
The outline of the supplementary material is as follows. In Appendix A we discuss in detail the600

origin of prior knowledge of classes of prediction problems. In Appendix B we review additional601

related work. In Appendix C we set our notation conventions. In Appendix D we summarize a few602

mathematical results that are used in later proofs. In Section E we show that PCA can be cast as a603

degenerate setting of our formulation, and provide the proofs of the main theorems in the paper (the604

linear MSE setting). In Appendix F we generalize these results to an infinite dimensional Hilbert605

space. In Appendix G we provide two algorithms for solving the Phase 1 and Phase 2 problems606

in Algorithm 1. In Appendix H we provide details on the examples for the experiments with the607

iterative algorithm. In Appendix I we describe an experiment in which the representation, response608

function and predictors are modeled as a neural network (NN).609

A Classes of response functions610

As said, our approach to optimal representation is based on the assumption that a class F of future611

prediction tasks is known. This assumption may represent prior knowledge or constraints on the612

response function, and can stem from various considerations. To begin, it might be hypothesized613

that some features are less relevant than others. As a simple intuitive example, the outer pixels in614

images are typically less relevant to the classification of photographed objects, regardless of their615

variability (which may stem from other affects, such as lighting conditions). Similarly, non-coding616

regions of the genotype are irrelevant for predicting phenotype. The prior knowledge may encode617

softer variations in relevance. Moreover, such prior assumption may be imposed on the learned618

function, e.g., it may be assumed that the response function respects the privacy of some features,619

or only weakly depends on features which provide an unfair advantage. In domain adaptation [?620

], one may solve the prediction problem for feature distribution Px obtaining a optimal response621

function f1. Then, after a change of input distribution to Qx, the response function learned for this622

feature distribution f2 may be assumed to belong to functions which are “compatible” with f1. For623

example, if Px andQx are supported on different subsets of Rd, the learned response function f1(x)624

and f2(x) may be assumed to satisfy some type of continuity assumptions. Similar assumptions may625

hold for the more general setting of transfer learning [41]. Furthermore, such assumptions may hold626

in a continual learning setting [42–45], in which a sequence of response functions is learned one627

task at a time. Assuming that catastrophic forgetting is aimed to be avoided, then starting from the628

second task, the choice of representation may assume that the learned response function is accurate629

for all previously learned tasks.630

B Additional related work631

The information bottleneck principle The IB principle is a prominent approach to feature rele-632

vance in the design of representations [16–19], and proposes to optimize the representation in order633

to maximize its relevance to the response y. Letting I(z;y) and I(x; z) denote the corresponding634

mutual information terms [27], the IB principle aims to maximize the former while constraining the635

latter from above, and this is typically achieved via a Lagrangian formulation [46]. The resulting636

representation, however, is tailored to the joint distribution of (x,y), i.e., to a specific prediction637

task. In practice, this is achieved using a labeled dataset (Generalization bounds were derived in638

[47]). As in our mixed representation approach, the use of randomized representation dictated by a639

probability kernel PZ|X is inherent to the IB principle. The IB principle was intensively utilized to640

hypothesize that prediction algorithms, e.g., deep neural networks (DNNs) [1] used for classifica-641

tion, must intrinsically include learning of efficient representations [20–24] (this spurred a debate,642

see, e.g., [25, 26]). However, this approach is inadequate in an unsupervised setting since the opti-643

mal representation depends on the response variable, and so labeled data should be provided when644

learning the representation. In addition, as explained in [29], while the resulting IB solution provides645

a fundamental limit for the problem, it also suffers from multiple theoretical and practical issues.646

The first main issue is that the mutual information terms are inherently difficult to estimate from647

finite samples [47–51], especially at high dimensions, and thus require resorting to approximations,648

e.g., variational bounds [52–55]. The resulting generalization bounds [47, 56] are still vacuous for649

modern settings [57]. The second main issue is that the IB formulation does not constrain the com-650

plexity of the representation and the prediction rule, which can be arbitrarily complex. These issues651

were addressed in [29] using the notion of usable information, introduced in [28]: The standard652

mutual information I(z;y) can be described as the log-loss difference between a predictor for z653
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which does not use or does use y (or vice-versa, since mutual information is symmetric). Usable654

information, or F-information IF (z → y), restricts the predictor to a class F , which is compu-655

tationally constrained. Several desirable properties were established in [28] for the F-information,656

e.g., probably approximate correct (PAC) bounds via Rademacher-complexity based bounds [58]657

[59, Chapter 5][60, Chapters 26-28]. In [29], the authors used the notion of F-information to de-658

fine the decodable IB problem, with the goal of addressing the generalization capabilities of this IB659

problem. In order to explore this, the two-player game described in the introduction was proposed.660

Beyond those works, the IB framework has drawn a significant recent attention, and a remarkable661

number of extensions and ramifications have been proposed [61–70, 55, 71]. IB framework for662

self-supervised learning was recently discussed in [72].663

Randomization in representation learning Randomization is classically used in data represen-664

tation, most notably, utilizing the seminal Johnson-Lindenstrauss Lemma [73] or more generally,665

sketching algorithms (e.g., [74–77]). Our use of randomization is different and is inspired by the666

classical Nash equilibrium [78]. Rather than using a single deterministic representation that was ran-667

domly chosen, we consider randomizing multiple representation rules. Training approaches based668

on mixed strategies were proposed, e.g., in the generative adversarial network (GAN) setting [79–669

81]. Specifically, inspired by the boosting technique [5], it was proposed in [81] to gradually add670

additional modes to the mix of generative models, and where the new mode added focuses on the671

distribution samples which are not adequately represented by the current set of modes. As men-672

tioned in [81], this idea dates back to the use of boosting for density estimation [82]. Our proposed673

iterative algorithm follows this idea, and gradually adds representation rules, so that the new rep-674

resentation aims to cope with response functions that are not adequately fitted by the current set of675

representation rules.676

Game theoretic formulations in statistics and machine-learning The use of game theoretic for-677

mulations in statistics, between a player choosing a prediction algorithm and an adversary choosing678

a prediction problem (typically Nature), was established by Wald in his classical statistical decision679

theory [83] (see, e.g., [84, Chapter 12]). It is a common approach both in classic statistics and680

learning theory [85–88], as well as in modern high-dimensional statistics [59]. The effect of the681

representation (quantizer) on the consistency of learning algorithms when a surrogate convex loss682

function replaces the loss function of interest was studied in [3, 4, 86] (for binary and multiclass683

classification, respectively). A relation between information loss and minimal error probability was684

recently derived in [89].685

Iterative algorithms for the solution of minimax games have drawn much attention in the last few686

years due to their importance in optimizing GANs [90, 91], adversarial training [92], and robust687

optimization [93]. The notion of convergence is rather delicate, even for the basic convex-concave688

two-player setting [94]. While the value output by the MWU algorithm [33], or improved versions689

