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Abstract

Stochastic gradient descent (SGD) algorithm is the method of choice in many1

machine learning tasks thanks to its scalability and efficiency in dealing with2

large-scale problems. In this paper, we focus on the shuffling version of SGD3

which matches the mainstream practical heuristics. We show the convergence4

to a global solution of shuffling SGD for a class of non-convex functions un-5

der over-parameterized settings. Our analysis employs more relaxed non-convex6

assumptions than previous literature. Nevertheless, we maintain the desired compu-7

tational complexity as shuffling SGD has achieved in the general convex setting.8

1 Introduction9

In the last decade, neural network-based models have shown great success in many machine learning10

applications such as natural language processing [Collobert and Weston, 2008, Goldberg et al., 2018],11

computer vision and pattern recognition [Goodfellow et al., 2014, He and Sun, 2015]. The training12

task of many learning models boils down to the following finite-sum minimization problem:13

min
w∈Rd

{
F (w) :=

1

n

n∑
i=1

f(w; i)

}
, (1)

where f(·; i) : Rd → R is smooth and possibly non-convex for i ∈ [n] := {1, · · · , n}. Solving the14

empirical risk minimization (1) had been a difficult task for a long time due to the non-convexity15

and the complicated learning models. Later progress with stochastic gradient descent (SGD) and its16

variants [Robbins and Monro, 1951, Duchi et al., 2011, Kingma and Ba, 2014] have shown great17

performance in training deep neural networks. These stochastic first-order methods are favorable18

thanks to its scalability and efficiency in dealing with large-scale problems. At each iteration SGD19

samples an index i uniformly from the set {1, . . . , n}, and uses the individual gradient ∇f(·; i) to20

update the weight.21

While there has been much attention on the theoretical aspect of the traditional i.i.d. (independently22

identically distributed) version of SGD [Nemirovski et al., 2009, Ghadimi and Lan, 2013, Bottou23

et al., 2018], practical heuristics often use without-replacement data sampling schemes. Also known24

as shuffling sampling schemes, these methods generate some random or deterministic permutations25

of the index set {1, 2, . . . , n} and apply gradient updates using these permutation orders. Intuitively,26

a collection of such n individual updates is a pass over all the data, or an epoch. One may choose to27

create a new random permutation at the beginning of each epoch (in Random Reshuffling scheme) or28

use a random permutation for every epoch (in Single Shuffling scheme). Alternatively, one may use a29

Incremental Gradient scheme with a fixed deterministic order of indices. In this paper, we use the30

term unified shuffling SGD for SGD method using any data permutations, which includes the three31

special schemes described above.32
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Although shuffling sampling schemes usually show a better empirical performance than SGD [Bottou,33

2009], the theoretical guarantees for these schemes are often more limited than vanilla SGD version,34

due to the lack of statistical independence. Recent works have shown improvement in computational35

complexity for shuffling schemes over SGD in various settings [Gürbüzbalaban et al., 2019, Haochen36

and Sra, 2019, Safran and Shamir, 2020, Nagaraj et al., 2019, Nguyen et al., 2021, Mishchenko et al.,37

2020, Ahn et al., 2020]. In particular, in a general non-convex setting, shuffling sampling schemes38

improve the computational complexity in terms of ε̂ for SGD from O
(
σ2/ε̂2

)
to O

(
nσ/ε̂3/2

)
,39

where σ is the bounded variance constant [Ghadimi and Lan, 2013, Nguyen et al., 2021, Mishchenko40

et al., 2020]1. We summarize the detailed literature for multiple settings later in Table 1.41

While global convergence is a desirable property for neural network training, the non-convexity42

landscape of complex learning models leads to difficulties in finding the global minimizer. In43

addition, there is little to no work studying the convergence to a global solution of shuffling-type44

SGD algorithms for a general non-convex setting. The closest line of research investigates the Polyak-45

Lojasiewicz (PL) condition (a generalization of strong-convexity), which demonstrates similar46

convergence rates as the strongly convex rates for shuffling SGD methods [Haochen and Sra, 2019,47

Ahn et al., 2020, Nguyen et al., 2021]. In another direction, Gower et al. [2021] and Khaled and48

Richtárik [2020] investigates the global convergence for some class of non-convex functions, however49

for vanilla SGD method. Beznosikov and Takáč [2021] investigate a random shuffle version of50

variance reduction methods (e.g. SARAH algorithm Nguyen et al. [2017]), but this approach only51

can show convergence to stationary points. With a target on shuffling SGD methods and specific52

learning architectures, we come up with the central question of this paper:53

How can we establish the convergence to global solution for a class of non-convex functions using54

shuffling-type SGD algorithms? Can we exploit the structure of neural networks to achieve this goal?55

We answer this question affirmatively, and our contributions are summarized below. Contributions.56

• We investigate a new framework for the convergence of a shuffling-type gradient algorithm57

to a global solution. We consider a relaxed set of assumptions and discuss their relations58

with previous settings. We show that our average-PL inequality (Assumption 3) holds for a59

wide range of neural networks equipped with squared loss function.60

• Our analysis generalizes the class function called star-M -smooth-convex. This class contains61

non-convex functions and is more general than the class of star-convex smooth functions62

with respect to the minimizer (in the over-parameterized settings). In addition, our analysis63

does not use any bounded gradient or bounded weight assumptions.64

• We show the total complexity of O( n
ε̂3/2

) for a class of non-convex functions to reach an65

ε̂-accurate global solution. This result matches the same gradient complexity to a stationary66

point for unified shuffling methods in non-convex settings, however, we are able to show the67

convergence to a global minimizer.68

1.1 Related Work69

In recent years, there have been different approaches to investigate the global convergence for machine70

learning optimization. This includes a popular line of research that studies some specific neural71

networks and utilizes their architectures. The most early works show the global convergence of72

Gradient Descent (GD) for simple linear networks and two-layer networks [Brutzkus et al., 2018,73

Soudry et al., 2018, Arora et al., 2019, Du et al., 2019b]. These results are further extended to deep74

learning architectures [Allen-Zhu et al., 2019, Du et al., 2019a, Zou and Gu, 2019]. This line of75

research continues with Stochastic Gradient Descent (SGD) algorithm, which proves the global76

convergence of SGD for deep neural networks for some probability depending on the initialization77

process and the number of input data [Brutzkus et al., 2018, Allen-Zhu et al., 2019, Zou et al.,78

2018, Zou and Gu, 2019]. The common theme that appeared in most of these references is the over-79

parameterized setting, which means that the number of parameters in the network are excessively80

large [Brutzkus et al., 2018, Soudry et al., 2018, Allen-Zhu et al., 2019, Du et al., 2019a, Zou and Gu,81

2019]. This fact is closely related to our setting, and we will discuss it throughout our paper.82

1The computational complexity is the number of (individual) gradient computations needed to reach an
ε̂-accurate stationary point (i.e. a point ŵ ∈ Rd that satisfies ∥∇F (ŵ)∥2 ≤ ε̂.)
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Polyak-Lojasiewicz (PL) condition and related assumptions. An alternative approach is to83

investigate some conditions on the optimization problem that may guarantee global convergence. A84

popular assumption is the Polyak-Lojasiewicz (PL) inequality, a generalization of strong-convexity85

[Polyak, 1964, Karimi et al., 2016, Nesterov and Polyak, 2006]. Using this PL assumption, it can86

be shown that (stochastic) gradient descent achieves the same theoretical rate as in the strongly87

convex setting (i.e linear convergence for GD and sublinear convergence for SGD) [Karimi et al.,88

