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The outline of the supplementary material is as follows. In Appendix [A] we discuss in detail the
origin of prior knowledge of classes of prediction problems. In Appendix Bl we review additional
related work. In Appendix [C|we set our notation conventions. In Appendix [D]we summarize a few
mathematical results that are used in later proofs. In Section |[E| we show that PCA can be cast as a
degenerate setting of our formulation, and provide the proofs of the main theorems in the paper (the
linear MSE setting). In Appendix [F] we generalize these results to an infinite dimensional Hilbert
space. In Appendix [G we provide two algorithms for solving the Phase 1 and Phase 2 problems
in Algorithm [T} In Appendix [H| we provide details on the examples for the experiments with the
iterative algorithm. In Appendix |I| we describe an experiment in which the representation, response
function and predictors are modeled as a neural network (NN).

A Classes of response functions

As said, our approach to optimal representation is based on the assumption that a class F of future
prediction tasks is known. This assumption may represent prior knowledge or constraints on the
response function, and can stem from various considerations. To begin, it might be hypothesized
that some features are less relevant than others. As a simple intuitive example, the outer pixels in
images are typically less relevant to the classification of photographed objects, regardless of their
variability (which may stem from other affects, such as lighting conditions). Similarly, non-coding
regions of the genotype are irrelevant for predicting phenotype. The prior knowledge may encode
softer variations in relevance. Moreover, such prior assumption may be imposed on the learned
function, e.g., it may be assumed that the response function respects the privacy of some features,
or only weakly depends on features which provide an unfair advantage. In domain adaptation [?
], one may solve the prediction problem for feature distribution P, obtaining a optimal response
function f7. Then, after a change of input distribution to ()., the response function learned for this
feature distribution f; may be assumed to belong to functions which are “compatible” with f;. For
example, if P, and Q, are supported on different subsets of R?, the learned response function f; (z)
and f>(x) may be assumed to satisfy some type of continuity assumptions. Similar assumptions may
hold for the more general setting of transfer learning [41]]. Furthermore, such assumptions may hold
in a continual learning setting [42445]], in which a sequence of response functions is learned one
task at a time. Assuming that catastrophic forgetting is aimed to be avoided, then starting from the
second task, the choice of representation may assume that the learned response function is accurate
for all previously learned tasks.

B Additional related work

The information bottleneck principle The IB principle is a prominent approach to feature rele-
vance in the design of representations [[16H19]], and proposes to optimize the representation in order
to maximize its relevance to the response y. Letting I(z;y) and I(x; z) denote the corresponding
mutual information terms [27], the IB principle aims to maximize the former while constraining the
latter from above, and this is typically achieved via a Lagrangian formulation [46]. The resulting
representation, however, is tailored to the joint distribution of (x,y), i.e., to a specific prediction
task. In practice, this is achieved using a labeled dataset (Generalization bounds were derived in
[47]). As in our mixed representation approach, the use of randomized representation dictated by a
probability kernel Pz x is inherent to the IB principle. The IB principle was intensively utilized to
hypothesize that prediction algorithms, e.g., deep neural networks (DNNs) [[1] used for classifica-
tion, must intrinsically include learning of efficient representations [20-24]] (this spurred a debate,
see, e.g., [25,26]). However, this approach is inadequate in an unsupervised setting since the opti-
mal representation depends on the response variable, and so labeled data should be provided when
learning the representation. In addition, as explained in [29], while the resulting IB solution provides
a fundamental limit for the problem, it also suffers from multiple theoretical and practical issues.
The first main issue is that the mutual information terms are inherently difficult to estimate from
finite samples [47H51]], especially at high dimensions, and thus require resorting to approximations,
e.g., variational bounds [[52155]]. The resulting generalization bounds [47, 56] are still vacuous for
modern settings [57]]. The second main issue is that the IB formulation does not constrain the com-
plexity of the representation and the prediction rule, which can be arbitrarily complex. These issues
were addressed in [29] using the notion of usable information, introduced in [28]]: The standard
mutual information I(z;y) can be described as the log-loss difference between a predictor for z
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which does not use or does use y (or vice-versa, since mutual information is symmetric). Usable
information, or F-information Ix(z — ), restricts the predictor to a class F, which is compu-
tationally constrained. Several desirable properties were established in [28]] for the F-information,
e.g., probably approximate correct (PAC) bounds via Rademacher-complexity based bounds [58]]
[59, Chapter 5][60, Chapters 26-28]. In [29], the authors used the notion of F-information to de-
fine the decodable IB problem, with the goal of addressing the generalization capabilities of this IB
problem. In order to explore this, the two-player game described in the introduction was proposed.
Beyond those works, the IB framework has drawn a significant recent attention, and a remarkable
number of extensions and ramifications have been proposed [61H70, 155, [71]. IB framework for
self-supervised learning was recently discussed in [72].

Randomization in representation learning Randomization is classically used in data represen-
tation, most notably, utilizing the seminal Johnson-Lindenstrauss Lemma [73] or more generally,
sketching algorithms (e.g., [74H77]]). Our use of randomization is different and is inspired by the
classical Nash equilibrium [78]]. Rather than using a single deterministic representation that was ran-
domly chosen, we consider randomizing multiple representation rules. Training approaches based
on mixed strategies were proposed, e.g., in the generative adversarial network (GAN) setting [79-
81]. Specifically, inspired by the boosting technique [3], it was proposed in [81] to gradually add
additional modes to the mix of generative models, and where the new mode added focuses on the
distribution samples which are not adequately represented by the current set of modes. As men-
tioned in [81], this idea dates back to the use of boosting for density estimation [82]]. Our proposed
iterative algorithm follows this idea, and gradually adds representation rules, so that the new rep-
resentation aims to cope with response functions that are not adequately fitted by the current set of
representation rules.

Game theoretic formulations in statistics and machine-learning The use of game theoretic for-
mulations in statistics, between a player choosing a prediction algorithm and an adversary choosing
a prediction problem (typically Nature), was established by Wald in his classical statistical decision
theory [83]] (see, e.g., [84, Chapter 12]). It is a common approach both in classic statistics and
learning theory [85H88]], as well as in modern high-dimensional statistics [59]]. The effect of the
representation (quantizer) on the consistency of learning algorithms when a surrogate convex loss
function replaces the loss function of interest was studied in [3} |4} [86] (for binary and multiclass
classification, respectively). A relation between information loss and minimal error probability was
recently derived in [89].

Iterative algorithms for the solution of minimax games have drawn much attention in the last few
years due to their importance in optimizing GANs [90| 91], adversarial training [92], and robust
optimization [93]]. The notion of convergence is rather delicate, even for the basic convex-concave
two-player setting [94]. While the value output by the MWU algorithm [33]], or improved versions
[95! 196] converges to a no-regret solution, the actual strategies used by the players are, in fact,
repelled away from the equilibrium point to the boundary of the probability simplex [97]. For
general games, the gradient descent ascent (GDA) is a natural and practical choice, yet despite recent
advances, its theory is still partial [98]]. Various other algorithms have been proposed, e.g., [99-103].
According to the above description, and since our algorithm is both fairly general and involves two
optimization phases, deriving theoretical bounds on its convergence seems to be elusive at this point.
Nevertheless, the algorithm is also modular, and its two intermediate phases (see Appendix |G) can
be easily upgraded to more sophisticated optimization methods. Furthermore, each of the phases
can be separately analyzed.

Unsupervised pretraining From a broader perspective, our method is essentially an unsupervised
pretraining method, similar to the methods which currently enable the recent success in natural
language processing. Our model is much simplified compared to transformer architecture Vaswani
et al. [[LO4]], but the unsupervised training aspect used for prediction tasks Devlin et al. [105] is
common, and our results may shed light on these methods. For example, putting more weight
on some words compared to others during training phase that uses the masked-token prediction
objective.
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C Notation conventions

For an integer d, [d] := {1,2,...,d}. Forp > 1, |z|,:= (Z?:1|xi|p)1/p is the ¢, norm of
x € R The Frobenius norm of the matrix A is denoted by ||A||r= +/Tr[AT A] . The non-
negative (resp. positive) definite cone of symmetric matrices is given by Si (resp. Si 4). Fora
given positive-definite matrix S € S¢ , the Mahalanobis norm of z € R? is given by |z|s:=
S=12x||p= (xS~ 'x)/2, where S/ is the symmetric square root of S. The matrix W :=
[wy, ..., w,] € R™" is comprised from the column vectors {witiem C R?. For a real symmetric
matrix S € S, \;(S) is the ith largest eigenvalue, so that A\pex(S) = A (S) > Xo(S) > -+ >
Aa(S) = Amin(S), and in accordance, v;(S) denote an eigenvector corresponding to A;(.S) (these
are unique if there are no two equal eigenvalues, and otherwise arbitrarily chosen, while satisfying
orthogonality v;'v; = (v;,v;) = 4;;). Similarly, A(S) = diag(A1(S), A2(S), -+, Aa(S)) and
V(S) := [v1(8),v2(S), - - -, va(S)], so that S = V(S)A(S)V T (S) is an eigenvalue decomposition.
For j > i, Vij = [vi,...,v;] € RUTHTDXd jg the matrix comprised of the columns indexed by
{i,...,7}. The vector e; € R? is the ith standard basis vector, that is, ¢; := [0,...0,1,0,...0]7.
—— ——

i—1 terms d—1 terms
Random quantities (scalars, vectors, matrices, etc.) are denoted by boldface letters. For example,

x € R? is a random vector that takes values x € R% and R € R?*" is a random matrix. The
probability law of a random element @ is denoted by L(x). The probability of the event £ in some
given probability space is denoted by P[€] (typically understood from context). The expectation
operator is denoted by E[-]. The indicator function is denoted by 1{-}, and the Kronecker delta is
denoted by 6;; := 1{¢ = j}. We do not make a distinction between minimum and infimum (or
maximum and supremum) as arbitrarily accurate approximation is sufficient for the description of
the results in this paper. The binary KL divergence between p1, p2 € (0,1) is denoted as

1—p
1—]92.

