649&userId=1
6http://snap.stanford.edu/jodie/mooc.csv
7http://snap.stanford.edu/jodie/reddit.csv
8http://snap.stanford.edu/jodie/wikipedia.csv
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C.2 Baselines

We list the introduction of baseline methods as follows.

• CTDNE[23] extends the static network embedding to dynamic graphs, where temporal
random walks have been proposed with the skip-gram model to learn node representations.

• JODIE[15] updates latent states of two nodes in an interaction with two mutually-influenced
recurrent neural networks, where the future node embedding trajectories can be estimated.

• DyRep[34] integrates sequence models with an attentive message passer, where 2-hop
temporal neighborhood information is leveraged to learn time-aware node embeddings.

• TGAT[38] samples and attentively aggregates the information from k-hop temporal neigh-
bors to learn time-aware node embeddings. In this method, the time information is preserved
by the proposed random Fourier time encodings when conducting the message passing.

• TGN[27] proposes a general message passing-based framework to learn on CTDGs with a
node memory updating mechanism, which inherits and combines the key designs in JODIE
and TGAT.

• CAWs[36] learn interaction representations by encoding and aggregating anonymous tem-
poral walks with a recurrent neural network and a pooling module.

Specifically, we detail how baseline models are tuned in link prediction tasks as follows.

• We adapt TGAT 9 to our unified evaluation framework, and mainly tune the following
important hyperparameters: (1) For the degree of neighborhood sampling, we search the
optimal values in {8, 16, 32, 64}; (2) We tune the model layers in {1, 2, 3}; (3) We use
the default product attention and tune the number of attention heads in {2, 4, 6}; (4) For
the dimensions of node and time embeddings, we search the optimal configuration in
{16, 32, 64, 100}. Regarding the rest of hyperparameters, we use the default setting in the
code of TGAT.

• For JODIE, DyRep, and TGN, we adapt the implementation 10 to our unified evaluation
framework. Specifically, we mainly follow the default setting when executing JODIE on our
datasets, where the dimension of node embeddings is searched in {32, 64, 128, 256}. For
DyRep, we tune the degree of neighborhood sampling in {10, 16, 32, 64} and the number
of graph attention layers in {1, 2, 3}. We also search the optimal values of these two
hyperparameters in TGN, where additional hyperparameters are tuned as well: (1) We tune
the number of attention heads in {2, 4, 8}; (2) We tune the dimension of node, time, and
message embeddings in {16, 32, 64, 100}; (3) We tune the dimension of node memories in
{4, 16, 32, 64, 172}.

• Our method shares the same evaluation pipeline with CAWs 11, for which we mainly
tune the following hyperparameters based on their default setting: (1) We tune the walk
length in {1, 2, 3} and the number of walks in {16, 32, 64, 128}; (2) We tune the time
decay in {10�7, 10�6, 10�5, 10�4

}; (3) We tune the model with the unitary and binary
anonymization, where the best performances are reported. We follow their default setting
for the rest of the hyperparameters except for the walk pooling, which is set to summation
as same as in our method for simplicity and fair comparison.

C.3 Implementation Details

Our code is available at https://github.com/KimMeen/Neural-Temporal-Walks, where we
provide detailed instructions for dataset preparation and model training.

We first introduce the general setting of NeurTWs when training on all three datasets. Specifically,
our models are trained with the learning rate 10�4 and batch size 32. We set the maximum number of
epochs to 50, but the model training usually converges and is early stopped within the first 20 epochs.

For important hyperparameters controlling the walk sampling and contrasitve learning, we summarize
their grid search ranges in Tables 7 and 8.

9https://github.com/StatsDLMathsRecomSys/Inductive-representation-learning-on-temporal-graphs
10https://github.com/twitter-research/tgn
11https://github.com/snap-stanford/CAW
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Table 7: Search ranges of important hyperparameters on two unattributed datasets

Hyperparameter CollegeMsg Enron
Walk length l {1, 2, 3} {1, 2, 3, 4}
Number of walks C {16, 32, 64} {16, 32, 64}
Number of negatives {1, 3, 6, 9, 18} {2, 4, 6, 8, 16}
Temporal bias intensity ↵ {10�6, 10�5, 10�4

} {10�7, 10�6, 10�5
}

Spatial bias intensity � {0, 10�3, 10�2, 10�1, 1} {0, 10�3, 10�2, 10�1, 1}
E&E trade-off intensity � {0, 10�3, 10�2, 10�1, 1} {0, 10�3, 10�2, 10�1, 1}