2016, De et al., 2017, Gower et al., 2021]. Recent works demonstrate similar results for shuffling89

type SGD [Haochen and Sra, 2019, Ahn et al., 2020, Nguyen et al., 2021], both for unified and90

randomized shuffling schemes. On the other hand, [Schmidt and Roux, 2013, Vaswani et al., 2019]91

propose to use a new assumption called the Strong Growth Condition (SGC) that controls the rates92

at which the stochastic gradients decay comparing to the full gradient. This condition implies that93

the stochastic gradients and their variances converge to zero at the optimum solution [Schmidt and94

Roux, 2013, Vaswani et al., 2019]. While the PL condition for F implies that every stationary point95

of F is also a global solution, the SGC implies that such a point is also a stationary point of every96

individual function. However, complicated models as deep feed-forward neural networks generally97

have non-optimal stationary points [Karimi et al., 2016]. Thus, these assumptions are somewhat98

strong for non-convex settings.99

Although there are plenty of works investigating the PL condition for the objective function F100

[De et al., 2017, Vaswani et al., 2019, Gower et al., 2021], not many materials devoted to study101

the PL inequality for the individual functions f(·; i). A recent work [Sankararaman et al., 2020]102

analyzes SGD with the specific notion of gradient confusion for over-parameterized settings where the103

individual functions satisfy PL condition. They show that the neighborhood where SGD converges104

linearly depends on the level of gradient confusion (i.e. how much the individual gradients are105

negatively correlated). Taking a different approach, we investigate the PL property for individual106

functions and further show that our condition holds for a general class of neural networks with107

quadratic loss.108

Over-paramaterized settings for neural networks. Most of the modern learning architectures109

contain deep and large networks, where the number of parameters are often far more than the number110

of input data. This leads to the fact that the objective loss function is trained closer and closer to zero.111

Understandably, in such settings all the individual functions f(·; i) are minimized simultaneously at112

0 and they share a common minimizer. This condition is called the interpolation property (see e.g.113

[Schmidt and Roux, 2013, Ma et al., 2018, Meng et al., 2020, Loizou et al., 2021]) and is studied114

well in the literature (see e.g. [Zhou et al., 2019, Gower et al., 2021]). For a comparison, functions115

satisfying the strong growth condition necessarily satisfy the interpolation property. This property116

implies zero variance of individual gradients at the global minimizer, which allows good behavior117

for SGD near the solution. In this work, we slightly change this assumption which requires a small118

variance up to some level of the threshold ε. Note that when letting ε → 0, our assumption exactly119

recovers the interpolation property.120

Star-convexity and related conditions. There have been many attentions to a class of structured121

non-convex functions called star-convex [Nesterov and Polyak, 2006, Lee and Valiant, 2016, Bjorck122

et al., 2021]. Star-convexity can be understood as convexity between an arbitrary point w and the123

global minimizer w∗. The name star-convex comes from the fact that each sublevel set is star-shaped124

[Nesterov and Polyak, 2006, Lee and Valiant, 2016]. Zhou et al. [2019] shows that if SGD follows a125

star-convex path and there exists a common global minimizer for all component functions, then SGD126

converges to a global minimum.127

In recent progress, Hinder et al. [2020] considers the class of quasar-convex functions, which further128

generalizes star-convexity. This property was introduced originally in [Hardt et al., 2018] under129

the name ‘weakly quasi-convex’, and investigated recently in literature [Hinder et al., 2020, Jin,130

2020, Gower et al., 2021]. This class uses a parameter ζ ∈ (0, 1] to control the non-convexity of the131

function, where ζ = 1 yeilds the star-convexity and ζ approaches 0 indicates more non-convexity132

[Hinder et al., 2020]. Intuitively, quasar-convex functions are unimodal on all lines that pass through133

a global minimizer. Gower et al. [2021] investigates the performance of SGD for smooth and quasar-134

convex functions using an expected residual assumption (which is comparable to the interpolation135

property). They show a convergence rate of O(1/
√
K) for i.i.d. sampling SGD with the number136

of total iterations K, which translates to the computational complexity of O
(
1/ε̂2

)
. To the best137

of our knowledge, this paper is the first work studying the relaxation of star-convexity and global138

convergence for SGD with shuffling sample schemes, not for the i.i.d. version.139
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2 Theoretical Setting140

We first present the shuffling-type gradient algorithm below. Our convergence results hold for any141

permutation of the training data {1, 2, . . . , n}, including deterministic and random ones. Thus, our142

theoretical framework is general and applicable for any shuffling strategy, including Incremental143

Gradient, Single Shuffling, and Random Reshuffling.144

Algorithm 1 (Shuffling-Type Gradient Algorithm for Solving (1))

1: Initialization: Choose an initial point w̃0 ∈ dom (F ).
2: for t = 1, 2, . . . , T do
3: Set w(t)

0 := w̃t−1;
4: Generate any permutation π(t) of [n] (either deterministic or random);
5: for i = 1, . . . , n do
6: Update w

(t)
i := w

(t)
i−1 − η

(t)
i ∇f(w

(t)
i−1;π

(t)(i));
7: end for
8: Set w̃t := w

(t)
n ;

9: end for

We further specify the choice of learning rate η
(t)
i in the detailed analysis. Now we proceed to145

describe the set of assumptions used in our paper.146

Assumption 1. Suppose that f∗
i := minw∈Rd f(w; i) > −∞, i ∈ {1, . . . , n}.147

Assumption 2. Suppose that f(·; i) is L-smooth for all i ∈ {1, . . . , n}, i.e. there exists a constant148

L ∈ (0,+∞) such that:149

∥∇f(w; i)−∇f(w′; i)∥ ≤ L∥w − w′∥, ∀w,w′ ∈ Rd. (2)

Assumption 1 is required in any algorithm to guarantee the well-definedness of (1). In most applica-150

tions, the component losses are bounded from below. By Assumption 2, the objective function F is151

also L-smooth. This Lipschitz smoothness Assumption is widely used for gradient-type methods. In152

addition, we denote the minimum value of the objective function F∗ = minw∈Rd F (w). It is worthy153

to note the following relationship between F∗ and the component minimum values:154

F∗ = min
w∈Rd

F (w) =
1

n
min
w∈Rd

(
n∑

i=1

f(w; i)

)
≥ 1

n

n∑
i=1

min
w∈Rd

(f(w; i)) =
1

n

n∑
i=1

f∗
i . (3)

We are interested in the case where the set of minimizers of F is not empty. The equality F∗ =155
1
n

∑n
i=1 f

∗
i attains if and only if a minimizer of F is also the common minimizer for all component156

functions. This condition implies that the variance of individual functions is 0 at the common157

minimizer.158

2.1 PL Condition for Component Functions159

Now we are ready to discuss the Polyak-Lojasiewicz condition as follows.160

Definition 1 (Polyak-Lojasiewicz condition). We say that f satisfies Polyak-Lojasiewicz (PL) in-161

equality for some constant µ > 0 if162

∥∇f(w)∥2 ≥ 2µ[f(w)− f∗], ∀w ∈ Rd, (4)

where f∗ := minw∈Rd f(w).163

The PL condition for the objective function F is sufficient to show a global convergence for (stochas-164

tic) gradient descent [Karimi et al., 2016, Nesterov and Polyak, 2006, Polyak, 1964]. It is well known165

that a function satisfying the PL condition is not necessarily convex [Karimi et al., 2016]. However,166

this assumption on F is somewhat strong because it implies that every stationary point of F is also a167

global minimizer. Our goal is to consider a class of non-convex function which is more relaxed than168

the PL condition on F , while still having the good global convergence properties. In this paper, we169

formulated an assumption called “average PL inequality”, specifically for the finite sum setting:170
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Assumption 3. Suppose that f(·; i) satisfies average PL inequality for some constant µ > 0 such171

that172

1

n

n∑
i=1

∥∇f(w; i)∥2 ≥ 2µ
1

n

n∑
i=1

[f(w; i)− f∗
i ], ∀w ∈ Rd. (5)

where f∗
i := minw∈Rd f(w; i).173

Comparisons. Assumption 3 is weaker than assuming the PL inequality for every component function174

f(·; i). In general setting, Assumption 3 is not comparable to assuming the PL inequality for F .175