Dx(p1 || p2) = p1 log% +(1—py)log (30)
2

D Useful mathematical results

In this section we provide several simplified versions of mathematical results that are used in the
proofs. The following well-known result is about the optimal low-rank approximation to a given
matrix:

Theorem 9 (Eckart-Young-Mirsky [59, Example 8.1] [[106, Section 4.1.4]). For a symmetric matrix

S e s
— < i — 1
196 = Slle <, gumin o 19— e G
where
Sk =Y Ni(S) - vi(S) (S) (32)
i€ [k]

(more generally, this is true for any unitarily invariant norm).

We next review a simplified version of variational characterizations of eigenvalues of symmetric
matrices:

Theorem 10 (Rayleigh quotient [37, Theorem 4.2.2]). For a symmetric matrix S € S%

z' Sz
max T2
=20 ||z||3

A (S) = (33)

Theorem 11 (Courant—Fisher variational characterization [37, Theorem 4.2.6]). For a symmetric
matrix S € S k € [d], and a subspace T of R?

x! Sz . xSz

min max ——5 =
T:dim(T)=k zeT\{0} ||z||5

Ak(S) = (34)

= max mm -
T:dim(T)=d—k+1zeT\{0} |z|3
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Theorem 12 (Fan’s variational characterization [37, Corollary 4.3.39.]). For a symmetric matrix
S € S?and k € [d]
— ; T
)\1 (S) 44 )\k(S) = Ue]Rer’?:ngU:Ik TI‘[U SU] (35)

and

Na—k1(S) 4+ + Xa(S) = g A Tr[U T SU. (36)
: =1k

We will use the following celebrated result from convex analysis.

Theorem 13 (Carathéodory’s theorem [I07, Prop. 1.3.1]). Let A C R% be non-empty. Then, any
point a in the convex hull of A can be written as a convex combination of at most d + 1 points from

A

E The linear MSE setting: additions and proofs

E.1 The standard principal component setting

In order to highlight the formulation proposed in this paper, we show, as a starting point, that the
well known PCA solution of representing € R¢ with the top r eigenvectors of the covariance
matrix of x can be obtained as a specific case of the regret formulation. In this setting, we take
F = {I}, and so y = « with probability 1. In addition, the predictor class Q is a linear function
from the representation dimension 7 back to the features dimension d.

Proposition 14. Consider the linear MSE setting, with the difference that the response is y € R?,
the loss function is the MSE loss(y1, y2) = |ly1 — y=2||% and the predictor is Q(z) = QT z € R? for
Q € R™¥4. Assume F = {14} so that y = x with probability 1. Then,

F | Bg) = regret,. (F | ) Z i (37)
1=r+1

I'egretpure(

and an optimal representation is R = V1.,.(Xz).

The result of Proposition [T4] verifies that the minimax and maximin formulations indeed generalize
the standard PCA formulation. The proof is standard and follows from the Eckart-Young-Mirsky the-
orem (e.g.,[59, Example 8.1] [106} Section 4.1.4]), which determines the best rank r approximation
in the Frobenius norm.

Proof of Proposition[[4) Since F = {1} is a singleton, there is no distinction between pure and
mixed minimax regret. It holds that

regret(R, f) = E [|lz — Q"R z|]?] (38)

where A = QT RT € R?¥9 is a rank r matrix. For any A € R?*9
Ellz—Az|’] =E[z'z -z Az -z ATz +z' AT Az] (39)
=Tr[Sp — A, — AT, + ATAS,] (40)
_ Hz;ﬂ—z;ﬂAHF (41)
_ Hz;ﬂ—BHQ : (42)

F

where B := E}c/ ’A. By the classic Eckart-Young-Mirsky theorem [59, Example 8.1] [106, Section

4.1.4] (see Appendix D), the best rank r approximation in the Frobenius norm is obtained by setting
Z Ai(Z3/?) - viv Z VAi(Sa) v (43)
where v; = v;(2 sV 2) = v;(Xz) is the ith eigenvector of 3y 12 (or Xz). Then, the optimal A is

Z,ﬁzl/%z Z\/ ) 55 o] szw (44)
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since v; is also an eigenvector of Sg/% Letting R = URZ(R)VT(R) and Q =
U(Q)2(Q)V T(Q) be the singular value decomposition of R and @, respectively, it holds that
Q'R" =V(QE(QVQVRE(R)U'(R). (45)

Setting V(Q) = V(R) = I, and ©7 (Q) = X(R) € R?*" to have r ones on the diagonal (and all
other entries are zero), as well as U(Q) = U(R) to be an orthogonal matrix whose first » columns
are {v; };¢[y) results that QT RT = A*, as required. O

E.2 Proofs of pure and mixed minimax representations

Before the proof of Theorem [2] we state a simple and useful lemma, which provides the pointwise
value of the regret and the optimal linear predictor for a given representation and response.

Lemma 15. Consider the representation z = R" x € R". It then holds that

w7 o]
=E[E[n®|z]] + fT (B2 — SeR(RTSR)'RTE,) f. 47)

Proof. The orthogonality principle states that
]E[(fT:c+n—qu) 'ZT] =0 (48)

must hold for the optimal linear estimator. Using z = R"a and taking expectations leads to the
standard least-squares (L.S) solution

qs = (RTSzR)"'RTY, f, (49)

assuming that R " ., R is invertible (which we indeed assume as if this is not the case, the represen-
tation can be reduced to a dimension lower than 7 in a lossless manner). The resulting regret of R is
thus given by

regret(R, f) = E [( x+n-— qLSz)Q} (50)

@ g [(me—i—n fTa:—i—n—quz)] (51)

= {(f w+n) —(fTz+n) qgsz] (52)

QE[EW? | a]] + /7 Saf ~E[27 folsR o] (53)

=E[E[n’ | 2] + f Sof — Tr [fo/sR ' 3] (54)

=E[E[n* | 2] + /" Saf — alsR " Saf (55)

DR [ER? |2]] + /T (Se - SRR SaR) 'RTS) [, (56)

where (a) follows from the orthogonality principle in (48)), (b) follows from the tower property of

conditional expectation and since E[zn] = E[z - E[n | || = 0, and (c) follows by substituting q.s
from (49).

We may now prove Theorem [2]

Proof of Theorem[2} For any given f, the optimal predictor based on z € R? achieves average loss
of

?el]i@E [(fTa: +n— qTa:)Q} =E [E[n® | z]] (57)

(specifically, this is obtained by setting R = I, in Lemma [T3]so that z = ). Hence, the resulting
regret of R over an adversarial choice of f € Fg is

2
}Ié%:); regret(R, f) :I}lea}:(E [|fTa: +n— qgsz| ] —E [E[n® | z]]
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@ max [T (S — SoR(RTS,R)RTS,) f (58)

feFs
Y max JT(8/25,5Y2 - V0, R(RTS,R) I RTS,5Y?)
FIFI13<1
(59)
© 5\ (51/229051/2 _ Sl/QEwR(RTZwR)‘1RTEwSl/2) (60)
= [$V25Y2 (1o - SY2R(RTS,R)TIRTSY?) SY2812) (o)
W [51/223/2 (Id . R(RTR)*RT) z}c/?sl/ﬂ (62)

D [(1a- RETR)TIRT) SY285Y? (- RIBTR)TIRT) ], (63)

where (a) follows from Lemma (b) follows by letting f := S~/2f and recalling that any
[ € F must satisfy || f||2< 1, (c) follows from the Rayleigh quotient theorem [37, Theorem 4.2.2]

(see Appendix |§I), (d) follows by letting R := $%/?R, and (e) follows since I; — R(RTR) 'R
is an orthogonal projection (idempotent and symmetric matrix) of rank d — r.