Table 8: Search ranges of important hyperparameters on two attributed datasets

Hyperparameter Taobao MOOC
Walk length l {1, 2, 3} {1, 2, 3}
Number of walks C {16, 32, 64} {16, 32, 64}
Number of negatives {2, 4, 6, 8, 16} {2, 4, 6, 8}
Temporal bias intensity ↵ {10�7, 10�6, 10�5

} {10�6, 10�4
}

Spatial bias intensity � {0, 10�3, 10�2, 10�1, 1} {10�1, 5⇥ 10�1, 1}
E&E trade-off intensity � {0, 10�3, 10�2, 10�1, 1} {5⇥ 10�1, 1}

For the rest of hyperparameters, we set them as follows: (1) We use the fixed-step ODE solver (i.e.,
Runge-Kutta 3/8 method) with the step size = 0.125 by default without specific tuning. Adaptive
solvers (e.g., Dormand–Prince method) can also be used in our method; (2) The hidden dimensions
of the position encoding has not tuned and set to 108 by default; (3) For the walk pooling, we use the
summation by default for simplicity. More details can be found in our code, where we provide the
scripts with the default settings to run experiments on three datasets.

All experiments are conducted on a Linux cluster with four computing nodes (for each we have 4⇥
RTX6000 24GB, 1⇥ Intel Xeon Silver 4214R, and 175 GB system memory) and a Linux server (4⇥
GeForce RTX 2080 Ti 11GB, 1⇥ Intel Core i9-9900X, and 94GB system memory).

D Additional Experimental Results

D.1 Performances in Average Precision

See Table 9 for detailed transductive and inductive link prediction results w.r.t. AP.

D.2 Study on Continuous Evolution Process

We study the effectiveness of the proposed continuous evolution process in modeling temporal
dependencies when encoding anonymous temporal walks, and further compare it with other two
widely adopted strategies, i.e., exponential decay [22] and random Fourier time encoding [38].
We summarize the results in Table 10. Specifically, we use GRU as the RNN backbone without
considering the time information associated with each temporal node in cW (i.e., Standard RNN). On
this basis, we equip GRU with the exponential decay mechanism (i.e., RNN with exponential decay),
which is defined as follows based on Equation 9 in the main body of the paper:

hi = GRUCell(hi�1 · exp(�⌧�t), A
0(wi),�), (16)

where �t = ti � ti�1 and ⌧ is a hyperparameter to control the rate of decay. In our experiments, we
tune ⌧ in {10�9, 10�8, 10�7

}. Apart from this, time encoding is another strategy to incorporate the
time information, which is defined below [38]:

hi = GRUCell(hi�1, A
0(wi) || h�d(ti�1),�d(ti)i,�),

�d(t) =

r
1

d

⇥
cos(!1t) sin(!1t), · · · , cos(!dt) sin(!dt)

⇤
,

(17)

where �d(·) denotes the time encoding with the dimensions of d. h·i and || are inner product and
concatenation operation. We implement the time encoding-based variant (i.e., RNN with time
encoding) based on Equation 17.
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Table 9: Transductive and inductive link prediction performances w.r.t. AP. We use bold font and
underline to highlight the best and second best performances. NeurTWs† is a vairant of our method
with the binary anonymization.

Task Methods CollegeMsg Enron Taobao MOOC
Tr

an
sd

uc
tiv

e JODIE [15] 0.5329 ± 0.029 0.8467 ± 0.023 0.8412 ± 0.013 0.6386 ± 0.021
DyRep [34] 0.5029 ± 0.023 0.8237 ± 0.022 0.8397 ± 0.022 0.5723 ± 0.005
TGAT [38] 0.7212 ± 0.005 0.6893 ± 0.008 0.5598 ± 0.009 0.6704 ± 0.032
TGN [27] 0.9007 ± 0.003 0.8876 ± 0.016 0.8677 ± 0.017 0.7347 ± 0.036

CAWs [36] 0.9255 ± 0.001 0.9437 ± 0.002 0.8829 ± 0.001 0.7011 ± 0.062
NeurTWs 0.9612 ± 0.001 0.9503 ± 0.008 0.9030 ± 0.009 0.7593 ± 0.027
NeurTWs† 0.9773 ± 0.003 0.9664 ± 0.010 0.8817 ± 0.012 0.7228 ± 0.033