Formally, if F satisfies PL the condition for some parameter τ > 0, then we have:176

2τ [F (w)− F∗] ≤ ∥∇F (w)∥2 ≤ 1

n

n∑
i=1

∥∇f(w; i)∥2. (6)

However, by equation (3) we have that [F (w) − F∗] ≤ 1
n

∑n
i=1[f(w; i) − f∗

i ]. Therefore, the PL177

inequality for each function f(·; i), cannot directly imply the PL condition on F and vice versa.178

In the interpolated setting where there is a common minimizer for all component function f(·; i), it179

can be shown that the PL condition on F is stronger than our average PL assumption:180

2τ
1

n

n∑
i=1

[f(w; i)− f∗
i ] = 2τ [F (w)− F∗] ≤ ∥∇F (w)∥2 ≤ 1

n

n∑
i=1

∥∇f(w; i)∥2.

On the other hand, our assumption cannot imply the PL inequality on F unless we impose a strong181

relationship that upper bound the sum of individual squared gradients 1
n

∑n
i=1 ∥∇f(w; i)∥2 in terms182

of the full squared gradient ∥∇F (w)∥2, for every w ∈ Rd . For these reasons, the average PL183

Assumption 3 is arguably more reasonable than assuming the PL inequality for the objective function184

F . Moreover, we show that Assumption 3 holds for a general class of neural networks with a final185

bias layer and squared loss function. We have the following theorem.186

Theorem 1. Let {(x(i), y(i))}ni=1 is a training data set where x(i) ∈ Rm is the input data and187

y(i) ∈ Rc is the output data for i = 1, . . . , n. We consider an architecture h(w; i) with w be the188

vectorized weight and h consists of a final bias layer b:189

h(w; i) = WT z(θ; i) + b,

where w = vec({θ,W, b}) and z(θ; i) are some inner architectures, which can be chosen arbitrarily.190

Next, we consider the squared loss f(w; i) = 1
2∥h(w; i)− y(i)∥2. Then191

∥∇f(w; i)∥2 ≥ 2[f(w; i)− f∗
i ], ∀w ∈ Rd, (7)

where f∗
i := minw∈Rd f(w; i).192

Therefore, for this application, Assumption 3 holds with µ = 1.193

2.2 Small Variance at Global Solutions194

In this section, we change the interpolation property in previous literature [Ma et al., 2018, Meng195

et al., 2020, Loizou et al., 2021] by a small threshold. For any global solution w∗ of F , let us define196

σ2
∗ := inf

w∗∈W∗

(
1

n

n∑
i=1

∥∇f(w∗; i)∥2
)
. (8)

We can show that when there is a common minimizer for all component functions (i.e. when the197

equality F∗ = 1
n

∑n
i=1 f

∗
i holds), the best variance σ2

∗ is 0. It is sufficient for our Theorem to impose198

a O(ε)-level upper bound on the variance σ2
∗:199

Assumption 4. Suppose that the best variance at w∗ is small, that is, for ε > 0200

σ2
∗ ≤ Pε, (9)

for some P > 0.201

It is important to note that in current literature, Assumption 4 alone (or, assuming σ2
∗ = 0 alone)202

is not sufficient enough to guarantee a global convergence property for SGD. Typically, some203

other conditions on the good landscape of the loss function are needed to complement the over-204

parameterized setting. Thus, we have motivation to introduce our next assumption.205
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2.3 Generalized Star-Smooth-Convex Condition for Shuffling Type Algorithm206

We introduce the definition of star-smooth-convex function as follows.207

Definition 2. The function g is star-M -smooth-convex with respect to a reference point ŵ ∈ Rd if208

∥∇g(w)−∇g(ŵ)∥2 ≤ M⟨∇g(w)−∇g(ŵ), w − ŵ⟩, ∀w ∈ Rd. (10)

It is well known that when g is L-smooth and convex [Nesterov, 2004], we have the following general209

inequality for every w,w′ ∈ Rd:210

∥∇g(w)−∇g(w′)∥2 ≤ L⟨∇g(w)−∇g(w′), w − w′⟩ (11)

Our class of star-smooth-convex function requires a similar inequality to hold only for the special211

point w′ = ŵ. Interestingly, this is related to a class of star-convex functions, which satisfies the212

convex inequality for the minimizer ŵ:213

(star-convexity w.r.t ŵ) g(w)− g(ŵ) ≤ ⟨∇g(w), w − ŵ⟩, ∀w ∈ Rd, (12)
This class of functions contains non-convex objective losses and is well studied in the literature (see214

e.g. [Zhou et al., 2019]). Our Lemma 2 in the Appendix shows that the class of star-smooth-convex215

function is broader than the class of L-smooth and star-convex functions. Therefore, our problem of216

interest is non-convex in general.217

For the analysis of shuffling type algorithm in this paper, we consider the general assumption called218

the generalized star-smooth-convex condition for shuffling algorithms:219

Assumption 5. Using Algorithm 1, let us assume that there exist some constants M > 0 and N > 0220

such that at each epoch t = 1, . . . , T , we have for i = 1, . . . , n:221

∥∇f(w
(t)
i−1;π

(t)(i))−∇f(w∗;π
(t)(i))∥2 ≤ M⟨∇f(w

(t)
i−1;π

(t)(i))−∇f(w∗;π
(t)(i)), w

(t)
i−1 − w∗⟩

+N
1

n

n∑
i=1

∥w(t)
i − w

(t)
0 ∥2, (13)

where w∗ is a global solution of F .222

We note that when the individual function f(·; i) is star-M -smooth-convex with respect to w∗ for223

every i = 1, . . . , n, Assumption 5 holds for the case N = 0. Assumption 5 is more flexible than the224

one in (10) because the right-hand side term ⟨∇f(w; i)−∇f(w∗; i), w − w∗⟩ could be negative for225

some w ∈ Rd. An additional term N 1
n

∑n
i=1 ∥w

(t)
i − w

(t)
0 ∥2 for some constant N > 0 will allow226

for extra flexibility in our setting. Note that we do not impose any assumptions on bounded weights227

or bounded gradients. Therefore, the term 1
n

∑n
i=1 ∥w

(t)
i − w

(t)
0 ∥2 cannot be uniformly bounded by228

any universal constant.229

3 New Framework for Convergence to a Global Solution230

In this section, we present our theoretical results. Our Lemma 1 first provides a recursion to bound231

the squared distance term ∥w̃t − w∗∥2:232

Lemma 1. Assume that Assumptions 1, 2, 3, and 5 hold. Let {w̃t}Tt=1 be the sequence generated by233

Algorithm 1 with 0 < ηt ≤ min
{

n
2M , 1

2L

}
. For every γ > 0 we have234

∥w̃t − w∗∥2 ≤
(
1 + C1η

3
t

)
∥w̃t−1 − w∗∥2 + C2ηtσ

2
∗ − C3ηt[F (w̃t−1)− F∗]. (14)

where w∗ is a global solution of F , F∗ = minw∈Rd F (w), and235 
C1 = 8L2

3 + 14NL2

M + 4γL4

6M ,

C2 = 2
M + 1 + 5

6L2 + 8N
3ML2 + 5γ

12M ,

C3 = γ
γ+1

µ
M .