[95, 96] converges to a no-regret solution, the actual strategies used by the players are, in fact,690

repelled away from the equilibrium point to the boundary of the probability simplex [97]. For691

general games, the gradient descent ascent (GDA) is a natural and practical choice, yet despite recent692

advances, its theory is still partial [98]. Various other algorithms have been proposed, e.g., [99–103].693

According to the above description, and since our algorithm is both fairly general and involves two694

optimization phases, deriving theoretical bounds on its convergence seems to be elusive at this point.695

Nevertheless, the algorithm is also modular, and its two intermediate phases (see Appendix G) can696

be easily upgraded to more sophisticated optimization methods. Furthermore, each of the phases697

can be separately analyzed.698

Unsupervised pretraining From a broader perspective, our method is essentially an unsupervised699

pretraining method, similar to the methods which currently enable the recent success in natural700

language processing. Our model is much simplified compared to transformer architecture Vaswani701

et al. [104], but the unsupervised training aspect used for prediction tasks Devlin et al. [105] is702

common, and our results may shed light on these methods. For example, putting more weight703

on some words compared to others during training phase that uses the masked-token prediction704

objective.705
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C Notation conventions706

For an integer d, [d] := {1, 2, . . . , d}. For p ≥ 1, ‖x‖p:= (
∑d
i=1|xi|p)1/p is the `p norm of707

x ∈ Rd. The Frobenius norm of the matrix A is denoted by ‖A‖F=
√

Tr[ATA] . The non-708

negative (resp. positive) definite cone of symmetric matrices is given by Sd+ (resp. Sd++). For a709

given positive-definite matrix S ∈ Sd++, the Mahalanobis norm of x ∈ Rd is given by ‖x‖S :=710

‖S−1/2x‖2= (x>S−1x)1/2, where S1/2 is the symmetric square root of S. The matrix W :=711

[w1, . . . , wr] ∈ Rd×r is comprised from the column vectors {wi}i∈[r] ⊂ Rd. For a real symmetric712

matrix S ∈ Sd, λi(S) is the ith largest eigenvalue, so that λmax(S) ≡ λ1(S) ≥ λ2(S) ≥ · · · ≥713

λd(S) = λmin(S), and in accordance, vi(S) denote an eigenvector corresponding to λi(S) (these714

are unique if there are no two equal eigenvalues, and otherwise arbitrarily chosen, while satisfying715

orthogonality v>i vj = 〈vi, vj〉 = δij). Similarly, Λ(S) := diag(λ1(S), λ2(S), · · · , λd(S)) and716

V (S) := [v1(S), v2(S), · · · , vd(S)], so that S = V (S)Λ(S)V >(S) is an eigenvalue decomposition.717

For j ≥ i, Vi:j := [vi, . . . , vj ] ∈ R(j−i+1)×d is the matrix comprised of the columns indexed by718

{i, . . . , j}. The vector ei ∈ Rd is the ith standard basis vector, that is, ei := [0, . . . 0︸ ︷︷ ︸
i−1 terms

, 1, 0, . . . 0︸ ︷︷ ︸
d−i terms

]>.719

Random quantities (scalars, vectors, matrices, etc.) are denoted by boldface letters. For example,720

x ∈ Rd is a random vector that takes values x ∈ Rd and R ∈ Rd×r is a random matrix. The721

probability law of a random element x is denoted by L(x). The probability of the event E in some722

given probability space is denoted by P[E ] (typically understood from context). The expectation723

operator is denoted by E[·]. The indicator function is denoted by 1{·}, and the Kronecker delta is724

denoted by δij := 1{i = j}. We do not make a distinction between minimum and infimum (or725

maximum and supremum) as arbitrarily accurate approximation is sufficient for the description of726

the results in this paper. The binary KL divergence between p1, p2 ∈ (0, 1) is denoted as727

DKL(p1 || p2) := p1 log
p1

p2
+ (1− p1) log

1− p1

1− p2
. (30)

D Useful mathematical results728

In this section we provide several simplified versions of mathematical results that are used in the729

proofs. The following well-known result is about the optimal low-rank approximation to a given730

matrix:731

Theorem 9 (Eckart-Young-Mirsky [59, Example 8.1] [106, Section 4.1.4]). For a symmetric matrix732

S ∈ Sd733

‖Sk − S‖F ≤ min
S′∈Sd:rank(S′)≤k

‖S − S′‖F (31)

where734

Sk =
∑
i∈[k]

λi(S) · vi(S)v>i (S) (32)

(more generally, this is true for any unitarily invariant norm).735

We next review a simplified version of variational characterizations of eigenvalues of symmetric736

matrices:737

Theorem 10 (Rayleigh quotient [37, Theorem 4.2.2]). For a symmetric matrix S ∈ Sd738

λ1(S) = max
x 6=0

x>Sx

‖x‖22
. (33)

Theorem 11 (Courant–Fisher variational characterization [37, Theorem 4.2.6]). For a symmetric739

matrix S ∈ Sd, k ∈ [d], and a subspace T of Rd740

λk(S) = min
T :dim(T )=k

max
x∈T\{0}

x>Sx

‖x‖22
= max
T :dim(T )=d−k+1

min
x∈T\{0}

x>Sx

‖x‖22
. (34)
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Theorem 12 (Fan’s variational characterization [37, Corollary 4.3.39.]). For a symmetric matrix741

S ∈ Sd and k ∈ [d]742

λ1(S) + · · ·+ λk(S) = min
U∈Rd×k:U>U=Ik

Tr[U>SU ] (35)

and743

λd−k+1(S) + · · ·+ λd(S) = max
U∈Rd×k:U>U=Ik

Tr[U>SU ]. (36)

We will use the following celebrated result from convex analysis.744

Theorem 13 (Carathéodory’s theorem [107, Prop. 1.3.1]). Let A ⊂ Rd be non-empty. Then, any745

point a in the convex hull of A can be written as a convex combination of at most d+ 1 points from746

A.747

E The linear MSE setting: additions and proofs748

E.1 The standard principal component setting749

In order to highlight the formulation proposed in this paper, we show, as a starting point, that the750

well known PCA solution of representing x ∈ Rd with the top r eigenvectors of the covariance751

matrix of x can be obtained as a specific case of the regret formulation. In this setting, we take752

F = {Id}, and so y = x with probability 1. In addition, the predictor class Q is a linear function753

from the representation dimension r back to the features dimension d.754

Proposition 14. Consider the linear MSE setting, with the difference that the response is y ∈ Rd,755

the loss function is the MSE loss(y1, y2) = ‖y1 − y2‖2, and the predictor is Q(z) = Q>z ∈ Rd for756