In
du

ct
iv

e N
ew

-O
ld

JODIE [15] 0.4413 ± 0.052 0.8190 ± 0.024 0.8202 ± 0.005 0.6914 ± 0.010
DyRep [34] 0.4088 ± 0.034 0.7322 ± 0.018 0.8237 ± 0.008 0.5633 ± 0.014
TGAT [38] 0.6965 ± 0.006 0.6324 ± 0.033 0.5738 ± 0.021 0.6408 ± 0.014
TGN [27] 0.8632 ± 0.002 0.7046 ± 0.128 0.8792 ± 0.013 0.7271 ± 0.002

CAWs [36] 0.9179 ± 0.014 0.9577 ± 0.005 0.8960 ± 0.007 0.7602 ± 0.022
NeurTWs 0.9653 ± 0.010 0.9466 ± 0.003 0.9294 ± 0.012 0.7730 ± 0.006
NeurTWs† 0.9721 ± 0.008 0.9488 ± 0.009 0.9063 ± 0.011 0.7617 ± 0.008

N
ew

-N
ew

JODIE [15] 0.4427 ± 0.091 0.7332 ± 0.028 0.8452 ± 0.014 0.8263 ± 0.015
DyRep [34] 0.5502 ± 0.102 0.5966 ± 0.091 0.8423 ± 0.019 0.4484 ± 0.047
TGAT [38] 0.6983 ± 0.036 0.6593 ± 0.030 0.5660 ± 0.024 0.6324 ± 0.012
TGN [27] 0.7568 ± 0.112 0.9418 ± 0.016 0.8949 ± 0.019 0.6547 ± 0.065

CAWs [36] 0.9243 ± 0.010 0.9697 ± 0.003 0.9005 ± 0.005 0.7688 ± 0.037
NeurTWs 0.9702 ± 0.005 0.9853 ± 0.013 0.9252 ± 0.002 0.8251 ± 0.017
NeurTWs† 0.9780 ± 0.008 0.9845 ± 0.016 0.9133 ± 0.014 0.8067 ± 0.013

Table 10: Study on different strategies to model temporal dependencies in temporal walk encoding
(Section 4.3). The performance in predicting all inductive interactions is reported.

Configuration CollegeMsg Taobao
AUC AP AUC AP

Standard RNN 0.868 ± 0.02 0.898 ± 0.01 0.860 ± 0.04 0.901 ± 0.02
RNN with exponential decay 0.915 ± 0.03 0.925 ± 0.03 0.923 ± 0.01 0.920 ± 0.01

RNN with time encoding 0.910 ± 0.02 0.903 ± 0.01 0.889 ± 0.01 0.906 ± 0.02
Continuous evolution 0.958 ± 0.01 0.966 ± 0.01 0.938 ± 0.02 0.933 ± 0.02

From the results in Table 10, we have the following observations: (1) All variants and our method
improve the performance of standard RNN, demonstrating the importance of leveraging time in-
formation when learning on CTDGs; (2) The proposed continuous evolution process significantly
surpasses the exponential decay and time encoding approaches, proving its effectiveness in capturing
the temporal dependencies; (3) Although time encoding helps the model be aware of critical time
information, its effectiveness is limited compared with our method.

Figure 7: The performance w.r.t. different step sizes in solving the continuous evolution process. The
average precision in predicting all inductive interactions is reported.
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Although the continuous evolution process is less tuned in our method as mentioned in Appendix
C.3, we study how the NeurTWs method is affected w.r.t. the number of function evaluations (i.e., the
number of times the ODE function is called in a single forward pass when solving an ODE). The
experimental results are in Figure 7, where we use the Euler method with different step sizes for
illustration purposes. Notably, the Euler method is a fixed-step solver, and all ODEs to be solved are
restricted to a specific integral interval (i.e., 0 to 1, see Appendix B.3). Thus, the number of function
evaluations depends only on the step size and is inversely proportional to it. From the results in Figure
7, we find that the model performance decreases slightly as the step size increases when solving
ODEs. This phenomenon makes sense, as a smaller step size equates to more function evaluations,
which allow for more precise learning of the underlying spatiotemporal dynamics in dynamic graph
motifs, but at the cost of higher complexity. In other words, our method allows a trade-off between
model accuracy and efficiency.