(15)

Rearranging the results of Lemma 1, we have236

F (w̃t−1)− F∗ ≤ 1

C3

(
1

ηt
+ C1η

2
t

)
∥w̃t−1 − w∗∥2 −

1

C3ηt
∥w̃t − w∗∥2 +

C2

C3
σ2
∗. (16)

Therefore, with an appropriate choice of learning rate that guarantee
(
1/ηt + C1η

2
t

)
≤ 1/ηt−1, we237

can unroll the recursion from Lemma 1. Thus we have our main result in the next Theorem.238
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Theorem 2. Assume that Assumptions 1, 2, 3, and 5 hold. Let {w̃t}Tt=1 be the sequence generated239

by Algorithm 1 with the learning rate η
(t)
i = ηt

n where 0 < ηt ≤ min
{

n
2M , 1

2L

}
. Let the number of240

iterations T = λ
ε3/2

for some λ > 0 and ε > 0. Constants C1, C2, and C3 are defined in (15) for any241

γ > 0. We further define K = 1 + C1D
3ε3/2 and specify the learning rate ηt = Kηt−1 = Ktη0242

and η0 = D
√
ε

K exp(λC1D3) such that D
√
ε

K ≤ min
{

n
2M , 1

2L

}
for some constant D > 0. Then we have243

1

T

T∑
t=1

[F (w̃t−1)− F∗] ≤
K exp(λC1D

3)

C3Dλ
∥w̃0 − w∗∥2 · ε+

C2

C3
σ2
∗, (17)

where F∗ = minw∈Rd F (w) and σ2
∗ is defined in (8).244

Our analysis holds for arbitrarily constant values of the parameters γ, λ and D. In addition, we show245

our current analysis for every shuffling scheme. An interesting research question arises: whether the246

convergence results can be improved if one chooses to analyze a randomized shuffling scheme in this247

framework. However, we leave that question to future works.248

Using Assumption 4, we can show the total complexity of Algorithm 1 for our setting.249

Corollary 1. Suppose that the conditions in Theorem 2 and Assumption 4 hold. Choose C1Dλ = 1250

and ε = ε̂/G such that 0 < ε̂ ≤ G with the constants251

G =
2C1D

2e

C3
∥w̃0 − w∗∥2 +

C2P

C3
, where

C1 = 8L2

3 + 14NL2

M + 4L2

3M ,

C2 = 2
M + 1 + 5

6L2 + 8N
3ML2 + 5

12ML ,

C3 = 1
L2+1

µ
M .

Then, the we need T = λG3/2

ε̂3/2
epochs to guarantee252

min
1≤t≤T

[F (w̃t−1)− F∗] ≤
1

T

T∑
t=1

[F (w̃t−1)− F∗] ≤ ε̂.

Computational complexity. Our global convergence result in this Corollary holds for a fixed value of253

ε̂ in Assumption 4. Thus, when ε → 0, this assumption is equivalent to assuming σ2
∗ = 0. The total254

complexity of Corollary 1 is O
(

n
ε̂3/2

)
. This rate matches the best known rate for unified sampling255

schemes for SGD in convex setting [Mishchenko et al., 2020, Nguyen et al., 2021]. However, our256

result holds for a broader class of functions that are possibly non-convex. Comparing to the non-257

convex setting, current literature [Mishchenko et al., 2020, Nguyen et al., 2021] also matches our258

rate to the order of ε̂, however, we can only prove that SGD converges to a stationary point with a259

weaker criteria ∥∇F (w)∥2 ≤ ε̂ for general non-convex funtions. Table 1 shows these comparisons in260

various settings. Note that when using a randomized shuffling scheme, SGD often performs a better261

rate in terms of the data n in various settings with and without (strongly) convexity. For example, in262

strongly convex and/or PL setting, the convergence rate of RR is Õ(
√
n/

√
ε̂) , which is better than263

unified schemes with Õ(n/
√
ε̂) [Ahn et al., 2020]. However, for a fair comparison, we do not report264

these results in Table 1 as our theoretical analysis is derived for unified shuffling scheme.265

If we further assume that L,M,N > 1, the detailed complexity with respect to these constants is

O
(
L4(M +N)3/2

µ3/2
· n

ε̂3/2

)
.

We present all the detailed proofs in the Appendix. Our theoretical framework is new and adapted to266

the finite-sum minimization problem. Moreover, it utilizes the choice of shuffling sample schemes to267

show a better complexity in terms of ε̂ than the complexity of vanilla i.i.d. sampling scheme.268
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Table 1: Comparisons of computational complexity (the number of individual gradient evaluations)
needed by SGD algorithm to reach an ε̂-accurate solution w that satisfies F (w) − F (w∗) ≤ ε̂ (or
∥∇F (w)∥2 ≤ ε̂ in the non-convex case).

Settings References Complexity Shuffling
Schemes

Global So-
lution

Convex
Nemirovski et al. [2009],
Shamir and Zhang [2013] (1) O

(
∆2

0+G2

ε̂2

)
✗ ✓

Mishchenko et al. [2020],
Nguyen et al. [2021] (2) O

(
n

ε̂3/2

)
✓ ✓

PL condition Nguyen et al. [2021] Õ
(

nσ2

ε̂1/2

)
✓ ✓

Star-convex
related Gower et al. [2021] (3) O

(
1
ε̂2

)
✗ ✓

Non-convex
Ghadimi and Lan [2013] (5) O

(
σ2

ε̂2

)
✗ ✗

Nguyen et al. [2021],
Mishchenko et al. [2020] (5) O

(
nσ
ε̂3/2

)
✓ ✗

Our setting
(non-convex) This paper, Corollary 1(4) O

(
n(N∨1)3/2

ε̂3/2

)
✓ ✓

(0) We note that the assumptions in this table are not comparable and we only show the roughly complexity in
terms of ε̂. In addition, to make fair comparisons, we only report the complexity of unified shuffling schemes.
(1) Standard results for SGD in convex literature often use a different set of assumptions from the one in
this paper (e.g. bounded domain that ∥w − w∗∥2 ≤ ∆0 for each iterate w and/or bounded gradient that
E[∥∇f(w; i)∥] ≤ G2). We report the corresponding complexity for a rough comparison.
(2) [Mishchenko et al., 2020] shows a bound for Incremental Gradient while [Nguyen et al., 2021] has a unified
setting. We translate these results for unified shuffling schemes from these references to the convex setting.
(3) Since we cannot find a reference containing the convergence rate for vanilla SGD and star-convex functions,
we adapt the reference Gower et al. [2021] here. This paper shows a result for L-smooth and quasar convex
function with an additional Expected Residual (ER) assumption, which is weaker than assuming smoothness for
f(·; i) and interpolation property. The star-convex results hold when the quasar-convex parameter is 1.
(4) Since we use a different set of assumptions than the other references, we only report the rough comparison
in n,N and ε̂, where N is the constant from Assumption 5 and N ∨ 1 = max(N, 1). Note that N = 0 in the
framework of star-smooth-convex function. In addition, we need σ2

∗ = 0 so that the complexity holds with
arbitrary ε̂. We explain the detailed complexity below and in the Appendix.
(5) Standard literature for SGD in non-convex setting assumes a bounded variance that Ei

[
∥f(w; i) −

∇F (w)∥2
]
≤ σ2, we report the rough comparison.