Q ∈ Rr×d. Assume F = {Id} so that y = x with probability 1. Then,757

regretpure(F | Σx) = regretmix(F | Σx) =

d∑
i=r+1

λi(Σx), (37)

and an optimal representation is R = V1:r(Σx).758

The result of Proposition 14 verifies that the minimax and maximin formulations indeed generalize759

the standard PCA formulation. The proof is standard and follows from the Eckart-Young-Mirsky the-760

orem (e.g.,[59, Example 8.1] [106, Section 4.1.4]), which determines the best rank r approximation761

in the Frobenius norm.762

Proof of Proposition 14. Since F = {Id} is a singleton, there is no distinction between pure and763

mixed minimax regret. It holds that764

regret(R, f) = E
[
‖x−Q>R>x‖2

]
(38)

where A = Q>R> ∈ Rd×d is a rank r matrix. For any A ∈ Rd×d765

E
[
‖x−Ax‖2

]
= E

[
x>x− x>Ax− x>A>x + x>A>Ax

]
(39)

= Tr
[
Σx −AΣx −A>Σx +A>AΣx

]
(40)

=
∥∥∥Σ1/2

x − Σ1/2
x A

∥∥∥2

F
(41)

=
∥∥∥Σ1/2

x −B
∥∥∥2

F
, (42)

where B := Σ
1/2
x A. By the classic Eckart-Young-Mirsky theorem [59, Example 8.1] [106, Section766

4.1.4] (see Appendix D), the best rank r approximation in the Frobenius norm is obtained by setting767

B∗ =

r∑
i=1

λi(Σ
1/2
x ) · viv>i =

r∑
i=1

√
λi(Σx) · viv>i (43)

where vi ≡ vi(Σ1/2
x ) = vi(Σx) is the ith eigenvector of Σ

1/2
x (or Σx). Then, the optimal A is768

A∗ =

r∑
i=1

√
λi(Σx) · Σ−1/2

x viv
>
i =

r∑
i=1

√
λi(Σx) · Σ−1/2

x viv
>
i =

r∑
i=1

viv
>
i , (44)
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since vi is also an eigenvector of Σ
−1/2
x . Letting R = U(R)Σ(R)V >(R) and Q =769

U(Q)Σ(Q)V >(Q) be the singular value decomposition of R and Q, respectively, it holds that770

Q>R> = V (Q)Σ>(Q)V (Q)V (R)Σ>(R)U>(R). (45)

Setting V (Q) = V (R) = Ir, and Σ>(Q) = Σ(R) ∈ Rd×r to have r ones on the diagonal (and all771

other entries are zero), as well as U(Q) = U(R) to be an orthogonal matrix whose first r columns772

are {vi}i∈[r] results that Q>R> = A∗, as required.773

E.2 Proofs of pure and mixed minimax representations774

Before the proof of Theorem 2, we state a simple and useful lemma, which provides the pointwise775

value of the regret and the optimal linear predictor for a given representation and response.776

Lemma 15. Consider the representation z = R>x ∈ Rr. It then holds that777

min
q∈Rr

E
[(
f>x + n− q>z

)2]
(46)

= E
[
E[n2 | x]

]
+ f>

(
Σx − ΣxR(R>ΣxR)−1R>Σx

)
f. (47)

Proof. The orthogonality principle states that778

E
[(
f>x + n− q>z

)
· z>

]
= 0 (48)

must hold for the optimal linear estimator. Using z = R>x and taking expectations leads to the779

standard least-squares (LS) solution780

qLS = (R>ΣxR)−1RTΣxf, (49)

assuming that R>ΣxR is invertible (which we indeed assume as if this is not the case, the represen-781

tation can be reduced to a dimension lower than r in a lossless manner). The resulting regret of R is782

thus given by783

regret(R, f) = E
[(
f>x + n− q>LSz

)2]
(50)

(a)
= E

[(
f>x + n

)> (
f>x + n− q>LSz

)]
(51)

= E
[(
f>x + n

)2 − (f>x + n
)>
q>LSz

]
(52)

(b)
= E

[
E[n2 | x]

]
+ f>Σxf − E

[
x>fq>LSR

>x
]

(53)

= E
[
E[n2 | x]

]
+ f>Σxf − Tr

[
fq>LSR

>Σx

]
(54)

= E
[
E[n2 | x]

]
+ f>Σxf − q>LSR

>Σxf (55)
(c)
= E

[
E[n2 | x]

]
+ f>

(
Σx − ΣxR(R>ΣxR)−1R>Σx

)
f, (56)

where (a) follows from the orthogonality principle in (48), (b) follows from the tower property of784

conditional expectation and since E[xn] = E[x · E[n | x]] = 0, and (c) follows by substituting qLS785

from (49).786

We may now prove Theorem 2.787

Proof of Theorem 2. For any given f , the optimal predictor based on x ∈ Rd achieves average loss788

of789

min
q∈Rd

E
[(
f>x + n− q>x

)2]
= E

[
E[n2 | x]

]
(57)

(specifically, this is obtained by setting R = Id in Lemma 15 so that z = x). Hence, the resulting790

regret of R over an adversarial choice of f ∈ FS is791

max
f∈FS

regret(R, f) = max
f∈F

E
[∣∣f>x + n− q>LSz

∣∣2]− E
[
E[n2 | x]

]
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(a)
= max

f∈FS
f>
(
Σx − ΣxR(R>ΣxR)−1R>Σx

)
f (58)

(b)
= max

f̃ :‖f̃‖22≤1
f̃>
(
S1/2ΣxS

1/2 − S1/2ΣxR(R>ΣxR)−1R>ΣxS
1/2
)
f̃

(59)
(c)
= λ1

(
S1/2ΣxS

1/2 − S1/2ΣxR(R>ΣxR)−1R>ΣxS
1/2
)

(60)

= λ1

[
S1/2Σ1/2

x

(
Id − Σ1/2

x R(R>ΣxR)−1R>Σ1/2
x

)
Σ1/2

x S1/2
]

(61)

(d)
= λ1

[
S1/2Σ1/2

x

(
Id − R̃(R̃>R̃)−1R̃>

)
Σ1/2

x S1/2
]

(62)

(e)
= λ1

[(
Id − R̃(R̃>R̃)−1R̃>

)
Σ1/2

x SΣ1/2
x

(
Id − R̃(R̃>R̃)−1R̃>

)]
, (63)

where (a) follows from Lemma 15, (b) follows by letting f̃ := S−1/2f and recalling that any792

f ∈ F must satisfy ‖f‖2S≤ 1, (c) follows from the Rayleigh quotient theorem [37, Theorem 4.2.2]793