Now, to find the minimizer of max ¢c . regret(R, f) over R, we note that
M [(fa= RRTR)TRT) w3255y (1o - RIRTR) R )|

@ ax W7 (Id—R(RTé)—léT) sl/2g3L/2 (Id—R(RTR)—léT)u (64)

w:||u]l2=1

© max. u'BY28%/2y, (65)
ut||ull2=1, RTu=0

(e)

> min max uTZimSZimu (66)
S:dim(S)=d—r u:||ul|2=1, ueS

D e (s283Y2), (67)

where (a) follows again from the Rayleigh quotient theorem [37, Theorem 4.2.2], (b) follows since
I; — R(RTR)™'R" is an orthogonal projection matrix, and so we may write v = u + u|| SO
that [|u_ ||*+||u[|*= 1 and RTu; = 0; Hence replacing u with «, only increases the value of

the maximum, (c) follows by setting S to be a d — r dimensional subspace of R?, and (d) follows
by the Courani-Fischer variational characterization [37, Theorem 4.2.6] (see Appendix D). The
lower bound in (c) can be achieved by setting the r columns of R € R%*" to be the top eigenvectors

{vi(Zi/ 2gxy/ 2)}i6[7.}. This leads to the minimax representation R*. From , the worst case f is
the top eigenvector of

(Id . R*((R)*TR*)fl(R)*T) Ei/252i/2 <Id . R*((R)*TR*)fl(R)*T) ) (68)

This is a symmetric matrix, whose top eigenvector is the (r + 1)th eigenvector v,.11 (E;lc/ ’s E;lp,/ 2).
O

We next prove Theorem 3]

Proof of Theorem[3] We follow the proof strategy mentioned after the statement of the theorem.
We assume that n = 0 with probability 1, since, as for the pure minimax regret, this unavoidable
additive term of E [E[n? | z]] to the loss does not affect the regret.

The minimax problem — a direct computation: As in the derivations leading to (63)), the minimax

regret in (2)) is given by

regret, i (Fs | Zz)

= i E [regret(R, f | X% 69
LD ) Fax [regret(R, f | Xz)] (69)
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i max E|f' (8Y2%,8Y2 - §'/2y R(R"S,R) 'R"%,5"/? 70
L(R)EP(R)f\Uﬂ§<1 [f ( ( ) ) f} (70)

= omin omax [TSVASYE[1,- R(R'R)'R'|SY25F (71)
LS5 2R)eP(R) f:IIfl13<1
= min N (51/22;/2114: {Id . R(RTR)*RT} x1/261/ 2) (72)

L(E5' 2 R)eP(R)

where R = E;/ ’R. Determining the optimal distribution of the representation directly from this
expression seems to be intractable. We thus next solve the maximin problem, and then return to the
maximin problem (72)), set a specific random representation, and show that it achieves the maximin
value. This, in turn, establishes the optimality of this choice.

The maximin problem: Let an arbitrary L(f) be given. Then, taking the expectation of the regret

over the random choice of f, for any given R € R,

E[regret(R, f)] 2 E [Tr [(51/22m51/2 - Sl/QEwR(RTEmR)‘1RTZmSl/2) }}TH (73)

®) Tr (Sl/zzmsuz _ Sl/QEmR(RTET,R) IRTy 51/2) ] (74)
= Te [S7 (8125812 — SV2S, R(RTS,R) R 5,82) 57| 75)
© my :i}/ 2g1/231/2 (Id - R(RTR)*RT) e 2} (76)
=Te[(T- R(RTR)'RT) £1/251/2551/ 25y (77)
(4) T [ I— RRTR-LET)nl/251/25 . g1/2521/2 (1 _ R(RTR)V-LRT
= Tr| (R'R) o f o (R R)
(78)
© i
> min Tr {WTz;@Slﬂszl/?z;/QW} (79)
WERIX (A=) WTW=I4_,
d
LS N (EY2828 5128l (80)
1=r+1
d
= 3 ni(SpsVmast2), 81)
i=r+1

where (a) follows from Lemma and setting f := S—'/2f, (b) follows by setting X5 = X5 =
IE[}'}T], (c) follows by setting R := s¥°R, (d) follows since I — R(RTR)~'R" is an orthogo-
nal projection (idempotent and symmetric matrix) of rank d — r, (e) follows since any orthogonal
projection can be written as WWW T where W € R**(?=7) is an orthogonal matrix WTW = I,_,.,
(f) follows from Fan’s variational characterization [108] [37, Corollary 4.3.39.] (see Appendix@.
Equality in (e) can be achieved by letting R be the top r eigenvectors of ¥z Yig1/ 22 St/ 221/ 2

The next step of the derivation is to maximize the expected regret over the probability law of f

(or f). Evidently, E[regret(R, f)] = Zf’ 1 Ni (X45'/2%,5%/2) only depends on the random

function f via X #- The covariance matnx ) £ is constrained as follows. Recall that f is supported
on Fs := {f € R%:||f|3< 1} (see (4 ), and let Xy = E[ff ] be its covariance matrix. Then, it
must hold that Tr[S~1¥% #] < 1. Then, it also holds that

12 Te[S ' 8y) = Tr [EIS ' ££7]] (2)
—E [fTS‘lf} (83)
~E[}'F] (34)
—Tr[ } (85)
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where 5 = S~1/25;5-1/2. Conversely, given any covariance matrix Xy € S%, such that
Tr[¥f] < 1 there exists a random vector f supported on Fg such that

E[ff'] = 8'25;5°1/2 (86)

We show this by an explicit construction. Let 3 F= f/f[\ f f/}r be the eigenvalue decomposition of

¥4, and, for brevity, denote by \; = A\;(Xy) the diagonal elements of Af. Let {@;}icia) be a set
of independent and identically (IID) distributed random variables, so that g; is Rademacher, that is
Plg;, = 1] = P[q; = —1] = 1/2. Define the random vector

g:= (Q1‘\/iv"'>q¢1‘\/z>—r~ 87

The constraint Tr[X 7] < 1 implies that 3" \; < 1 and so ||g||?>= Z?zl Ai < 1 with probability 1.
Then, letting f = Vg it also holds that || f||3= ||g||3< 1 with probability 1, and furthermore,

E[77'] = VsE[gg") V] = VAV =4, (88)

Consequently, letting f = S/ f assures that || f||s= || f|j2< 1 and E[ff ] = SY/2%;571/2, as
was required to obtain. Therefore, instead of maximizing over probability laws on P(Fg), we may
equivalently maximize over Xy € S, such that Tr[Xf] < 1, i.e., to solve

d
regret, . (Fs | Z“’):g max D Xi(2pS178,812). (89)
FEFIS i—r

The optimization problem in (89) is solved in Lemma[I6] and is provided after this proof. Setting
¥ = §/2%,5'2 in Lemma|16} and letting \; = \;(S'/?%,S"/?), the solution is given by

o —r
- (90)
¢
Yist
where ¢* € [d]\[r] satisfies
o
o —r 1 &=
< T < . oD
Ags ; Ai T A

Lemma 16|also directly implies that an optimal N F is given as in . The value in is exactly
regret,,i (Fs | L) claimed by the theorem, and we next show it is indeed achievable by a properly
constructed random representation.

The minimax problem — a solution via the maximin certificate: Given the value of the regret game in

mixed strategies found in (90), we may also find a minimax representation in mixed strategies. To
this end, we return to the minimax expression in (72), and propose a random representation which
achieves the maximin value in (90). Note that for any given R, the matrix I; — R(RTR) 'R is an
orthogonal projection, that is, a symmetric matrix whose eigenvalues are all either O or 1, and it has at
most r eigenvalues equal to zero. We denote its eigenvalue decomposition by I, — R(RT R)’lf%T =
UQUT. Then, any probability law on R induces a probability law on U and €2 (and vice-versa).
To find the mixed minimax representation, we propose setting U = V(Zi/ 252&! 2) = V with
probability 1, that is, to be deterministic, and thus only randomize €. With this choice, and by
denoting, for brevity, A = A(ZimSZim) = A(5'/2%,51/2), the value of the objective function in
is given by

At (51/22;/%/ E[Q]- VTE;/QSW)
— (E [ - VTE}E/ZSE}E/QV) 92)
— N (E[Q]-A). 93)
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Now, the distribution of €2 is equivalent to a distribution on its diagonal, which is supported on
the finite set A := {a € {0,1}%: ||a||1> d — r}. Our goal is thus to find a probability law on a,
supported on A, which solves

min max Ay (E[Q] - A) = min max E[a;]\; (94)
L() ic[d] L(a) i€[d]
where A\; = \;(S 12,81/ 2) are the diagonal elements of A. Consider ¢*, the optimal dimension
of the maximin problem, which satisfies (91). We then set ag«1 = --- = a4 = 1 to hold with
probability 1, and so it remains to determine the probability law of @ := (a1, ..., as ), supported

on A:={a € {0,1}": ||la|,> ¢* — r}. Clearly, reducing ||a||; only reduces the objective function
max;e[q E[a;\;], and so we may in fact assume that @ is supported on A:={ac{0,1}":

lall=
¢* — r}, a finite subset of cardinality (K;). Suppose that we find a probability law L(@) supported
on A such that