4 Numerical Experiments269

In this section, we show some experiments for shuffling-type SGD algorithms to demonstrate our270

theoretical results of convergence to a global solution. Following the setting of Theorem 1, we271

consider the non-convex regression problem with squared loss function. We choose fully connected272

neural networks in our implementation. We experiment with different regression datasets: the273

Diabetes dataset from sklearn library [Efron et al., 2004, Pedregosa et al., 2011] with 442 samples in274

dimension 10; the Life expectancy dataset from WHO [Repository, 2016] with 1649 trainable data275

points and 19 features. In addition, we test with the California Housing data from StatLib repository276

[Repository, 1997, Pedregosa et al., 2011] with a training set of 16514 samples and 8 features.277

For the small Diabetes dataset, we use the classic LeNet-300-100 model [LeCun et al., 1998]. For278

other larger datasets, we use similar fully connected neural networks with an additional starting layer279

of 900 neurons. We apply the randomized reshuffling scheme using PyTorch framework [Paszke et al.,280

2019]. This shuffling scheme is the common heuristic in training neural networks and is implemented281

in many deep learning platforms (e.g. TensorFlow, PyTorch, and Keras [Abadi et al., 2015, Paszke282

et al., 2019, Chollet et al., 2015]).283
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For each dataset {xi, yi}, we preprocess and modify the initial data lightly to guarantee the over-284

parameterized setting in our experiment. We do this by using a pre-training stage: firstly we use285

GD/SGD algorithm to find a weight w that yields a sufficiently small value for the loss function286

(for Diabetes dataset we train to 10−8 and for other datasets we train to 10−2). Letting the input287

data xi be fixed, we change the label data to ŷi such that the weight w yields a small loss function288

O(ϵ) for the optimization associated with data {xi, ŷi}, and the distance between ŷi and yi is small.289

Then the modified data is ready for the next stage. We summarize the data (after modification) in our290

experiments in Table 2.291

Table 2: Datasets used in our experiments

Data name # Samples # Features Networks layers Sources

Diabetes 442 10 300-100 Efron et al. [2004]

Life Expectancy 1649 19 900-300-100 Repository [2016]

California Housing 16514 8 900-300-100 Repository [1997]

For each dataset, we first tune the step size using a coarse grid search [0.0001, 0.001, 0.01, 0.1, 1]292

for 100 epochs. Then, for example, if 0.01 performs the best, we test the second grid search293

[0.002, 0.005, 0.01, 0.02, 0.05] for 5000 epochs. Finally, we progress to the training stage with 106294

epochs and repeat that experiment for 5 random seeds. We report the average results with confidence295

intervals in Figure 1.296

Figure 1: The train loss produced by Shuffling SGD algorithm for three datasets: Diabetes, Life
Expectancy and California Housing.

For California Housing data, Shuffling SGD fluctuates toward the end of the training process.297

Nevertheless, for all three datasets it converges steadily to a small value of loss function. In summary,298

this experiment confirms our theoretical guarantee that demonstrates a convergence to global solution299

for shuffling-type SGD algorithm in neural network settings.300

5 Conclusion301

In this paper, we study the global convergence property for shuffling-type SGD methods. We302

consider a relaxed set of assumptions in the framework of star-smooth-convex functions and show303

the total complexity of O( n
ε̂3/2

) to reach an ε̂-accurate global solution. This result matches the304

previous computational complexity of unified shuffling methods in convex settings. Our theoretical305

framework utilizes the choice of shuffling sample schemes for finite-sum minimization problems in306

machine learning. We provide discussions on the relations of our framework and the well-known307

over-parameterized settings, as well as current literature on the star-convexity class of functions. In308

addition, we show the connections to neural network architectures and discuss how these learning309

models fit into our optimization frameworks. Potential research questions arising from our paper310

include practical network designs and relaxed theoretical settings that support the global convergence311

of Shuffling SGD methods. Moreover, the global convergence framework for other stochastic gradient312

methods [Duchi et al., 2011, Kingma and Ba, 2014] and variance reduction methods [Nguyen et al.,313

2017, Beznosikov and Takáč, 2021] with shuffling sampling schemes is also an interesting direction.314
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On the Convergence to a Global Solution
of Shuffling-Type Gradient Algorithms
Supplementary Material, NeurIPS 2023

A Theoretical settings: Proof of Theorem 1 and Lemma 2501

A.1 Proof of Theorem 1502

Proof. Let us use the notation f(w; i) = ϕi(h(w; i)) = 1
2∥h(w; i) − y(i)∥2. We consider an503

architecture h(w; i) with w be the vectorized weight and h consists of a final bias layer b:504

h(w; i) = WT z(θ; i) + b ∈ Rc,

where w = vec({θ,W, b}) and z(θ; i) are some inner architecture, which can be chosen arbitrarily.505

Firstly, we compute the gradient of f(·; i) with respect to b ∈ Rc. For j = 1, . . . , c, we have506

∂f(w; i)

∂bj
=

∂ϕi(h(w; i))

∂bj
=

c∑
k=1

∂h(w; i)k
∂bj

· ∂ϕi(x)

∂xk

∣∣∣
x=h(w;i)

=
∂ϕi(x)

∂xj

∣∣∣
x=h(w;i)

, i = 1, . . . , n.

(18)

The last equality follows since ∂h(w;i)k
∂bj

= 0 for every k ̸= j and ∂h(w;i)k
∂bj

= 1 for k = j. In other507

words, it is the identity matrix.508

Let us denote that f∗
i = minw f(w; i) and ϕ∗

i = minx ϕi(x). We prove the following statement for509

µ = 1:510

∥∇wf(w; i)∥2 ≥ ∥∇xϕi(x)|x=h(w;i)∥2 ≥ 2µ[ϕi(h(w; i))− ϕ∗
i ] ≥ 2µ[f(w; i)− f∗

i ],

for every w ∈ Rd, and i = 1, . . . , n.511

We begin with the first inequality:512

∥∇wf(w; i)∥2 =

d∑
j=1

(∂f(w; i)
∂wj

)2
≥

d∑
j=d−c+1

(∂f(w; i)
∂wj

)2
=

c∑
j=1

(∂f(w; i)
∂bj

)2
(18)
=

c∑
j=1

(∂ϕi(x)

∂xj

∣∣∣
x=h(w;i)

)2
= ∥∇xϕi(x)|x=h(w;i)∥2.

Now let us prove the PL condition for each function ϕi(x), i.e., there exists a constant µ > 0 such513

that:514

∥∇xϕi(x)∥2 ≥ 2µ[ϕi(x)− ϕ∗
i ] ∀x ∈ Rc, i = 1, . . . , n.