(see Appendix D), (d) follows by letting R̃ := Σ
1/2
x R, and (e) follows since Id − R̃(R̃>R̃)−1R̃>794

is an orthogonal projection (idempotent and symmetric matrix) of rank d− r.795

Now, to find the minimizer of maxf∈FS regret(R, f) over R, we note that796

λ1

[(
Id − R̃(R̃>R̃)−1R̃>

)
Σ1/2

x SΣ1/2
x

(
Id − R̃(R̃>R̃)−1R̃>

)]
(a)
= max

u:‖u‖2=1
u>
(
Id − R̃(R̃>R̃)−1R̃>

)
Σ1/2

x SΣ1/2
x

(
Id − R̃(R̃>R̃)−1R̃>

)
u (64)

(b)
= max

u:‖u‖2=1, R̃>u=0
u>Σ1/2

x SΣ1/2
x u (65)

(c)

≥ min
S:dim(S)=d−r

max
u:‖u‖2=1, u∈S

u>Σ1/2
x SΣ1/2

x u (66)

(d)
= λr+1

(
Σ1/2

x SΣ1/2
x

)
, (67)

where (a) follows again from the Rayleigh quotient theorem [37, Theorem 4.2.2], (b) follows since797

Id − R̃(R̃>R̃)−1R̃> is an orthogonal projection matrix, and so we may write u = u⊥ + u‖ so798

that ‖u⊥‖2+‖u‖‖2= 1 and R̃>u⊥ = 0; Hence replacing u with u⊥ only increases the value of799

the maximum, (c) follows by setting S to be a d − r dimensional subspace of Rd, and (d) follows800

by the Courant–Fischer variational characterization [37, Theorem 4.2.6] (see Appendix D). The801

lower bound in (c) can be achieved by setting the r columns of R̃ ∈ Rd×r to be the top eigenvectors802

{vi(Σ1/2
x SΣ

1/2
x )}i∈[r]. This leads to the minimax representation R̃∗. From (63), the worst case f̃ is803

the top eigenvector of804 (
Id − R̃∗((R̃)∗>R̃∗)−1(R̃)∗>

)
Σ1/2

x SΣ1/2
x

(
Id − R̃∗((R̃)∗>R̃∗)−1(R̃)∗>

)
. (68)

This is a symmetric matrix, whose top eigenvector is the (r + 1)th eigenvector vr+1(Σ
1/2
x SΣ

1/2
x ).805

806

We next prove Theorem 3.807

Proof of Theorem 3. We follow the proof strategy mentioned after the statement of the theorem.808

We assume that n ≡ 0 with probability 1, since, as for the pure minimax regret, this unavoidable809

additive term of E
[
E[n2 | x]

]
to the loss does not affect the regret.810

The minimax problem – a direct computation: As in the derivations leading to (63), the minimax811

regret in (2) is given by812

regretmix(FS | Σx)

= min
L(R)∈P(R)

max
f∈FS

E [regret(R, f | Σx)] (69)
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= min
L(R)∈P(R)

max
f̃ :‖f̃‖22≤1

E
[
f̃>
(
S1/2ΣxS

1/2 − S1/2ΣxR(R>ΣxR)−1R>ΣxS
1/2
)
f̃
]

(70)

= min
L(Σ
−1/2
x R̃)∈P(R)

max
f̃ :‖f̃‖22≤1

f̃>S1/2Σ1/2
x E

[
Id − R̃(R̃

>
R̃)−1R̃

>]
Σ1/2

x S1/2f̃ (71)

= min
L(Σ
−1/2
x R̃)∈P(R)

λ1

(
S1/2Σ1/2

x E
[
Id − R̃(R̃

>
R̃)−1R̃

>]
Σ1/2

x S1/2
)

(72)

where R̃ = Σ
1/2
x R. Determining the optimal distribution of the representation directly from this813

expression seems to be intractable. We thus next solve the maximin problem, and then return to the814

maximin problem (72), set a specific random representation, and show that it achieves the maximin815

value. This, in turn, establishes the optimality of this choice.816

The maximin problem: Let an arbitrary L(f) be given. Then, taking the expectation of the regret817

over the random choice of f , for any given R ∈ R,818

E [regret(R,f)]
(a)
= E

[
Tr
[(
S1/2ΣxS

1/2 − S1/2ΣxR(R>ΣxR)−1R>ΣxS
1/2
)
f̃ f̃
>]]

(73)

(b)
= Tr

[(
S1/2ΣxS

1/2 − S1/2ΣxR(R>ΣxR)−1R>ΣxS
1/2
)

Σ̃f

]
(74)

= Tr
[
Σ̃

1/2
f

(
S1/2ΣxS

1/2 − S1/2ΣxR(R>ΣxR)−1R>ΣxS
1/2
)

Σ̃
1/2
f

]
(75)

(c)
= Tr

[
Σ̃

1/2
f S1/2Σ1/2

x

(
Id − R̃(R̃>R̃)−1R̃>

)
Σ1/2

x S1/2Σ̃
1/2
f

]
(76)

= Tr
[(
I − R̃(R̃>R̃)−1R̃>

)
Σ1/2

x S1/2Σ̃fS
1/2Σ1/2

x

]
(77)

(d)
= Tr

[(
I − R̃(R̃>R̃)−1R̃>

)
Σ1/2

x S1/2Σ̃fS
1/2Σ1/2

x

(
I − R̃(R̃>R̃)−1R̃>

)]
(78)

(e)

≥ min
W∈Rd×(d−r):W>W=Id−r

Tr
[
W>Σ1/2

x S1/2Σ̃fS
1/2Σ1/2

x W
]

(79)

(f)
=

d∑
i=r+1

λi(Σ
1/2
x S1/2Σ̃fS

1/2Σ1/2
x ) (80)

=

d∑
i=r+1

λi

(
Σ̃fS

1/2ΣxS
1/2
)
, (81)

where (a) follows from Lemma 15 and setting f̃ := S−1/2f , (b) follows by setting Σ̃f ≡ Σf̃ =819

E[f̃ f̃
>

], (c) follows by setting R̃ := Σ
1/2
x R, (d) follows since I − R̃(R̃>R̃)−1R̃> is an orthogo-820

nal projection (idempotent and symmetric matrix) of rank d − r, (e) follows since any orthogonal821

projection can be written as WW> where W ∈ Rd×(d−r) is an orthogonal matrix W>W = Id−r,822

(f) follows from Fan’s variational characterization [108] [37, Corollary 4.3.39.] (see Appendix D).823

Equality in (e) can be achieved by letting R̃ be the top r eigenvectors of Σ
1/2
x S1/2Σ̃fS

1/2Σ
1/2
x .824

The next step of the derivation is to maximize the expected regret over the probability law of f825