D.3 Visualization

(a) The occurrence ratio of top-3 highest-scored mo-
tifs in positive and negative samples.

(b) The occurrence ratio of top-3 lowest-scored motifs
in positive and negative samples.

Figure 8: Visualizing the most discriminative dynamic graph motifs learned by NeurTWs† on the
CollegeMsg dataset, where their occurrence ratios in positive and negative samples are compared.

We follow the method described in [36] to visualize the most discriminative dynamic graph motifs
learned by our method with the binary anonymization (i.e., NeurTWs†) on the CollegeMsg dataset.

We first illustrate how a motif can be represented in a sequence of coordinates, which essentially
characterizes its shape in a coordinate system w.r.t. the extracted temporal walks rooted at two nodes
of an interaction. Specifically, given a sampled interaction ({u, v}, t) from the dynamic graph G,
we sample two sets of temporal walks Mu and Mv rooted at node u and v, respectively. Recall the
binary anonymization defined in Section 4.2, A(w;Mu)[i] and A(w;Mv)[i] count the number of
walks in Mu and Mv that have node w appearing in position i, where i 2 {0, · · · , l}. On this basis,
we have the shortest path between node w and a root node u (w.r.t. the subgraph composed of the
walks in Mu) defined as dwu := min{i|A(w;Mu)[i] > 0}. We can define dwv in a similar way with
A(w;Mv). Thus, the coordinate mapping A(w;Mu,Mv) ! (dwu, dwv) can be viewed as a way to
map the position encoding of node w to its coordinate in a coordinate system defined over Mu and
Mv. As a result, we can obtain the shapes of anonymous temporal walks by mapping each node’s
position encoding to its relative coordinate. Specifically, 1 in a coordinate, e.g., (1, 0), denotes that
the target node of an interaction does not appear in the temporal walks rooted at the source node of
this interaction. A special case (1,1) denotes a nonexistent node, which is used in walk padding to
make sure all walks have the same length l when there are no temporal neighbors can be sampled.

We then describe how most discriminative motifs can be identified. Given a sampled interaction
({u, v}, t) from the dynamic graph G and a well-trained model of NeurTWs† with a linear downstream
link predictor  |(hu || hv) :=  | P2C

c=1 enc(cWc) for cWc 2 A(Mu) [ A(Mv), we can obtain the
predictive score of each motif cWc that contributes to the final prediction of this interaction, i.e.,
 |enc(cWc). In our experiments, we visualize the dynamic graph motifs with the top-3 highest and
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lowest predictive scores in the testing set of the CollegeMsg dataset, as well as their normalized
occurrence ratios in all positive and negative samples during the model inference.

From the results in Figure 8, we have the following observations: (1) A general dynamic law can
be observed among the shapes of highest-scored motifs; that is, two temporal nodes surrounded
by some common dynamic graph motifs are more likely to interact. For example, the shape of the
highest-scored motif (1, 0) ! (2, 1) ! (2, 2) ! (3, 1) indicates that two temporal nodes share
some common 3-hop temporal neighbors because there is no 1 in the second to fourth positions of
the shape of this motif. On the contrary, two temporal nodes with few overlapped dynamic graph
motifs are unlikely to interact, e.g., (1, 0) ! (1, 1) ! (1, 2) ! (1,1). Thus, our method
allows informative dynamic graph motifs and the underlying dynamic laws to be extracted and
captured effectively; (2) These three highest-scored motifs commonly appear in positive samples
where interactions exist between temporal node pairs but rarely appear in negative samples (see
Figure 8(a)). In contrast, for those lowest-scored motifs, they appear more frequently in negative
samples (see Figure 8(b)). Therefore, the discriminative power of our method is proven to be strong,
which captures essential dynamic laws to characterize temporal nodes where downstream tasks can
be effectively conducted.

D.4 Complexity Evaluation

(a) Average walk sampling runtime in a batch w.r.t.
the number of spanned temporal neighborhood.

(b) Average walk encoding runtime in a batch w.r.t.
the temporal walk length.

(c) Average runtime of our method in a batch w.r.t.
the number of negatives.

(d) Related average runtime of different methods per
batch based on their optimized settings.

Figure 9: Study the efficiency of our method from different perspectives on the Enron dataset.