Recall the squared loss that ϕi(x) =
1
2∥x − y(i)∥2 and ∇xϕi(x) = x − y(i). We can see that the515

constant µ = 1 satisfies the following inequality for every x ∈ Rc, i = 1, . . . , n:516

∥∇xϕi(x)∥2 = ∥x− y(i)∥2 = 2
1

2
∥x− y(i)∥2 = 2µϕi(x) ≥ 2µ[ϕi(x)− ϕ∗

i ],

where the last inequality follows since ϕ∗
i ≥ 0.517

The PL condition for ϕi directly implies the second inequality. The last inequality follows from518

the facts that f(w; i) = ϕi(h(w; i)) and f∗
i = minw fi ≥ minx ϕi(x) = ϕ∗

i . Hence, Theorem 1 is519

proved.520
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A.2 Statement and Proof of Lemma 2521

Lemma 2. The function g is star-M -smooth-convex with respect to ŵ for some constant M > 0 if522

one of the two following conditions holds:523

1. g is L-smooth and convex.524

2. g is L-smooth and g is star-convex with respect to ŵ.525

Proof. The first statement of Lemma 2 follows directly from equation (11). We have that g is526

star-M -smooth-convex with respect to any reference point and M = L.527

Now we proceed to the second statement. From the star-convex property of g with respect to ŵ, we528

have529

g(w)− g(ŵ) ≤ ⟨∇g(w), w − ŵ⟩, ∀w ∈ Rd,

and ∇g(ŵ) = 0 since ŵ is the global minimizer of g. On the other hand, g is L-smooth and we have530

g(ŵ) ≤ g

(
w − 1

L
∇g(w)

)
≤ g(w)− 1

2L
∥∇g(w)∥2,

which is equivalent to ∥∇g(w)∥2 ≤ 2L[g(w)− g(ŵ)], i ∈ [n]. Since ∇g(ŵ) = 0, i ∈ [n], we have531

for ∀w ∈ Rd532

∥∇g(w)−∇g(ŵ)∥2 ≤ 2L[g(w)− g(ŵ)]
(12)
≤ 2L⟨∇g(w)−∇g(ŵ), w − w∗⟩.

This is a star-M -smooth-convex function as in Definition 2 with M = 2L.533

B Preliminary results for SGD Shuffling Algorithm534

In this section, we present the preliminary results for Algorithm 1. Firstly, from the choice of learning535

rate η(t)i := ηt

n and the update w(t)
i+1 := w

(t)
i − η

(t)
i ∇f(w

(t)
i ;π(t)(i+ 1)) in Algorithm 1, for i ∈ [n],536

we have537

w
(t)
i = w

(t)
i−1 −

ηt
n
∇f(w

(t)
i−1;π

(t)(i)) = w
(t)
0 − ηt

n

i−1∑
j=0

∇f(w
(t)
j ;π(t)(j + 1)). (19)

Hence,538

w
(t+1)
0 = w(t)

n = w
(t)
0 − ηt

n

n−1∑
j=0

∇f(w
(t)
j ;π(t)(j + 1)). (20)

Next, we refer to a Lemma in [Nguyen et al., 2021] to bound the updates of shuffling SGD algorithms.539

Lemma 3 (Lemma 5 in Nguyen et al. [2021]). Suppose that Assumption 2 holds for (1). Let {w(t)
i }540

be generated by Algorithm 1 with the learning rate η
(t)
i := ηt

n > 0 for a given positive sequence541

{ηt}. If 0 < ηt ≤ 1
2L for all t ≥ 1, we have542

1

n

n−1∑
j=0

∥w(t)
j − w∗∥2 ≤ 4∥w(t)

0 − w∗∥2 + 8σ2
∗ · η2t , (21)

1

n

n−1∑
j=0

∥w(t)
j − w

(t)
0 ∥2 ≤ η2t ·

8L2

3
∥w(t)

0 − w∗∥2 +
16L2σ2

∗
3

· η4t + 2σ2
∗ · η2t . (22)

Now considering the term ∥w(t)
n − w

(t)
0 ∥2, we get that543

∥w(t)
n − w

(t)
0 ∥2

(20)
≤ η2t

n

∥∥∥∥∥∥ 1n
n−1∑
j=0

∇f(w
(t)
j ;π(t)(j + 1))

∥∥∥∥∥∥
2
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=
η2t
n

∥∥∥∥∥∥ 1n
n−1∑
j=0

(∇f(w
(t)
j ;π(t)(j + 1))−∇f(w∗;π

(t)(j + 1)))

∥∥∥∥∥∥
2

≤ η2t
n

1

n

n−1∑
j=0

∥∥∥∇f(w
(t)
j ;π(t)(j + 1))−∇f(w∗;π

(t)(j + 1))
∥∥∥2

(2)
≤ L2η2t

n

1

n

n−1∑
j=0

∥w(t)
j − w∗∥2

(21)
≤ 4L2η2t

n
∥w(t)

0 − w∗∥2 +
8L2η4t

n
σ2
∗.

We further have544

1

n

n∑
j=0

∥w(t)
j − w

(t)
0 ∥2 =

1

n

n−1∑
j=0

∥w(t)
j − w

(t)
0 ∥2 + 1

n
∥w(t)

n − w
(t)
0 ∥2

≤ η2t ·
8L2

3
∥w(t)

0 − w∗∥2 +
16L2σ2

∗
3

· η4t + 2σ2
∗ · η2t

+
4L2η2t

n
∥w(t)

0 − w∗∥2 +
8L2η4t

n
σ2
∗. (23)

C Main results: Proofs of Lemma 4, Lemma 1, Theorem 2, and Corollary 1545

C.1 Proof of Lemma 4546

Lemma 4. Let {w(t)
i }Tt=1 be the sequence generated by Algorithm 1 with η

(t)
i = ηt

n , with 0 < ηt ≤547
n

2M for ηt ≤ 1
2L . Then, under Assumptions 1, 2, and 5, we have548

∥w(t+1)
0 − w∗∥2 ≤

(
1 +B1η

3
t

)
∥w(t)

0 − w∗∥2 −
ηt
2M

1

n

n∑
i=1

∥∇f(w
(t)
i−1;π

(t)(i))∥2 +B2ηtσ
2
∗,

(24)

where549 {
B1 = 8L2

3 + 14NL2

M ,

B2 = 2
M + 1 + 5

6L2 + 8N
3ML2 .

(25)

Proof. We start with Assumption 5. Using the inequality 1
2∥a∥

2 − ∥b∥2 ≤ ∥a − b∥2, we have for550

t = 1, . . . , T and i = 1, . . . , n:551

1

2
∥∇f(w

(t)
i−1;π

(t)(i))∥2 − ∥∇f(w∗;π
(t)(i))∥2

≤ ∥∇f(w
(t)
i−1;π

(t)(i))−∇f(w∗;π
(t)(i))∥2

(13)
≤ M⟨∇f(w

(t)
i−1;π

(t)(i))−∇f(w∗;π
(t)(i)), w

(t)
i−1 − w∗⟩+N

1

n

n∑
i=1

∥w(t)
i − w

(t)
0 ∥2

= M⟨∇f(w
(t)
i−1;π

(t)(i)), w
(t)
i−1 − w∗⟩ −M⟨∇f(w∗;π

(t)(i)), w
(t)
i−1 − w∗⟩

+N
1

n

n∑
i=1

∥w(t)
i − w

(t)
0 ∥2,

This statement is equivalent to552

−⟨∇f(w
(t)
i−1;π

(t)(i)), w
(t)
i−1 − w∗⟩ ≤ − 1

2M
∥∇f(w

(t)
i−1;π

(t)(i))∥2 + 1

M
∥∇f(w∗;π

(t)(i))∥2

− ⟨∇f(w∗;π
(t)(i)), w

(t)
i−1 − w∗⟩
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+
N

M

1

n

n∑
i=1

∥w(t)
i − w

(t)
0 ∥2, (26)