(or f̃ ). Evidently, E[regret(R,f)] =
∑d
i=r+1 λi(Σ̃fS

1/2ΣxS
1/2) only depends on the random826

function f̃ via Σ̃f . The covariance matrix Σ̃f is constrained as follows. Recall that f is supported827

on FS := {f ∈ Rd: ‖f‖2S≤ 1} (see (4)), and let Σf = E[ff>] be its covariance matrix. Then, it828

must hold that Tr[S−1Σf ] ≤ 1. Then, it also holds that829

1 ≥ Tr[S−1Σf ] = Tr
[
E[S−1ff>]

]
(82)

= E
[
f>S−1f

]
(83)

= E
[
f̃
>
f̃
]

(84)

= Tr
[
Σ̃f

]
(85)
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where Σ̃f = S−1/2ΣfS
−1/2. Conversely, given any covariance matrix Σ̃f ∈ Sd++ such that830

Tr[Σ̃f ] ≤ 1 there exists a random vector f supported on FS such that831

E[ff>] = S1/2Σ̃fS
−1/2. (86)

We show this by an explicit construction. Let Σ̃f = Ṽf Λ̃f Ṽ
>
f be the eigenvalue decomposition of832

Σ̃f , and, for brevity, denote by λ̃i ≡ λi(Σ̃f ) the diagonal elements of Λ̃f . Let {qi}i∈[d] be a set833

of independent and identically (IID) distributed random variables, so that qi is Rademacher, that is834

P[qi = 1] = P[qi = −1] = 1/2. Define the random vector835

g :=

(
q1 ·

√
λ̃1, · · · , qd ·

√
λ̃d

)>
. (87)

The constraint Tr[Σ̃f ] ≤ 1 implies that
∑
λ̃i ≤ 1 and so ‖g‖2=

∑d
i=1 λ̃i ≤ 1 with probability 1.836

Then, letting f̃ = Ṽfg it also holds that ‖f̃‖22= ‖g‖22≤ 1 with probability 1, and furthermore,837

E
[
f̃ f̃
>]

= ṼfE
[
gg>

]
Ṽ >f = Ṽf Λ̃f Ṽ

>
f = Σ̃f . (88)

Consequently, letting f = S1/2f assures that ‖f‖S= ‖f̃‖2≤ 1 and E[ff>] = S1/2Σ̃fS
−1/2, as838

was required to obtain. Therefore, instead of maximizing over probability laws on P(FS), we may839

equivalently maximize over Σ̃f ∈ Sd++ such that Tr[Σ̃f ] ≤ 1, i.e., to solve840

regretmix(FS | Σx) = max
Σ̃f :Tr[Σ̃f ]≤1

d∑
i=r+1

λi(Σ̃fS
1/2ΣxS

1/2). (89)

The optimization problem in (89) is solved in Lemma 16, and is provided after this proof. Setting841

Σ = S1/2ΣxS
1/2 in Lemma 16, and letting λi ≡ λi(S1/2ΣxS

1/2), the solution is given by842

`∗ − r∑`∗

i=1
1
λi

(90)

where `∗ ∈ [d]\[r] satisfies843

`∗ − r
λ`∗

≤
`∗∑
i=1

1

λi
≤ `∗ − r
λ`∗+1

. (91)

Lemma 16 also directly implies that an optimal Σ̃f is given as in (10). The value in (90) is exactly844

regretmix(FS | Σx) claimed by the theorem, and we next show it is indeed achievable by a properly845

constructed random representation.846

The minimax problem – a solution via the maximin certificate: Given the value of the regret game in847

mixed strategies found in (90), we may also find a minimax representation in mixed strategies. To848

this end, we return to the minimax expression in (72), and propose a random representation which849

achieves the maximin value in (90). Note that for any given R̃, the matrix Id− R̃(R̃>R̃)−1R̃> is an850

orthogonal projection, that is, a symmetric matrix whose eigenvalues are all either 0 or 1, and it has at851

most r eigenvalues equal to zero. We denote its eigenvalue decomposition by Id−R̃(R̃>R̃)−1R̃> =852

UΩU>. Then, any probability law on R̃ induces a probability law on U and Ω (and vice-versa).853

To find the mixed minimax representation, we propose setting U = V (Σ
1/2
x SΣ

1/2
x ) ≡ V with854

probability 1, that is, to be deterministic, and thus only randomize Ω. With this choice, and by855

denoting, for brevity, Λ ≡ Λ(Σ
1/2
x SΣ

1/2
x ) = Λ(S1/2ΣxS

1/2), the value of the objective function in856

(72) is given by857

λ1

(
S1/2Σ1/2

x V · E [Ω] · V >Σ1/2
x S1/2

)
= λ1

(
E [Ω] · V >Σ1/2

x SΣ1/2
x V

)
(92)

= λ1 (E [Ω] · Λ) . (93)
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Now, the distribution of Ω is equivalent to a distribution on its diagonal, which is supported on858

the finite set A := {a ∈ {0, 1}d: ‖a‖1≥ d − r}. Our goal is thus to find a probability law on a,859

supported on A, which solves860

min
L(Ω)

max
i∈[d]

λ1 (E [Ω] · Λ) = min
L(a)

max
i∈[d]

E[ai]λi (94)

where λi ≡ λi(S
1/2ΣxS

1/2) are the diagonal elements of Λ. Consider `∗, the optimal dimension861

of the maximin problem, which satisfies (91). We then set a`∗+1 = · · · = ad = 1 to hold with862

probability 1, and so it remains to determine the probability law of a := (a1, . . . ,a`∗), supported863

on Ã := {a ∈ {0, 1}`∗ : ‖a‖1≥ `∗ − r}. Clearly, reducing ‖a‖1 only reduces the objective function864

maxi∈[d] E[aiλi], and so we may in fact assume that a is supported on A := {a ∈ {0, 1}`∗ : ‖a‖1=865

`∗ − r}, a finite subset of cardinality
(
`∗

r

)
. Suppose that we find a probability law L(a) supported866

on A such that867

E[ai] = (`∗ − r) · 1/λi∑`∗

i=1 1/λi
:= bi, (95)

for all i ∈ [`∗]. Then, since E[ai] = 1 for i ∈ [d]\[`∗]868

max
i∈[d]

E[ai]λi = max

{
`∗ − r∑`∗

i=1
1
λi

, λ`∗+1, · · · , λd

}
(96)

= max

{
`∗ − r∑`∗

i=1
1
λi

, λ`∗+1

}
(97)