1/
E[al] = (6* - T’) . Z*/i = bi, (95)
2im1 /A
for all ¢ € [¢*]. Then, since E[a;] = 1 for i € [d]\[¢*]
ax Ela]); — max { " x A (96)
max i|A; = Inax — p* yt
icld] 7 Zle )\L 041 d
o —r
=max{ —— /\e*+1} 97
{Zi_l x
() £ —r
= = (98)
i
s

where (x) follows from the condition on £* in the right inequality of . This proves that such
probability law achieves the minimax regret in mixed strategies. This last term is regret, i (Fs | )
claimed by the theorem. It remains to construct L(@) which satisfies . To this end, note that the
set

C:= {c € (0,1 flefli=¢" - T} >

is convex and compact, and A is the set of its extreme points (C is the convex hull of A). Letting
b= (b1,...,be-)" asdenoted in , it holds that b; > 0 and {b; }{_, is a non-decreasing sequence.
Using the condition on ¢* in the left inequality of (9T, it then holds that

1/ M-

Z*
Z¢:1 1/ Ai
Hence, b € C. By Carathéodory’s theorem [107, Prop. 1.3.1] (see Appendix @, any point inside a

convex compact set in RY" can be written as a convex combination of at most £* + 1 extreme points.
Thus, there exists {pg};.z such that pz € [0,1] and > -5 ps = L sothatb = )~ —pg - @, and

by

IA

s b= (0 =7 <1. (100)

moreover the support of pg has cardinality at most £* + 1. Let A € {0,1}¢ % ‘ZJ be such that its jth
column is given by the jth member of A (in an arbitrary order). Let p € [0, 1]/ be a vector whose

jth element corresponds to the jth member of A. Then, p is the solution to Ap = b, and as claimed
above, such a solution with at most £* + 1 nonzero entries always exists. Settinga = (@, 1...,1)
——

d—£* terms

with probability pz then assures that (93) holds, as was required to be proved.

Given the above, we observe that setting R as in the theorem induces a distribution on €2 for which
the random entries of its diagonal a satisfy (95), and thus achieve regret, . (Fs | Xz ). O

We next turn to complete the proof of Theorem [3] by solving the optimization problem in (89).
Assume that X € Sjl_ . is a strictly positive covariance matrix 3 > 0, and consider the optimization
problem

d
vy = max Z Ai(24Y)
ZpeSt i S

24



subject to Tr[Xy] < 1 (101)
gs9 for some r € [d—1]. Note that the objective function refers to the maximization of the d — r minimal
890 eigenvalues of 21/22f21/2.
sot  Lemma 16. Let

PR Sl (102)

;
Dict Ai%E)
so2  The optimal value of@) is v* = maxiqg)\[,] a¢ and £* € arg max g, ] a¢ iff

E*fr<§ 1 < 0 —r (103)
Aer () — P Ai(2) T A1 ()
893 An optimal solution is
coq ) 1
Y = —— | -V(D)dia ,0,---,0)-v(2)T. 104
| e (v )-ve (109

894 Proof. Let if = yi/2y fEl/ 2 let if = UfoU; be its eigenvalue decomposition, and, for
gos brevity, denote \; = \; (if). Then, the trace operation appearing in the constraint of li can be
896  written as

Te[Sy] = Tr _E*WEJ@E*/?} (105)
—Tr :2*1/2€foU;2*1/2} (106)

r d
=Tr |2~ 1/2 (Z )\uuT> yo1/2 (107)

L =1

- (@] 27 1) (108)

I
.MR

<
Il
i

I
.M&

l
—

897 where w; = vi(Uf) (that is, the ith column of Uf), and ¢; := W, ©7'%; (which satisfies ¢; > 0).
ses Thus, the optimization problem in 1) over Xy is equivalent to an optimization problem over
899 {\i, Ui }ie[q), given by
d
vr = max A
{ui,Xitiela) i:TZ—&-l
d
subject to Zcixi <1,
i=1
C;, = ﬂjEilﬂi,
ﬂ;rﬂj = 61’]”
A=A > > >0 (110)
900 To solve the optimization problem (110, let us fix feasible {; };c[4, 50 that {c; };c[q) are fixed too.
901 This results the problem

d
vr({u;}) = vr({ci}) = max Z i
Diticl ;511
d p—
subject to Zci)‘i <1,
i=1
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A =X > > A >0 (111)

The objective function of (111} is linear in {Xi}ie[d] and its constraint set is a convex bounded
polytope. So the solution to (I11) must be obtained on the boundary of the constraint set. Clearly,
the optimal value satisfies v} ({c;}) > 0, and thus the solution {X, }ie[q) must be obtained when the
constraint Z?:l cihi < 1is satisfied with equality. Indeed, if this is not the case then one may scale
all X: by a constant larger than 1, and obtain larger value of the objective, while still satisfying the
constraint.
To find the optimal solution to (111]), we consider feasible points for which ¢ := max{i € [d]: \; >
0) is fixed. Let {)\ Yicja) be the optimal solution of , under the additional constraint that
Aes1 = -+ = Mg = 0. We next prove that /\1 = ... = >‘e must hold. To this end, assume by
contradiction that there exists j € [¢] so that )\j_l > )\j > (. There are two cases to consider,
to wit, whether j — 1 < r 4 1 and so only Xj appears in the objective of l| or, otherwise,
j—1>r+1andthen \;_; + \; appears in the objective of (111). Assuming the first case, let
a=X,_1¢j—1 + A,c; and consider the optimization problem

_max A

)\]‘71,)\]‘

subject to Aj_1¢;_1 + A\je; = a,

Aji—1 = A > 0. (112)
It is easy to verify that the optimum of this problem is 5\;_1 = 5\; = m Thus, if )\J 1> /\
then one can replace this pair with )\ 1= )\ = 5\* = 5\* so that the value of the constraint
Zz 1 \ic; remains the same, and thus AL )\;‘71, /\*, Xj—s-lv ...\, is a feasible point, while the

objective function Value of @]) is smaller; a contradiction. Therefore, it must hold for the first
case that >\_]—1 = .. For the second case, in a similar fashion, let now o = )\]_10]_1 + )\] ¢j, and

consider the optimization problem
_max 5\j + ;\j_l
Nio1h
subject to S\j,lcj,l + chj = q,
Ajo1> A > 0. (113)
The solution for this optimization problem is at one of the two extreme points of the feasible interval

for )\ Since A} > 0 was assumed it therefore must hold that /\;‘ 1= A*, and hence also X;_l = X;.

Thus Ai_1 < Aj leads to a contradiction. From the above, we deduce that the optimal solution of

(111) under the additional constraint that Ay, 1 = --- = A\g = 0 is
x —x 1
N== N = — (114)
dlim1 Ci
XZJrl:"':X;:Ov (115)

and that the optimal value is . Since ¢ € [d]\[r] can be arbitrarily chosen, we deduce that the

value of (ITT)) is

11"

{—r
v*({¢;}) = max ——. (116)
ek = % e
For any given ¢ € [d]\[r], we may now optimize over {u;}, which from (116) is equivalent to
minimizing Zle ¢;. It holds that
¢

7 g,
min = mm u; X (117)
{u;} = {u;: w, u7_677} Z

= min
{ﬂi :ﬂ;rﬂj :57_7 }

y! Zuzuj] (118)
i=1
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o min T[s007] (119)
UeRexL.UTU=I,

- min  Tr {UTz—lU} (120)
UeRdxe.UTU=I,

) — 1

) 121
Z)\i(z)’ (20
=1

where in (a) U € R¥ whose ¢ columns are {T; };c(q and U' U = I, and in (b) we have used
Fan'’s variational characterization [108]] [37, Corollary 4.3.39.] (see Appendix [D). Substituting
back to (TT6)) results that
0 —
v5 = max éirl = max ay. (122)
eeldnr] Y ) Le[d\[r]

Let us denote that maximizer index by ¢*. Then, Fan’s characterization is achieved by setting
Uy =V (so that the £* columns of U are the £* eigenvectors v;(X), corresponding to the ¢* largest
eigenvalues of X), so that

-1

/-
— 1
T, = —— | v-diag|1,...,1,0,---,0| - VT, (123)
f ; )\i(z) & N——
- £* terms
and then
P IS e (124)

—1
VATY2VTV Cdiag(1,...,1,0,---,0) VTVATY2p T (125)

0* 1
o 1

as claimed in (104).