We empirically study the efficiency of our method by recording and comparing the runtime of main
components in temporal walk sampling and encoding. We also plot the average runtime of NeurTWs
with different number of negatives during the optimization and the relative runtime comparison
between it and other baselines under their optimized settings. The experimental results are in Figure
9, which is consistent with our complexity analysis in Appendix B.3.

We first compare the runtime of the proposed spatiotemporal-biased walk sampling with its two
ablation variants on the Enron dataset under the different number of spanned temporal neighbors
per node, as shown in Figure 9(a). Specifically, we use the default model setting on Enron that
samples 64 walks with the length 2, but the number of negatives is set to 1 for a more straightforward
comparison. The number of spanned temporal neighbors is defined as |Gwp,tp | in Algorithm 3. From
the results in Figure 9(a), we have three observations: (1) Temporal-biased walk sampling has a
constant runtime w.r.t. the number of spanned temporal neighbors. This observation can be confirmed
by our complexity analysis summarized in Table 6, where the temporal-biased sampling is only in
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proportion to the batch size and the number of walks to be sampled; (2) The spatiotemporal-biased
walk sampling is in proportion to the number of spanned temporal neighbors, which proves our
analysis in Appendix B.3 that its time complexity is O(BCks), where ks is the x-axis of Figure
9(a); (3) Our spatiotemporal-biased walk sampling with the exploration & exploitation trade-off
has a similar time complexity compared to its variant without considering this trade-off. In general,
although the calculation of the proposed spatial-biased probabilities induces higher time complexity
when sampling temporal walks, it helps extract diverse and expressive dynamic graph motifs, e.g.,
disabling this mechanism hurts the performance drastically on the Taobao dataset (e.g., ablation
2 in Table 4). To alleviate the computational burden when modeling dynamic graphs with a large
average number of spanned temporal neighbors, we find it is practical to limit ks by selecting a set
of (potentially informative) candidates to explore, e.g., we may choose these candidate neighbors
randomly or based on prior knowledge. A concrete example is Enron with a higher ks than other
datasets; we empirically find that limiting the number of first- and second-order neighbors with small
upper bound (e.g., 64⇥5 and 1⇥8) in a temporal-biased manner does not affect the performances of
our method significantly.

We then compare the runtime of the proposed neural temporal walk encoding with one of its
ablation variants (i.e., GRU, which essentially forms the instantaneous activation process without the
continuous evolution process) and an in-demand design (i.e., GRU with time encoding, which adopts
random Fourier time encodings as a part of input features of GRU to preserve the time information
when learning walk embeddings). The experimental results are in Figure 9(b), where we use the
setting as mentioned above except for the walk length, which is the x-axis of this plot. Specifically, we
find that the runtime of all methods is in proportion to the walk length, which matches the complexity
analysis in Appendix B.3. Compared to GRU, the proposed neural temporal walk encoding has
a higher time complexity which is also in proportion to the number of function evaluations F in
the continuous evolution process (see Table 6). In Figure 9(b), we find that the runtime of our
method is about 7.8 times that of the GRU, which is close to our training setting where F = 8.
Although the proposed continuous evolution process results in a higher runtime of our method in this
example compared with the time encoding approach, it demonstrates significantly better capabilities
in digesting the time information (see Table 10). Besides, the proposed continuous evaluation process
supports the trade-off between model accuracy and efficiency, allowing our encoding module to have
the same time complexity as the time encoding-based GRU (i.e., O(ld2h) by letting the step size = 1)
without compromising too much modeling precision (see Figure 7).

In Figure 9(c), we display the runtime of the entire model in a batch w.r.t. the number of negatives,
which proves our justification in Appendix B.3 that the time complexity of our method is in proportion
to the number of negatives during the optimization under a certain model configuration (see Table 6).

In Figure 9(d), we compare the relative runtime between our method and other baselines under
their optimized settings on Enron. Although the core components in NeurTWs induce higher time
complexity, they significantly improve existing approaches from various aspects in terms of the
modeling precision. It is worth noting that our method explicitly supports trading precision for
speed to alleviate the computational burden. For example, limiting the number of spanned temporal
neighbors is practical to reduce runtime (see Figure 9(a)) without losing too much modeling precision,
as discussed above. Also, reducing the number of function evaluation F (e.g., increasing the step
size when solving Equation 8 with a fixed-step solver) brings significant speedups, which reduces
the complexity of neural temporal walk encoding (see Table 6). For the optimization, limiting the
number of negatives reduces the model runtime as well.
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