(∗)
=

`∗ − r∑`∗

i=1
1
λi

, (98)

where (∗) follows from the condition on `∗ in the right inequality of (91). This proves that such869

probability law achieves the minimax regret in mixed strategies. This last term is regretmix(FS | Σx)870

claimed by the theorem. It remains to construct L(a) which satisfies (95). To this end, note that the871

set872

C :=
{
c ∈ [0, 1]`

∗
: ‖c‖1= `∗ − r

}
(99)

is convex and compact, and A is the set of its extreme points (C is the convex hull of A). Letting873

b = (b1, . . . , b`∗)
> as denoted in (95), it holds that bi ≥ 0 and {bi}`

∗

i=1 is a non-decreasing sequence.874

Using the condition on `∗ in the left inequality of (91), it then holds that875

b1 ≤ · · · ≤ b`∗ = (`∗ − r) · 1/λ`∗∑`∗

i=1 1/λi
≤ 1. (100)

Hence, b ∈ C. By Carathéodory’s theorem [107, Prop. 1.3.1] (see Appendix D), any point inside a876

convex compact set in R`∗ can be written as a convex combination of at most `∗+ 1 extreme points.877

Thus, there exists {pa}a∈A such that pa ∈ [0, 1] and
∑
a∈A pa = 1 so that b =

∑
a∈A pa · a, and878

moreover the support of pa has cardinality at most `∗ + 1. Let A ∈ {0, 1}`∗×|A| be such that its jth879

column is given by the jth member of A (in an arbitrary order). Let p ∈ [0, 1]|A| be a vector whose880

jth element corresponds to the jth member of A. Then, p is the solution to Ap = b, and as claimed881

above, such a solution with at most `∗ + 1 nonzero entries always exists. Setting a = (a, 1 . . . , 1︸ ︷︷ ︸
d−`∗ terms

)882

with probability pa then assures that (95) holds, as was required to be proved.883

Given the above, we observe that setting R̃ as in the theorem induces a distribution on Ω for which884

the random entries of its diagonal a satisfy (95), and thus achieve regretmix(FS | Σx).885

We next turn to complete the proof of Theorem 3 by solving the optimization problem in (89).886

Assume that Σ ∈ Sd++ is a strictly positive covariance matrix Σ � 0, and consider the optimization887

problem888

v∗r = max
Σ̃f∈S

d
+

d∑
i=r+1

λi(Σ̃fΣ)
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subject to Tr[Σ̃f ] ≤ 1 (101)

for some r ∈ [d−1]. Note that the objective function refers to the maximization of the d−r minimal889

eigenvalues of Σ1/2Σ̃fΣ1/2.890

Lemma 16. Let891

a` :=
`− r∑`
i=1

1
λi(Σ)

. (102)

The optimal value of (101) is v∗ = max[d]\[r] a` and `∗ ∈ arg max[d]\[r] a` iff892

`∗ − r
λ`∗(Σ)

≤
`∗∑
i=1

1

λi(Σ)
≤ `∗ − r
λ`∗+1(Σ)

. (103)

An optimal solution is893

Σ̃∗f =

[
`∗∑
i=1

1

λi(Σ)

]−1

· V (Σ) diag

(
1

λ1(Σ)
, . . . ,

1

λ`∗(Σ)
, 0, · · · , 0

)
· V (Σ)>. (104)

Proof. Let Σf = Σ1/2Σ̃fΣ1/2, let Σf = UfΛfU
>
f be its eigenvalue decomposition, and, for894

brevity, denote λi ≡ λi(Σf ). Then, the trace operation appearing in the constraint of (101) can be895

written as896

Tr[Σ̃f ] = Tr
[
Σ−1/2ΣfΣ−1/2

]
(105)

= Tr
[
Σ−1/2UfΛfU

>
f Σ−1/2

]
(106)

= Tr

[
Σ−1/2

(
d∑
i=1

λiuiu
>
i

)
Σ−1/2

]
(107)

=

d∑
i=1

λi ·
(
u>i Σ−1ui

)
(108)

=

d∑
i=1

ciλi, (109)

where ui = vi(Uf ) (that is, the ith column of Uf ), and ci := u>i Σ−1ui (which satisfies ci > 0).897

Thus, the optimization problem in (101) over Σ̃f is equivalent to an optimization problem over898

{λi, ui}i∈[d], given by899

v∗r = max
{ui,λi}i∈[d]

d∑
i=r+1

λi

subject to

d∑
i=1

ciλi ≤ 1,

ci = u>i Σ−1ui,

u>i uj = δij ,

λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0. (110)

To solve the optimization problem (110), let us fix feasible {ui}i∈[d], so that {ci}i∈[d] are fixed too.900

This results the problem901

v∗r ({ui}) ≡ v∗r ({ci}) = max
{λi}i∈[d]

d∑
i=r+1

λi

subject to

d∑
i=1

ciλi ≤ 1,
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λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0. (111)

The objective function of (111) is linear in {λi}i∈[d] and its constraint set is a convex bounded902

polytope. So the solution to (111) must be obtained on the boundary of the constraint set. Clearly,903

the optimal value satisfies v∗r ({ci}) ≥ 0, and thus the solution {λ∗i }i∈[d] must be obtained when the904

constraint
∑d
i=1 ciλi ≤ 1 is satisfied with equality. Indeed, if this is not the case then one may scale905

all λ
∗
i by a constant larger than 1, and obtain larger value of the objective, while still satisfying the906

constraint.907

To find the optimal solution to (111), we consider feasible points for which ` := max{i ∈ [d]:λi >908

0) is fixed. Let {λ∗i }i∈[d] be the optimal solution of (111), under the additional constraint that909

λ`+1 = · · · = λd = 0. We next prove that λ
∗
1 = · · · = λ

∗
` must hold. To this end, assume by910

contradiction that there exists j ∈ [`] so that λ
∗
j−1 > λ

∗
j > 0. There are two cases to consider,911

to wit, whether j − 1 < r + 1 and so only λj appears in the objective of (111), or, otherwise,912

j − 1 ≥ r + 1 and then λj−1 + λj appears in the objective of (111). Assuming the first case, let913

α = λ
∗
j−1cj−1 + λ

∗
jcj and consider the optimization problem914

max
λ̂j−1,λ̂j

λ̂j

subject to λ̂j−1cj−1 + λ̂jcj = α,

λ̂j−1 ≥ λ̂j > 0. (112)

It is easy to verify that the optimum of this problem is λ̂∗j−1 = λ̂∗j = α
cj−1+cj

. Thus, if λ
∗
j−1 > λ

∗
j915

then one can replace this pair with λ
∗
j−1 = λ

∗
j = λ̂∗j−1 = λ̂∗j so that the value of the constraint916 ∑d

i=1 λici remains the same, and thus (λ
∗
1, · · · , λ̂∗j−1, λ̂

∗
j , λ
∗
j+1, . . . λ

∗
d) is a feasible point, while the917

objective function value of (111) is smaller; a contradiction. Therefore, it must hold for the first918

case that λ
∗
j−1 = λ

∗
j . For the second case, in a similar fashion, let now α = λ

∗
j−1cj−1 + λ

∗
jcj , and919

consider the optimization problem920

max
λ̂j−1,λ̂j

λ̂j + λ̂j−1

subject to λ̂j−1cj−1 + λ̂jcj = α,

λ̂j−1 ≥ λ̂j > 0. (113)