-1

1 1
-V - dia ,0,---,0)- VT 126
g(mz) e (%) ) (120

To complete the proof, it remains to characterize £*, which belongs to the set possible indices max-
imizing {a¢}se(q)\[+]- Since £* maximizes a, it must be a local maximizer, that is, it must hold that
ag-—1 < ag- > ag«41. By simple algebra, these conditions are equivalent to those in (T03). It
remains to show that any ¢ € [d]\[r] which satisfies (103) has the same value, and thus any local
maxima is a global maxima. We will show this by proving that the sequence {ag}‘}zr is unimodal,
as follows. Let Ay := agy1 — ag be the discrete derivative of {ay}¢c[q), and consider the sequence
{A¢}eeqap - We show that as £ increases from 7 to d, {A¢}yeqap\[r) is only changing its sign at
most once. To this end, we first note that
¢
A {+1—r {—r 2 i1 ,\,i(12) - (- 7“)},3;(2) (127
= 1 N 1 +1 ¢ :
2 iz Ai(2) 2in1 Ai(X) [21:1 ,\,;gz)] [21:1 ,\1%2)}

Since the denominator of (127) is strictly positive, it suffices to prove that the sequence comprised
of the numerator of (127)), to wit {C¢} ¢c[ap\[r] With

¢
1 1

=N ey (128)

“=2rm
is only changing its sign at most once. Indeed, this claim is true because ¢, = Zle ,\i(lz) > 0 and

because {(¢}sc[q)\[] is @ monotonic non-increasing sequence,

1 1

— =l-r+1 [ - > 0. (129)
GG = ) Aep2(E) A (X)

Therefore, {Cr}oejap\ ) has at most a single sign change (its has a positive value at £ = r and is
monotonically non-increasing with £ up to £ = d), and so is {Ag}g:T. The single sign change

property of the finite difference {A,}%_ is equivalent to the fact that {a,}{_,. is unimodal. Thus,
any local maximizer of ay is also a global maximizer. O
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F The Hilbert space MSE setting

In this section, we show that the regret expressions in Section [3] can be easily generalized to an
infinite dimensional Hilbert space, for responses with noise that is statistically independent of the
features. We still assume the MSE loss function () = R , and loss(y1,%2) = (y1 — ¥2)?), and that
the predictor is a linear function. However, we allow the the representation and response function to
be functions in a Hilbert space. As will be evident, the resulting regret is not very different from the
finite-dimensional case. Formally, this is defined as follows:

Definition 17 (The Hilbert space MSE setting). Assume that * ~ P, is supported on a compact
subset X C R%, and let Ly(P,,) be the Hilbert space of functions from X — R such that E[f?(z)] =
Sy [2(x) - APy < oo, with the inner product,

()= | @) -ap, (130
for f, g € La(Py). Let {¢;(x)}52,; be an orthonormal basis for Lg(Py).
A representation is comprised of a set of functions {t; }ic(;] C L2(Pz), ¥i: X — R, so that
R i={R(z) = (¢¥1(2),. .., ¥r(2))T €R"}. (131)

Let {\; }jen be a positive monotonic non-increasing sequence for which A; | 0 as j — oo, and let
F be the set of functions from X — R such that given f € F, the response is given by

y=flz)+nekR (132)
where
fEFupy = f@) =D fio;(@): {fi}jen € LIN), Y 3= <1p, (133)
Jj=1 j=1"19

where n € R is a homoscedastic noise that is statistically independent of & and satisfies E[n] = 0.
Infinite-dimensional ellipsoids such as Fy,;y naturally arise in reproducing kernel Hilbert spaces
(RKHS) [59, Chapter 12] [60, Chapter 16], in which {)\j} is the eigenvalues of the kernel. In this
case, the set Fyy,3 = {f:||fll»< 1} where [|-[|% is the norm of the RKHS #. For example, H
could be the first-order Sobolev space of functions with finite first derivative energy.

Let the set of predictor functions be the set of linear functions from R? — R, that is

Q:={Q(z)=q"2=> g vi(x), g€R"}. (134)
i=1
We denote the pure (resp. mixed) minimax regret as regret,, (R, F(xn;; | Pz) (resp.
regrety,i (R, Fix,y | Pa)). We begin with pure strategies.

Theorem 18. For the Hilbert space MSE setting (Definition 7))
regretoe (R, Finyy | Pa) = Argr- (135)
A minimax representation is
R*(x) = (¢1(2), -, dn(2)) T, (136)
and the worst case response function is f* = \/Ary1 - Pri1.

We now turn to the minimax representation in mixed strategies.
Theorem 19. For the Hilbert space MSE setting (Definition [[7)

0 —r
pany ra—
Yicix
where [* is defined as @) of Theorem 3| (with the replacement d — N ). Let {b;}32, be an IID

sequence of Rademacher random variables, P[b;, = 1] = P[b; = —1] = 1/2. Then, a least
favorable prior f* is

regretmiX(R,}"{,\j} | Pp) = (137)

fi= VISR : (138)
0, i> 0, +1
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984 and a law of minimax representation is to choose
R*(x) = {¢z,(2)}j=1 (139)
985 with probability p; , j € [(Z;)], defined as in Theorem

986 Discussion Despite having countably infinite possible number of representations, the optimal rep-
987 resentation only utilizes a finife set of orthogonal functions, as determined by the radius of F,,;.
988 The proof of Theorems|18|and [19Y|is obtained by reducing the infinite dimensional problem to a d-
989 dimensional problem via an approximation argument, then showing the the finite dimensional case
990 is similar to the problem of Section[3] and then taking limit d 1 co.

991 E.1 Proofs
992 Let us denote the d-dimensional slice of F} by
d .
Fy = {f(@) € Fiay: f; =0forall j > d+1} . (140)

993 Further, let us consider the restricted representation class, in which the representation functions
994  1);(t) belong to the span of the first d basis functions, that is

R@D = {R(z) € R:=(z) € span({¢; }c(q) for all i € [r]}. (141)

995 The following proposition implies that the regret in the infinite-dimensional Hilbert space is obtained
996 as the limit of finite-dimensional regrets, as the one characterized in Section@

997 Proposition 20. It holds that

— 1 d) 7(d)
regretpure(RMF{)\j} | Pm) - ;#Iglo regretpure(R( )a‘/_'.{)\j} | Pm) (142)

998 and @ )
regret i (R, Fxy | Pe) = ClllTrglo regret i (R Fin | Pp). (143)
999 Proof. Let {c;;},en be the coefficients of the orthogonal expansion of v;, ¢ € [r], that is, ¢; =
1000 Z]O';l cij¢;. With a slight abuse of notation, we also let ¢; := (cj1,¢i2...) € l2(N). We use a

1001 sandwich argument. On one hand,
regret,, (R, Fix,y | Pe) = glel% feH}l‘?i} regret(R, f) (144)
> 11%16171% ferr;fg() regret(R, f) (145)
{3}
© mir}d) max regret(R, f) (146)
RER fe]-‘{)\j}

= regret,, (R, F(V | | Pa), (147)

1002 where () follows from the following reasoning: For any (R € R, f € }'{(()i\z})

2

d co T
regret(R, f) = min E S fivi@) =YY giciéix) | | —E[n?] (148)
=1 =1 i=1
(@) d 0o T
= min £ fidi (@) =D " qicijb;(x) (149)
ac =1 j=1i=1
I 2 o0 T 2
b .
@ mﬁyz (fj - Z%’%‘) + > <Z Qicij> ) (150)
L i=1 j=d+1 \i=1
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where here (a) follows since the noise m is independent of x, and since, similarly to the finite-
dimensional case (Section , the prediction loss based on the features z € X is E[n?], for any
given f € F, (b) follows from Parseval’s identity and the orthonormality of {¢;};en. So,

min max regret(R, f)
ReR je}'éi) )

r 2 o0 T 2
min max min (fj — Z qicij> + Z <Z ql-cij> . (151)
j=1 i=1 i=1

i (@ geRT
{CJ}E LiEN fFEFS }q j=d+1

Evidently, since >-°° ;. | (3_7_; gicij)* > 0, an optimal representation may satisfy that c;; = 0 for
all j > d + 1. Thus, the optimal representation belongs to R (%)

On the other hand,
regretye (R, Fia,y | Pe) = 11%[161% fem?i{ } regret(R, f) (152)
< RG’I;(IL‘) fgl;_a{i{ } regret(R, f) (153)
(;) Rg%r(ld) fenjl:z(ix X regret(R, f) + Ad+1 (154)
= regret,y (R, F({ | | Po) + Aat1, (155)

where (x) follows from the following reasoning: For any (R € R4, f € Fix)s

2

regret(R, f) = min B Z fioi(x) +n— ZZ%CU@ — E[n? (156)

j=11:i=1

2 o0
@ féﬁ%l ( Z(h%) + > (157)
j=1

j=d+1
r 2
®
s;gﬁgqj:l fj—;qicij + Aat1, (158)

where (a) follows similarly to the analysis made in the previous step, and (b) follows since for any
[ € Fy,y itholds that

2

S < dan Y, 3L < i > L < A (159)

j=d+1 j=d+1 " j=1"7
Combining (147)) and and using Agy1 | O completes the proof for the pure minimax regret.