For any w∗ ∈ W ∗, from the update (19) we have,553

∥w(t)
i − w∗∥2

(19)
= ∥w(t)

i−1 − w∗∥2 −
2ηt
n

⟨∇f(w
(t)
i−1;π

(t)(i)), w
(t)
i−1 − w∗⟩+

η2t
n2

∥∇f(w
(t)
i−1;π

(t)(i))∥2

(26)
≤ ∥w(t)

i−1 − w∗∥2 −
2ηt
2Mn

∥∇f(w
(t)
i−1;π

(t)(i))∥2 + 2ηt
Mn

∥∇f(w∗;π
(t)(i))∥2

− 2ηt
n

⟨∇f(w∗;π
(t)(i)), w

(t)
i−1 − w∗⟩+

2ηtN

Mn

1

n

n∑
i=1

∥w(t)
i − w

(t)
0 ∥2

+
η2t
n2

∥∇f(w
(t)
i−1;π

(t)(i))∥2

(a)

≤ ∥w(t)
i−1 − w∗∥2 −

ηt
2Mn

∥∇f(w
(t)
i−1;π

(t)(i))∥2 + 2ηt
Mn

∥∇f(w∗;π
(t)(i))∥2

− 2ηt
n

⟨∇f(w∗;π
(t)(i)), w

(t)
i−1 − w∗⟩+

2ηtN

Mn

1

n

n∑
i=1

∥w(t)
i − w

(t)
0 ∥2

= ∥w(t)
i−1 − w∗∥2 −

ηt
2Mn

∥∇f(w
(t)
i−1;π

(t)(i))∥2 + 2ηt
Mn

∥∇f(w∗;π
(t)(i))∥2

− 2ηt
n

⟨∇f(w∗;π
(t)(i)), w

(t)
i−1 − w

(t)
0 ⟩ − 2ηt

n
⟨∇f(w∗;π

(t)(i)), w
(t)
0 − w∗⟩

+
2ηtN

Mn

1

n

n∑
i=1

∥w(t)
i − w

(t)
0 ∥2

(b)

≤ ∥w(t)
i−1 − w∗∥2 −

ηt
2Mn

∥∇f(w
(t)
i−1;π

(t)(i))∥2 + 2ηt
Mn

∥∇f(w∗;π
(t)(i))∥2

+
ηt
n
∥∇f(w∗;π

(t)(i))∥2 + ηt
n
∥w(t)

i−1 − w
(t)
0 ∥2

− 2ηt
n

⟨∇f(w∗;π
(t)(i)), w

(t)
0 − w∗⟩+

2ηtN

Mn

1

n

n∑
i=1

∥w(t)
i − w

(t)
0 ∥2,

where (a) follows since ηt ≤ n
2M and (b) follows by the inequality 2⟨a, b⟩ ≤ ∥a∥2∥b∥2.554

Note that 1
n

∑n
i=1⟨∇f(w∗;π

(t)(i)), w
(t)
0 − w∗⟩ = ⟨∇F (w∗), w

(t)
0 − w∗⟩ = 0 since w∗ is a global555

solution of F . Now we sum the derived statement for i = 1, . . . , n and get556

∥w(t)
n − w∗∥2 ≤ ∥w(t)

0 − w∗∥2 −
ηt
2M

1

n

n∑
i=1

∥∇f(w
(t)
i−1;π

(t)(i))∥2

+ ηt

(
2

M
+ 1

)
1

n

n∑
i=1

∥∇f(w∗;π
(t)(i))∥2 + ηt

n

n∑
i=1

∥w(t)
i−1 − w

(t)
0 ∥2

+
2Nηt
M

1

n

n∑
i=1

∥w(t)
i − w

(t)
0 ∥2

(8),(22)
≤ ∥w(t)

0 − w∗∥2 −
ηt
2M

1

n

n∑
i=1

∥∇f(w
(t)
i−1;π

(t)(i))∥2

+

(
2

M
+ 1

)
ηtσ

2
∗ +

8L2η3t
3

∥w(t)
0 − w∗∥2 +

16L2η5t
3

σ2
∗ + 2η3t σ

2
∗

+
2Nηt
M

1

n

n∑
i=1

∥w(t)
i − w

(t)
0 ∥2

(23)
≤ ∥w(t)

0 − w∗∥2 −
ηt
2M

1

n

n∑
i=1

∥∇f(w
(t)
i−1;π

(t)(i))∥2
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+

(
2

M
+ 1

)
ηtσ

2
∗ +

8L2η3t
3

∥w(t)
0 − w∗∥2 +

16L2η5t
3

σ2
∗ + 2η3t σ

2
∗

+
16NL2η3t

3M
∥w(t)

0 − w∗∥2 +
32NL2η5t

3M
σ2
∗ +

4Nη3t
M

σ2
∗

+
8NL2η3t
Mn

∥w(t)
0 − w∗∥2 +

16NL2η5t
Mn

σ2
∗,

where we apply the derivations from Lemma 3. Now noting that ηt ≤ 1
2L , n ≤ 1 and rearranging the557

terms we get:558

∥w(t)
n − w∗∥2 ≤ ∥w(t)

0 − w∗∥2 −
ηt
2M

1

n

n∑
i=1

∥∇f(w
(t)
i−1;π

(t)(i))∥2

+

(
8L2

3
+

16NL2

3M
+

8NL2

M

)
η3t ∥w

(t)
0 − w∗∥2

+

(
2

M
+ 1 +

1

3L2
+

1

2L2
+

2N

3ML2
+

N

ML2
+

N

ML2

)
ηtσ

2
∗

Since w
(t)
n = w

(t+1)
0 = w̃t, we have the desired result in (24).559

C.2 Proof of Lemma 1560

Proof. From (24) where B1 and B2 are defined in (25), we have561

∥w(t+1)
0 − w∗∥2

≤
(
1 +B1η

3
t

)
∥w(t)

0 − w∗∥2 −
ηt
2M

1

n

n∑
i=1

∥∇f(w
(t)
i−1;π

(t)(i))∥2 +B2ηtσ
2
∗

(a)

≤
(
1 +B1η

3
t

)
∥w(t)

0 − w∗∥2 −
γ

γ + 1

ηt
2M

1

n

n∑
i=1

∥∇f(w
(t)
0 ;π(t)(i))∥2

+
ηtγ

2M

1

n

n∑
i=1

∥∇f(w
(t)
i−1;π

(t)(i))−∇f(w
(t)
0 ;π(t)(i))∥2 +B2ηtσ

2
∗

(2)
≤
(
1 +B1η

3
t

)
∥w(t)

0 − w∗∥2 −
γ

γ + 1

ηt
2M

1

n

n∑
i=1

∥∇f(w
(t)
0 ;π(t)(i))∥2

+
ηtγL

2

2M

1

n

n∑
i=1

∥w(t)
i−1 − w

(t)
0 ∥2 +B2σ

2
∗

(22)
≤
(
1 +B1η

3
t

)
∥w(t)

0 − w∗∥2 −
γ

γ + 1

ηt
2M

1

n

n∑
i=1

∥∇f(w
(t)
0 ;π(t)(i))∥2

+
η3t γL

2

2M

(
8L2

3
∥w(t)

0 − w∗∥2 +
16L2σ2

∗
3

· η2t + 2σ2
∗

)
+B2ηtσ

2
∗

=

(
1 +B1η

3
t +

4η3t γL
4

3M

)
∥w(t)

0 − w∗∥2 +
(
B2 +

η2t γL
2

M
+

8η4t γL
4

3M

)
ηtσ

2
∗

− γ

γ + 1

ηt
2M

1

n

n∑
i=1

∥∇f(w
(t)
0 ;π(t)(i))∥2

(5)
≤
(
1 + η3t

(
B1 +

4γL4

3M

))
∥w(t)