The solution for this optimization problem is at one of the two extreme points of the feasible interval921

for λ̂j . Since λ∗j > 0 was assumed it therefore must hold that λ̂∗j−1 = λ̂∗j , and hence also λ
∗
j−1 = λ

∗
j .922

Thus, λ∗j−1 < λ∗j leads to a contradiction. From the above, we deduce that the optimal solution of923

(111) under the additional constraint that λ`+1 = · · · = λd = 0 is924

λ
∗
1 = · · · = λ

∗
` =

1∑`
i=1 ci

(114)

λ
∗
`+1 = · · · = λ

∗
d = 0, (115)

and that the optimal value is `−r∑`
i=1 ci

. Since ` ∈ [d]\[r] can be arbitrarily chosen, we deduce that the925

value of (111) is926

v∗({ci}) = max
`∈[d]\[r]

`− r∑`
i=1 ci

. (116)

For any given ` ∈ [d]\[r], we may now optimize over {ui}, which from (116) is equivalent to927

minimizing
∑`
i=1 ci. It holds that928

min
{ui}

∑̀
i=1

ci = min
{ui:u>i uj=δij}

∑̀
i=1

u>i Σ−1ui (117)

= min
{ui:u>i uj=δij}

Tr

[
Σ−1

∑̀
i=1

uiu
>
i

]
(118)
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(a)
= min

Ù∈Rd×`:Ù>Ù=I`

Tr
[
Σ−1Ù Ù>

]
(119)

= min
Ù∈Rd×`:Ù>Ù=I`

Tr
[
Ù>Σ−1Ù

]
(120)

(b)
=
∑̀
i=1

1

λi(Σ)
, (121)

where in (a) Ù ∈ Rd×` whose ` columns are {ui}i∈[`] and Ù>Ù = I`, and in (b) we have used929

Fan’s variational characterization [108] [37, Corollary 4.3.39.] (see Appendix D). Substituting930

back to (116) results that931

v∗r = max
`∈[d]\[r]

`− r∑`
i=1

1
λi(Σ)

= max
`∈[d]\[r]

a`. (122)

Let us denote that maximizer index by `∗. Then, Fan’s characterization is achieved by setting932

Uf = V (so that the `∗ columns of Ù are the `∗ eigenvectors vi(Σ), corresponding to the `∗ largest933

eigenvalues of Σ), so that934

Σ
∗
f =

[
`∗∑
i=1

1

λi(Σ)

]−1

· V · diag

1, . . . , 1︸ ︷︷ ︸
`∗ terms

, 0, · · · , 0

 · V >, (123)

and then935

Σ̃∗f = Σ−1/2Σ
∗
fΣ−1/2 (124)

=

[
`∗∑
i=1

1

λi(Σ)

]−1

· V Λ−1/2V >V · diag (1, . . . , 1, 0, · · · , 0)V >V Λ−1/2V > (125)

=

[
`∗∑
i=1

1

λi(Σ)

]−1

· V · diag

(
1

λ1(Σ)
, . . . ,

1

λ`∗(Σ)
, 0, · · · , 0

)
· V > (126)

as claimed in (104).936

To complete the proof, it remains to characterize `∗, which belongs to the set possible indices max-937

imizing {a`}`∈[d]\[r]. Since `∗ maximizes a` it must be a local maximizer, that is, it must hold that938

a`∗−1 ≤ a`∗ ≥ a`∗+1. By simple algebra, these conditions are equivalent to those in (103). It939

remains to show that any ` ∈ [d]\[r] which satisfies (103) has the same value, and thus any local940

maxima is a global maxima. We will show this by proving that the sequence {a`}d`=r is unimodal,941

as follows. Let ∆` := a`+1 − a` be the discrete derivative of {a`}`∈[d], and consider the sequence942

{∆`}`∈[d]\[r]. We show that as ` increases from r to d, {∆`}`∈[d]\[r] is only changing its sign at943

most once. To this end, we first note that944

∆` =
`+ 1− r∑`+1
i=1

1
λi(Σ)

− `− r∑`
i=1

1
λi(Σ)

=

∑`
i=1

1
λi(Σ) − (`− r) 1

λ`+1(Σ)[∑`+1
i=1

1
λi(Σ)

] [∑`
i=1

1
λi(Σ)

] . (127)

Since the denominator of (127) is strictly positive, it suffices to prove that the sequence comprised945

of the numerator of (127), to wit {ζ`}`∈[d]\[r] with946

ζ` :=
∑̀
i=1

1

λi(Σ)
− (`− r) 1

λ`+1(Σ)
, (128)

is only changing its sign at most once. Indeed, this claim is true because ζr =
∑`
i=1

1
λi(Σ) > 0 and947

because {ζ`}`∈[d]\[r] is a monotonic non-increasing sequence,948

ζ` − ζ`+1 = (`− r + 1)

[
1

λ`+2(Σ)
− 1

λ`+1(Σ)

]
≥ 0. (129)

Therefore, {ζ`}`∈[d]\[r] has at most a single sign change (its has a positive value at ` = r and is949

monotonically non-increasing with ` up to ` = d), and so is {∆`}d`=r. The single sign change950

property of the finite difference {∆`}d`=r is equivalent to the fact that {a`}d`=r is unimodal. Thus,951

any local maximizer of a` is also a global maximizer.952
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F The Hilbert space MSE setting953

In this section, we show that the regret expressions in Section 3 can be easily generalized to an954

infinite dimensional Hilbert space, for responses with noise that is statistically independent of the955

features. We still assume the MSE loss function (Y = R , and loss(y1, y2) = (y1 − y2)2), and that956

the predictor is a linear function. However, we allow the the representation and response function to957

be functions in a Hilbert space. As will be evident, the resulting regret is not very different from the958

finite-dimensional case. Formally, this is defined as follows:959

Definition 17 (The Hilbert space MSE setting). Assume that x ∼ Px is supported on a compact960

subsetX ⊂ Rd, and let L2(Px) be the Hilbert space of functions fromX → R such that E[f2(x)] =961 ∫
X f

2(x) · dPx <∞, with the inner product,962

〈f, g〉 :=

∫
X
f(x)g(x) · dPx (130)

for f, g ∈ L2(Px). Let {φj(x)}∞j=1 be an orthonormal basis for L2(Px).963

A representation is comprised of a set of functions {ψi}i∈[r] ⊂ L2(Px), ψi:X → R, so that964

R := {R(x) = (ψ1(x), . . . , ψr(x))> ∈ Rr}. (131)