The proof for the mixed minimax is analogous and thus is omitted. O

We also use the following simple and technical lemma.
Lemma 21. For R € R and f € F]

regret(R, f) = f' (I4— RT(RR")™'R) f, (160)

where R € R"* is the matrix of coefficients of the orthogonal expansion of 1; = Z‘j:l cij¢j for
i € [r], so that R(i, j) = c;j.

'Note that any f € F (@ may be uniquely identified with a d-dimensional vector f € R%. With a slight
abuse of notation we do not distinguish between the two.

30



1018

1019

1020
1021
1022
1023
1024
1025

1026

1027
1028
1029
1030

1031

1032
1033
1034

1035
1036
1037

1038
1039

1040
1041

1042

Proof. 1t holds that

2

d

regret(R, f) = min E (meg +n— quzcmg ~E[n*] (6
j=1 i=1 j=1

d T
= mink > (fj - ;qicij> ¢j(z) (162)

=1

d r 2

= qeRT Z fi — Zqici]) (163)
Jj=1 =1

d

=min). [f -2f; quu + Zl Zlqucmqu%a (164)
: 1 2
= min frf— 2qTRf + qTRRTq (165)
=f"(Is—R"(RR")"'R) f, (166)
where the last equality is obtained by the minimizer ¢* = (RR") "' Rf. O

Proof of Theorems[I8 and[I9 By Proposition[20} we may first consider the finite dimensional case,
and then take the limit d 1 co. By Lemma 21} in the d-dimensional case (for both the representation
and the response function), the regret is formally as in the linear setting under the MSE of Theorem
l by setting therein ¥, = Ij, and S = diag(A1,...,Ag) (c.f. Lemma [I3] D The claim of the
Theorem [18] then follows by taking d 1 co and noting that Ad+1 4 0. The proof of Theorem [19)is
analogous and thus omitted. O

G Iterative algorithms for the Phase 1 and Phase 2 problems

In this section we describe our proposed algorithms for the solution Phase 1 and Phase 2 problems
of Algorithm [I] Those algorithms are general, and only require providing gradients of the regret
function (1)) and an initial representation and a set of adversarial functions. These are individually
determined for each setting. See Section [H]for the way these are determined in Examples [] and 8]

G.1 Phase 1: finding a new adversarial function

We propose an algorithm to solve the Phase 1 problem (26), which is again based on an iterative
algorithm. We denote the function’s value at the tth iteration by f(;y. The proposed Algorithm
operates as follows. At initialization, the function f(;) € F is arbitrarily initialized (say at random),

and then the optimal predictor Q) is found for each of the k possible representations R\, j € [k].
Then, the algorithm iteratively repeats the following steps, starting with ¢ = 2: (1) Updating the
function from f(;_1) to f(;) based on a gradient step of

S P9 floss(fio 1) (), Q9 (R ()] (167)
JE[K]

that is, the weighted loss function of the previous iteration function, which is then followed by a
projection to the feasible class of functions F, denoted as II#(-) (2) Finding the optimal predictor

QU for the current function J(t) and the given representations {R(j )} je[k]> and computing the
respective loss for each representation,

o) —E[Ioss(f (z), QW (RY) (x)))] . (168)

This loop iterates for T’ iterations, or until convergence.
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Algorithm 2 A procedure for finding a new function via the solution of

procedure PHASE 1 SOLVER({RY), pW)} ;. F, Q. d, 7, Py)

1:
2: begin
3 Initialize T’ > Number of iterations parameters
4: Initialize 7y > Step size parameter
5: Initialize f(l) e F > Function initialization, e.g., at random
6 for j = 1to kdo
7 set QU) < arg ming o E [loss(f(1)(z), Q(RY) (z)))]
8 end for
9: fort =2to T} do
10: update f;_1/2) = fu—1) + 1 2 e pgi)_l) - VE [loss(fi—1) (), QW (RY(x)))]
> A gradient update of the function
11: project f) = Iz (f(;—1/2)) > Projection on the class F
12: for j =1tokdo
13: set QU) «— argmingc o E [loss(f()(z), Q(RY) (x)))] > Update of predictors
14: set LU) « E [loss(f1) (), Q(J)(R(J)(ac)))} > Compute loss of each representation
15: end for
16: end for

17: return f(7), and the regret Z p(J) LW
18: end procedure

Design choices and possible variants of the basic algorithm At initialization, we have chosen a
simple random initialization for f(;), but it may also be initialized based on some prior knowledge
of the adversarial function. For the update of the predictors, we have specified a full computation of
the optimal predictor, which can be achieved in practice by running another iterative algorithm such
as stochastic gradient descent (SGD) until convergence. If this is too computationally expensive,
the number of gradient steps may be limited. The update of the function is done via projected SGD
with a constant step size 77, yet it is also possible to modify the step size with the iteration, e.g., the
common choice 7y / V't at step t Hazan [33]]. Accelerated algorithms, e.g., moment-based may also
be deployed.

Convergence analysis A theoretical analysis of the convergence properties of the algorithm ap-
pears to be challenging. Evidently, this is a minimax game between the response player and the
predictor player, but not a concave-convex game. As described in Appendix [B] even concave-convex
games are not well understood at this point. We thus opt to validate this algorithm numerically.

G.2 Phase 2: finding a new representation

We propose an iterative algorithm to solve the Phase 2 problem (27), and thus finding a new repre-
sentation R(*t1) To this end, we first note that the objective function in (27) can be separated into
a part that depends on existing representations and a part that depends on the new one, specifically,
as

Z Z (]1) old2) . E[bss(f(h( )7Q(j1’j2)(R(j1)(iL')))]

J1€[k] j2€[mo+k]

+ Z pFtD L ol2) L {|Oss(f(j2)(:13),Q(k+1’j2)(R(k+1)(m)))}
J2€[mo+k]

Z Z . L(J1 ,J2)

j1€[k] j2€[mo+k]

+ 3 pkD gl E [Ioss(f(j"‘)(:c),Q(k“‘l’j?)(R(k‘H)(zc)))} , (169)

J2€[mo+k]

where
LUniz) — | [Ioss(f(j2)(:1:), Q(jl7j2)(R(j2)($))):| , (170)
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and the predictors {QU1+72)} Jj1€[k],ja€[mo~+k] €an be optimized independently of the new representa-
tion R(*+1) We propose an iterative algorithm for this problem, and denote the new representation
at the tth iteration of the algorithm by R(k+1). The algorithm’s input is a set of mg + k adver-

sarial functions {f};¢ (.4 and the current set of representations { R\)},<|,. Based on these,

the algorithm may find the optimal predictor for f(/2) based on the representatlon RUY, and thus
compute the loss

Lijl’jz) — IQHEHQI]E |OSS(f(j2)(w),Q(R(jl)(w))) (171)

for j; € [k] and jo € [mg + k]. In addition, the new representation is arbitrarily initialized (say, at

random) as Rglf;r Y and the predictors {lef;r L.d2) }ja€mo+k) are initialized as the optimal predictors

for f(72) given the representation Rglf;r D The algorithm keeps track of Weights for the represen-
tations (including the new one), which are initialized uniformly, i.e., pE{;) = =7 +1 for j; € [k + 1]
(including a weight for the new representation). The algorithm also keeps track of weights for the

functions, which are also initialized uniformly as 05{2)) = +k for jo € [mo + k]. Then, the
algorithm iteratively repeats the following steps, starting with ¢ = 2: (1) Updatle new represen-

tation from REf+11)) to ng)ﬂ) based on a gradlent step of the objective function l| as a function of

R®*+1)_ Based on the decomposition in ( the term of the objective which depends on R(*+1) is

k . .
ety DS oty E ['055(f(”)(w),Q(’““’”)(R(’““)(w)))} : (a72)
Jj2€[mo+k]

that is, the loss function of the previous iteration new representation, weighted according to the

current function weights 0&12—)1)- Since the multiplicative factor pgfjll)) is common to all terms, it is

removed from the gradient computation (this aids in the choice of the gradient step). This gradient
step is then possibly followed by normalization or projection, which we denote by the operator
II%(-). For example, in the linear case, it make sense to normalize R*+1) (o have unity norm (in
some matrix norm of choice). After updating the new representation to RE t)+ ) , optimal predictors

are found for each function, the loss is computed

LT = min B [loss(£02) (2), Q(R(; ()] (173)
for all jo € [mg + k], and the optimal predictor is updated to {ng)+1’j2)}jz€[mo+kt] based on this
solution. (2) Given the current new representation REf)H) the loss matrix