0 − w∗∥2 +
(
B2 +

η2t γL
2

M
+

8η4t γL
4

3M

)
ηtσ

2
∗

− γ

γ + 1

2µηt
2M

1

n

n∑
i=1

[f(w
(t)
0 ;π(t)(i))− f∗

i ]

(3)
≤
(
1 + η3t

(
B1 +

4γL4

3M

))
∥w(t)

0 − w∗∥2 +
(
B2 +

η2t γL
2

M
+

8η4t γL
4

3M

)
ηtσ

2
∗

18



− γ

γ + 1

µηt
M

[F (w
(t)
0 )− F∗]

(b)

≤
(
1 + η3t

(
B1 +

4γL4

3M

))
∥w(t)

0 − w∗∥2 +
(
B2 +

γ

4M
+

γ

6M

)
ηtσ

2
∗

− γ

γ + 1

µηt
M

[F (w
(t)
0 )− F∗],

where (a) follows since −∥b∥2 ≤ γ∥a−b∥2− γ
γ+1∥a∥

2 for any γ > 0 and (b) follows since ηt ≤ 1
2L .562

Since w
(t+1)
0 = w̃t, we obtain the desired result in (14).563

C.3 Proof of Theorem 2564

Proof. For t = 1, . . . , T = λ
ε3/2

for some λ > 0565

ηt = (1 + C1D
3ε3/2)ηt−1 = (1 + C1D

3ε3/2)tη0 ≤ (1 + C1D
3ε3/2)T η0

= (1 + C1D
3ε3/2)λ/ε

3/2

η0 = (1 + C1D
3ε3/2)λ/ε

3/2 D
√
ε

(1 + C1D3ε3/2) exp(λC1D3)

≤ D
√
ε

(1 + C1D3ε3/2)
≤ min

{
n

2M
,
1

2L

}
, (27)

since (1 + x)1/x ≤ e, x > 0. From (14), we have566

[F (w̃t−1)− F∗] ≤
1

C3

(
1

ηt
+ C1η

2
t

)
∥w̃t−1 − w∗∥2 −

1

C3ηt
∥w̃t − w∗∥2 +

C2

C3
σ2
∗. (28)

We proceed to prove the following inequality for t = 1, . . . , T ,567

1

ηt
+ C1η

2
t ≤ 1

ηt−1
. (29)

From (27), and ηt = Kηt−1 where K = (1 + C1D
3ε3/2), we have568

C1η
2
t = C1K

2η2t−1 = C1K
2 η

3
t−1

ηt−1

≤ C1K
2 D

3ε3/2

K3ηt−1
=

C1D
3ε3/2

Kηt−1
since ηt−1 ≤ D

√
ε

K

=
K − 1

K

1

ηt−1
=

1

ηt−1
− 1

Kηt−1
since K = (1 + C1D

3ε3/2)

=
1

ηt−1
− 1

Kηt−1
=

1

ηt−1
− 1

ηt
, since ηt = Kηt−1.

for t = 1, . . . , T . Hence, from (28), we have569

[F (w̃t−1)− F∗] ≤
1

C3

(
1

ηt
+ C1η

2
t

)
∥w̃t−1 − w∗∥2 −

1

C3ηt
∥w̃t − w∗∥2 +

C2

C3
σ2
∗

≤ 1

C3ηt−1
∥w̃t−1 − w∗∥2 −

1

C3ηt
∥w̃t − w∗∥2 +

C2

C3
σ2
∗.

Averaging the statement above for t = 1, . . . , T , we have570

1

T

T∑
t=1

[F (w̃t−1)− F∗] ≤
1

C3η0T
∥w̃0 − w∗∥2 +

C2

C3
σ2
∗

(a)
=

K exp(λC1D
3)

C3D
√
ε

ε3/2

λ
∥w̃0 − w∗∥2 +

C2

C3
σ2
∗

=
K exp(λC1D

3)

C3Dλ
∥w̃0 − w∗∥2 · ε+

C2

C3
σ2
∗,

where (a) follows since η0 = D
√
ε

K exp(λC1D3) and T = λ
ε3/2

.571
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C.4 Proof of Corollary 1572

Proof. Choose γ = 1
L2 , we have573 

C1 = 8L2

3 + 14NL2

M + 4L2

3M ,

C2 = 2
M + 1 + 5

6L2 + 8N
3ML2 + 5

12ML ,

C3 = 1
L2+1

µ
M .

Note that K = 1 + C1D
3ε3/2 and C1D

3 = 1/λ, we get that K = 1 + 1/T ≤ 2. We continue from574

the statement of Theorem 2 and the choice C1D
3λ = 1:575

1

T

T∑
t=1

[F (w̃t−1)− F∗] ≤
K exp(λC1D

3)

C3Dλ
∥w̃0 − w∗∥2 · ε+

C2

C3
σ2
∗

≤ 2

C1D3λ
· C1D

2 exp(λC1D
3)

C3
· ∥w̃0 − w∗∥2 · ε+

C2

C3
σ2
∗ since K ≤ 2

≤ 2C1D
2e

C3
∥w̃0 − w∗∥2 · ε+

C2

C3
σ2
∗ since C1D

3λ = 1

≤ 2C1D
2e

C3
∥w̃0 − w∗∥2 · ε+

C2

C3
Pε equation (9)

≤
(
2C1D

2e

C3
∥w̃0 − w∗∥2 +

C2P

C3

)
ε = Gε

with576

G =
2C1D

2e

C3
∥w̃0 − w∗∥2 +

C2P

C3
.

Let 0 < ε ≤ 1 and choose ε̂ = Gε. Then the number of iterations T is577

T =
λ

ε3/2
=

λG3/2

ε̂3/2

=
1

ε̂3/2C1D3

(
2C1D

2e∥w̃0 − w∗∥2 + C2P

C3

)3/2

=
1

ε̂3/2
· 1

C1D3C
3/2
3

(
2C1D

2e∥w̃0 − w∗∥2 + C2P
)3/2

=
1

ε̂3/2
·

(
2D2e∥w̃0 − w∗∥2

(
8L2

3 + 14NL2

M + 4L2

3M

)
+
(
2+M
M + 5

6L2 + 8N
3ML2 + 5

12ML

)
P
)3/2

(
8L2

3 + 14NL2

M + 4L2

3M

)
D3
(

1
L2+1

µ
M

)3/2
to guarantee578

min
1≤t≤T

[F (w̃t−1)− F∗] ≤
1

T

T∑
t=1

[F (w̃t−1)− F∗] ≤ ε̂.

Hence, the total complexity (number of individual gradient computations needed to reach ε̂ accuracy)579

is O
(

n
ε̂3/2

)
.580

If we further assume that L,M,N > 1:581

T =
1

ε̂3/2
·

(
2D2e∥w̃0 − w∗∥2

(
8ML2

3 + 14NL2 + 4L2

3

)
+
(
2 +M + 5M

6L2 + 8N
3L2 + 5

12L

)
P
)3/2

(
8L2

3 + 14NL2

M + 4L2

3M

)
D3
(

µ
L2+1

)3/2
≤ 1

ε̂3/2
·
(
O((M +N)L2)

)3/2 · O (1/L2
)
·
(
L2 + 1

µ

)3/2
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= O
(
L4(M +N)3/2

µ3/2
· 1

ε̂3/2

)
and the complexity is O

(
L4(M+N)3/2

µ3/2 · n
ε̂3/2

)
.582
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