(LY el actmo+t (174)

is constructed where for j; € [k] it holds that Lg)l 92) = [1:32) for all ¢ (i.e., the loss of previous

representations and functions is kept fixed). This is considered to be the loss matrix of a two-player
zero-sum game between the representation player and the function player, where the representation
player has k + 1 p0551ble strategies and the function player has mg + k strategies. The weights

{p( 0 }jle (k+1] and {o }]2€[m0+k] are then updated according to the MWU rule. Specifically, for
an inverse tempemture pammeter B (ora regularzzanon parameter), the update is given by

L@
) — Pl 1) B

P = e (17
Siem Py B
for the representation weights and, analogously, by
o) ﬂfL(-”
o) = P (176)

Z]G[k]ot 1) B L&

for the function weights (as the function player aims to maximize the loss). This can be considered as
a regularized gradient step on the probability simplex, or more accurately, a follow-the-regularized-
leader [33]]. The main reasoning of this algorithm is that at each iteration the weights {p(/)} jelk+1]
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and {o\/)} je[mo+k) are updated towards the solution of the two-player zero-sum game with payoff
matrix {—Lg; ’jZ)} j1€[k+1].j2€[mo+K]- In turn, based only on the function weights {0} j€lmo+k]»

the new representation is updated to Rgf)ﬂ), which then changes the pay-off matrix at the next

iteration. It is well known that the MWU solved two-player zero-sum game [33]], in which the
representation player can choose the weights and the function player can choose the function.

This loop iterates for T, iterations, and then the optimal weights are given by the average over the
last T}y, iterations [33], i.e.,

‘ 1 Tstop )
S (177)
ave t=Tstop—Tavg+1
and
. 1 Tistop ]
oV = > og)). (178)
ae t=Tstop—Tavg+1
In the last Tr — Tp iterations, only the representation RE;H) and the predictors are updated. The
algorithm then outputs RE?{I) as the new representation and the weights {pﬁj )} Je[k+1]-

Design choices and possible variants of the basic algorithm At initialization, we have cho-

sen a simple random initialization for REII;' 1), but it may also be initialized based on some prior

knowledge of the desired new representation. The initial predictors {QEIIC)Jr b 2)} ja€[mo-+k] Will then
be initialized as the optimal predictors for Rglf;r D and {f (jz)}jQE[m.U—‘rk]- We have initialized the
representation and function weights uniformly. A possibly improved initialization for the function
weights is to put more mass on the more recent functions, that is, for large values of j5, or to use
the minimax strategy of the function player in the two-player zero-sum game with payoff matrix
{—Lg)1 ’Jz)}jle[ijQe[mﬁk] (that is, a game which does not include the new representation). As
in the Phase 1 algorithm, the gradient update of the new representation can be replaced by a more
sophisticated algorithm, the computation of the optimal predictors can be replaced with (multiple)
update steps, and the step size may also be adjusted. For the MWU update, we use the proposed
scaling in [33]
1
f=—"F7— (179)

1
14+ c ELWT

for some constant c. It is well known that using the last iteration of a MWU algorithm may fail [97]],
while averaging the weights value of all iterations provides the optimal value of a two-player zero-
sum games [33]]. For improved accuracy, we compute the average weights over the last T,y iterations
(thus disregarding the initial iterations). We then halt the weights update and let the function and
predictor update to run for T — Ty, iterations in order to improve the convergence of R+,
Finally, the scheduling of the steps may be more complex, e.g., it is possible that running multiple
gradient steps follows by multiple MWU steps may improve the result.

H Details for the examples of Algorithm

As mentioned, the solvers of the Phase 1 and Phase 2 problems of Algorithm[I|require the gradients
of the regret () as inputs, as well as initial representation and set of adversarial functions. We next
provide these details for the examples in Section 4} The code for the experiments was written in
Python 3.6 the code is available at this link. The optimization of hyperparameters was done using
the Optuna library. The hardware used is standard and detailed appear in Table T}

H.1 Details for Example[6} the linear MSE setting

In this setting, the expectation over the feature distribution can be carried out analytically, and the
regret is given by

regret(R, f | ¥z) = E [(fTa: — qTRTa:)Q} (180)
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Algorithm 3 A procedure for finding a new representation R(**1) via the solution of (27
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27:
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29:
30:
31:
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34:

35:
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37:

38:
39:

procedure PHASE 2 SOLVER({ RU) Yiew Uf 72)}Jze[mO+k],R F,Q.,d,r, Py)

begin

Initialize T'r, Titop, Tave > Number of iterations parameters
Initialize ng > Step size parameter
Initialize 8 € (0, 1) > Inverse temperature parameter
Initialize f(l) e F > Function initialization, e.g., at random
Initialize pgjlg < 0for j € [k] and pEkH) <0 > A uniform weight initialization for the

representations
Initialize 0%) e s for ja € [K] > A uniform weight initialization for the functions
for j; = 1to k do
for jo = 1to mg + k do
Set QU172) «— argming e o E [loss(fU2) (), Q(RUV (x)))]

> Optimal predictors for existing representations and input functions
Set LU132) « mingeo E [loss(fU2) (z), Q1292)(RU) (2)))] > The minimal loss
end for
end for
for jo = 1tomoy + k do
Initialize R{})""
Set Q)7 « argminge o B [loss(£U2) (), QR ()))] for jz € [mo + K]
> Optimal predictors for new representation and input functions

> Arbitrarily, e.g., at random

end for
fort =2toTg do
update > A gradient update of the new representation
k k j j k
Rgt -&-11/)2 R( +1) ) +an Z Ei )1) Ve E [|OSS(f(]2)(CC),Q(kJrl’JZ)(Rgtjll)) (.’1})))}
J2€[mo+k]
projection REf)H) = (REerll/)Q)) > Standardization based on the class R

for j =1tokdo

Set QU12) ¢ argminge E [loss(/0) (@), QR (2)))]

> Update of predictors for the new representation

LEk)+1’J2) +—E [Ioss((f(j2)(:c), Q(kﬂ’h)(Rgf)H) (m)))} > Compute loss

end for o
Set Lg)“”) + LUv32) for j; € [k] and jo € [mgo + K]
if £ < Top then

) p(]) ﬂL(j)
update p,’ Lfor'e k > A MWU
p p(t) ng[k]Pt b BL(J) j [ ]
) (i) . B () ‘
update ;) < - <+k]> e for j € [mo + k] > A MWU
j€lmg t—

else if ¢t = Tiop then
(4 _ Tt (4) ;
update p(i) - p(t) Tavg EtS%top—Ta\/g-ﬁ-l p( t) forj € [k]
> Optimal weights by averagmg last Ty, iterations

T,
update O(t) Tavg Zt St%}ztop—Tavg-i-l Et)) forj € [mo + k]
> Optimal weights by averaging last T, iterations

else
update pg)) — pgi) y for j € [K] > No update for the last 7' — Ty, iterations
update og)) — OE t) 1 for j € [mo + k] > No update for the last T — Top iterations
end if * )
return R(T) and {p(JTR)}jE[kH]
end for

end procedure
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Table 1: Hardware details

CPU RAM GPU
Intel 19 13900k 64GB  RTX 3090 Ti

=TS f—2¢"R"Sof +q¢ R Ry. (181)

The regret only depends on the feature distribution P,, via 3. For each run of the algorithm, the co-
variance matrix ¥, was chosen to be diagonal with elements drawn from a log-normal distribution,
with parameters (0, o), and S = 1.

Regret gradients The gradient of the regret w.r.t. the function f is given by

V,E [(me - qTRTm)Q} — 92/, —2¢"RTE, (182)
and the projection on Fg is
_f >1
Mx(f) =< Iflls? 1£1ls=> ) (183)
¢f7 |Lf||S‘<: 1

However, we may choose to normalize by — even if || f||s< 1 since in this case the regret is
[HE

always larger if f is replaced by ﬁ (in other words, the worst case function is obtained on the
boundary of Fgs). The gradient w.r.t. the predictor g is given by

v,E [(fT;c - qTRTa;)Q] = [-2fTS,R+2¢  RTS.R)] . (184)

Finally, to derive the gradient w.r.t. R, let us denote R := [Ry, Ra, ..., R,] € R%*" where R; € R?
is the ith column (i € [r]), and ¢" = (q1,42,-..,q). Then,¢" R'x = 3°, 1 ¢ R, = and the loss
function is

2

E [(fT:c — qTRT:c)Q] =E||fTz- Y az'R (185)
1€[d]
= fTSf —2¢"R"Sof + ¢ R"S4.Rq. (186)
The gradient of the regret w.r.t. Ry is then given by
Vi E[(/Te—q RT@)’|} = 2E[(f T - ¢ RTa) - g2 (187)
=2, ("2 —¢'R"%s), (188)

hence, more succinctly, the gradient w.r.t. R is
Vi {]E [(fTa: - qTRTm)Q] } =2 (fSa—q R'%,). (189)

We remark that in the algorithm these gradients are multiplied by weights. We omit this term when-
ever the weight is common to all terms in order to keep the effective step size constant.

Initialization Algorithm [1| requires an initial representation R(*) and an initial set of functions
{f ( )} j€[mo]- In the MSE setting, each function f € R? is also a single column of a representation

matrix R € R?*". A plausible initialization matrix R(Y) € R%*" is therefore the worst r functions.
These, in turn, can be found by running Algorithm (I)) to obtain 772 = r functions, by setting 7 = 1. A

proper initialization for this run is simply an all-zero representation RM =0 e R, The resulting
output is then {REJT) }jefr) Which can be placed as the 7 columns of R(). This initialization is then
used for Algorithm

Algorithm parameters The algorithm parameters used for Example [6|are shown in Table[2} The
parameters were optimally tuned for oy = 1.
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Table 2: Parameters for linear MSE setting example

Parameter By By Ny uli
Value 0.94 0.653 0.713 0.944

Parameter Tr Ty Tave Titop
Value 100 until convergence 10 80

=]

31

-
.
=
n

[
w

.
~

Accuracy Ratio
Accuracy Ratio

T
1 @%T
s & t
ho”
52

2 3 4 5 B 7 B 9 05 10 15 20 25 30 35 40 45 50 55 &0
r Ta

-
-

05 (s}

10

=

Figure 3: The ratio between the regret achieved by Algorithm [T and the theoretical regret in the
linear MSE setting. Left: d = 20, oy = 1, varying r. Right: » = 5, d = 20, varying oy.

Additional results Additional results of the accuracy of the Algorithm([I]in the linear MSE setting
are displayed in Figure[3] The left panel of Figure 3] shows that the algorithm output is accurate for
small values of 7, but deteriorates as r increases. This is because when r increases then so is £* and
so is the required number of matrices in the support of the representation rule (denoted by m). Since
the algorithm gradually adds representation matrices to the support, an inaccurate convergence at an
early iteration significantly affects later iterations. One possible way to remedy this is to run each
iteration multiple times, and choose the best one, before moving on to the next one. Another reason
is that given large number of matrices in the support (large m), it becomes increasingly difficult
for the the MWU to accurately converge. Since the iterations of the MWU do not converge to the
equilibrium point, but rather their average (see discussion in Appendix [B) this can only be remedied
by allowing more iterations for convergence (in advance) for large values of m. The right panel of
Figure [3] shows that the algorithm output is accurate for a wide range of the condition number of
the covariance matrix. This condition number is determined by the choice of oy, where low values
typically result covariance matrices with condition number that is close to 1, while high values will
typically result large condition number. The right panel shows that while the hyperparameters were
tuned for oy = 1, the result is fairly accurate for a wide range of o values, up to oy ~ 5. Since for
Z ~ N(0, 1) (standard normal) it holds that P[—-2 < Z < 2] &~ 95%, the typical condition number
of a covariance matrix drawn with oy = 5 is roughly ;,2% ~ 4.85 - 108, which is a fairly large
range.

H.2 Details for Example |8 the linear cross-entropy setting

In this setting,
regret(R, f | Pg) = ;IelliRr}E [Dx ([1+ exp(—f )7 || [1+ exp(quRTm)}*l)] ,  (190)

and the expectation over the feature distribution typically cannot be carried out analytically. We thus
tested Algorithm [T] on empirical distributions of samples drawn from a high-dimensional normal
distribution. Specifically, for each run, B = 1000 feature vectors were drawn from an isotropic
normal distribution of dimension d = 15. The expectations of the regret and the corresponding
gradients were then computed with respect to (w.r.t.) the resulting empirical distributions.

Regret gradients We use the facts that

0 1-—
~—Dxv(p1 || p2) = log P11~ po)

—_ 191
op1 p2(l —p1) (191
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and

0 P2 —P1
—D =—". (192)
Op2 (e 72) p2(1—p2)
For brevity, let us next denote
1
= 193
Pri= 1T op(—fT2) (193)
and
_ 1 (194)
P T exp(—q R @)
‘We next repeatedly use the chain rule for differentiation. First,
1 exp(—fTx) -z
Vipp =V [ ]: =p1(1—p1) - x (195)
f 1 f 1 + exp(fme) [1 + eXp<—fT{B>]2 1( 1)
and
1 exp(—¢'R"z) Rz T
Vep2 =V { }— =pa(l—p2)- R x- (196)
vz ‘1 +exp(—¢" R ) [1+exp(—¢TRTx))’ 2 ?)

So, assuming that P, is such that the order of differentiation and expectation may be interchanged
(this can be guaranteed using dominated/monotone convergence theorems), the gradient of the regret
w.rt. fis

[ o
Vyregret(R, f | Px) =E aleDKL(pl I| p2) x prl] (197)
- 1
=E |log (iilifi) -pl(l—pn-w} (198)
exp(—f'x
i [1 4 exp(—fTx)]
[ exp(—fT)
- 1+ exp(—fTac)]2 @' (f - Rg)z | . (200)
Next, under similar assumptions, the gradient of the regret w.r.t. the predictor g is
0
Vqregret(R, f | Py) =E |:8])2DKL(p1 || p2) X qu2:| (201)
1 1
=E - ‘RTz|. 202
KHexp(—qTRTﬂc) 1+exp(—fov)) a 4 202

Finally, as for the MSE case, to derive the gradient w.r.t. R, we denote R := [Ry, Ro,...,R,] €
RIX" where R; € R? is the ith column (i € [r]), and ¢" = (q1,¢2,...,¢-). Then, ¢"RTz =
el 4R/}« and

1
P2 = . (203)
1+ exp(=Xeig R x)
Then, the gradient of p, w.r.t. Ry, is then given by
Vr.p2 = p2(l —p2) - qiz, (204)
hence, more succinctly, the gradient w.r.t. R is
Vip2 = pa(l —p2) - aq". (205)
Hence,
0
Vgregret(R, f | Pz) =E 8—pzDKL(p1 || p2) X VRrD2 (206)
=E[(p2—p1) ®q'] 207)
1 1
=E - xzq'|. 208
Kl +exp(—¢'RTz) 1+ exp(]”%)) - ] 20
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Table 3: Parameters for linear cross entropy setting example

Parameter By B M nf
Value 0.9 0.9 1073 1071

Parameter Tr Ty Tivg Tiiop
Value 100 1000 25 50

Initialization Here the initialization is similar to the linear MSE setting, except that since a column
of the representation cannot ideally capture even a single adversarial function, the initialization
algorithm only searches for a single adversarial function (mn = 1). This single function is then used
to produce R(!) as the initialization of Algorithm

Algorithm parameters The algorithm parameters used for Example[§]are shown in Table[3]

I An experiment with a NN architecture

In the analysis and the experiments above we have considered basic linear functions. As mentioned,
since the operation of Algorithm[T|only depends on the gradients of the loss function, it can be easily
generalized to representations, response functions and predictors for which such gradients (or sub-
gradients) can be provided. In this section, we exemplify this idea with a simple NN architecture.
For # € R%, we let the rectifier linear unit (ReLU) be denoted as () 4.

Definition 22 (The NN setting). Assume the same setting as in Definitions[T]and[7] except that the
class of representation, response and predictors are NN with ¢ hidden layers of sizes hg, h¢, hqy €
N, respectively, instead of linear functions. Specifically: (1) The representation is

R(z) = R} ( . (RlT(R(JTx)+)+)+ (209)

for some (Ro, Ry, - R.) € R := {R¥*Ir x Rhrxhr .. . Rhrxhr 5 RhEXTY where d > 7. (2)
The response is determined by

fa)y =7 ( (B (B o)), )| 210)

where (Fy, Fi, ..., fo) € F = {R¥XPs x Rhsxhs .. Rhsxhs 5 RP5Y.(3) The predictor is deter-
mined by for some

a=) =l (- Q1@ 2)4).) @i
where (Qo, Q1,...,q.) € Q= {RTIX}LQ x RPaxhg ... RRaxhg th}.

Regret gradients Gradients were computed using PyTorch with standard gradients computation
using backpropagation for an SGD optimizer.

Initialization The initialization algorithm is similar to the initialization algorithm used in the lin-
ear cross-entropy setting.

Algorithm parameters The algorithm parameters used for the example are shown in Table ]

Results For a single hidden layer, Figure ] shows the reduction of the regret with the iteration for
the cross-entropy loss.
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Table 4: Parameters for the NN cross-entropy setting.

Parameter c hr hy hy
Value 1 d d d
Parameter Br B My ng Mg
Value 0.9 0.9 1073 107! 107!
Parameter Tr Ty To Tave Tiop
Value 100 1000 100 10 80
0 et
060 \]J u [

0.50 Q

045 o

#iteration

Figure 4: The regret achieved by Algorithm [T]in the NN cross-entropy setting as a function of the
iteration m.
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