Let {λj}j∈N be a positive monotonic non-increasing sequence for which λj ↓ 0 as j → ∞, and let965

F be the set of functions from X → R such that given f ∈ F , the response is given by966

y = f(x) + n ∈ R (132)

where967

f ∈ F{λj} :=

f(x) =

∞∑
j=1

fjφj(x): {fj}j∈N ∈ `2(N),

∞∑
j=1

f2
j

λj
≤ 1

 , (133)

where n ∈ R is a homoscedastic noise that is statistically independent of x and satisfies E[n] = 0.968

Infinite-dimensional ellipsoids such as F{λj} naturally arise in reproducing kernel Hilbert spaces969

(RKHS) [59, Chapter 12] [60, Chapter 16], in which {λj} is the eigenvalues of the kernel. In this970

case, the set F{λi} = {f : ‖f‖H≤ 1} where ‖·‖H is the norm of the RKHS H. For example, H971

could be the first-order Sobolev space of functions with finite first derivative energy.972

Let the set of predictor functions be the set of linear functions from Rd → R, that is973

Q := {Q(z) = q>z =

r∑
i=1

qi · ψi(x), q ∈ Rr}. (134)

We denote the pure (resp. mixed) minimax regret as regretpure(R,F{λj} | Px) (resp.974

regretmix(R,F{λj} | Px)). We begin with pure strategies.975

Theorem 18. For the Hilbert space MSE setting (Definition 17)976

regretpure(R,F{λj} | Px) = λr+1. (135)

A minimax representation is977

R∗(x) = (φ1(x), . . . , φr(x))>, (136)

and the worst case response function is f∗ =
√
λr+1 · φr+1.978

We now turn to the minimax representation in mixed strategies.979

Theorem 19. For the Hilbert space MSE setting (Definition 17)980

regretmix(R,F{λj} | Px) =
`∗ − r∑`∗

i=1
1
λi

, (137)

where `∗ is defined as (9) of Theorem 3 (with the replacement d → N+). Let {bj}∞i=1 be an IID981

sequence of Rademacher random variables, P[bi = 1] = P[bi = −1] = 1/2. Then, a least982

favorable prior f∗ is983

f∗i =

bi · 1√∑`∗
i=1

1
λi

, 1 ≤ i ≤ `∗

0, i ≥ `∗ + 1
, (138)
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and a law of minimax representation is to choose984

R∗(x) = {φIj (x)}rj=1 (139)

with probability pj , j ∈ [
(
`∗

r

)
], defined as in Theorem 3.985

Discussion Despite having countably infinite possible number of representations, the optimal rep-986

resentation only utilizes a finite set of orthogonal functions, as determined by the radius of F{si}.987

The proof of Theorems 18 and 19 is obtained by reducing the infinite dimensional problem to a d-988

dimensional problem via an approximation argument, then showing the the finite dimensional case989

is similar to the problem of Section 3, and then taking limit d ↑ ∞.990

F.1 Proofs991

Let us denote the d-dimensional slice of F{λj} by992

F (d)
{λj} :=

{
f(x) ∈ F{λj}: fj = 0 for all j ≥ d+ 1

}
. (140)

Further, let us consider the restricted representation class, in which the representation functions993

ψi(t) belong to the span of the first d basis functions, that is994

R(d) := {R(x) ∈ R: = ψi(x) ∈ span({φi}i∈[d]) for all i ∈ [r]}. (141)

The following proposition implies that the regret in the infinite-dimensional Hilbert space is obtained995

as the limit of finite-dimensional regrets, as the one characterized in Section 3:996

Proposition 20. It holds that997

regretpure(R,F{λj} | Px) = lim
d↑∞

regretpure(R(d),F (d)
{λj} | Px) (142)

and998

regretmix(R,F{λj} | Px) = lim
d↑∞

regretmix(R(d),F (d)
{λj} | Px). (143)

Proof. Let {cij}j∈N be the coefficients of the orthogonal expansion of ψi, i ∈ [r], that is, ψi =999 ∑∞
j=1 cijφj . With a slight abuse of notation, we also let ci := (ci1, ci2 . . .) ∈ `2(N). We use a1000

sandwich argument. On one hand,1001

regretpure(R,F{λj} | Px) = min
R∈R

max
f∈F{λj}

regret(R, f) (144)

≥ min
R∈R

max
f∈F(d)

{λj}

regret(R, f) (145)

(∗)
= min

R∈R(d)
max

f∈F(d)

{λj}

regret(R, f) (146)

= regretpure(R(d),F (d)
{λj} | Px), (147)

where (∗) follows from the following reasoning: For any (R ∈ R, f ∈ F (d)
{λj}),1002

regret(R, f) = min
q∈Rr

E


 d∑
j=1

fjφj(x) + n−
∞∑
j=1

r∑
i=1

qicijφj(x)

2
− E

[
n2
]

(148)

(a)
= min

q∈Rr
E

 d∑
j=1

fjφj(x)−
∞∑
j=1

r∑
i=1

qicijφj(x)

 (149)

(b)
= min

q∈Rr

d∑
j=1

(
fj −

r∑
i=1

qicij

)2

+

∞∑
j=d+1

(
r∑
i=1

qicij

)2

, (150)
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where here (a) follows since the noise n is independent of x, and since, similarly to the finite-1003

dimensional case (Section 3), the prediction loss based on the features x ∈ X is E[n2], for any1004

given f ∈ F , (b) follows from Parseval’s identity and the orthonormality of {φj}j∈N. So,1005

min
R∈R

max
f∈F(d)

{λj}

regret(R, f)

= min
{cij}i∈[r],j∈N

max
f∈F(d)

{λj}

min
q∈Rr

d∑
j=1

(
fj −

r∑
i=1

qicij

)2

+

∞∑
j=d+1

(
r∑
i=1

qicij

)2

. (151)

Evidently, since
∑∞
j=d+1(

∑r
i=1 qicij)

2 ≥ 0, an optimal representation may satisfy that cij = 0 for1006

all j ≥ d+ 1. Thus, the optimal representation belongs toR(d).1007

On the other hand,1008

regretpure(R,F{λj} | Px) = min
R∈R

max
f∈F{λj}

regret(R, f) (152)

≤ min
R∈R(d)

max
f∈F{λj}

regret(R, f) (153)

(∗)
≤ min

R∈R(d)
max

f∈F(d)

{λj}

regret(R, f) + λd+1 (154)

= regretpure(R(d),F (d)
{λj} | Px) + λd+1, (155)

where (∗) follows from the following reasoning: For any (R ∈ R(d), f ∈ F{λj}),1009

regret(R, f) = min
q∈Rr

E


 ∞∑
j=1

fjφj(x) + n−
∞∑
j=1

r∑
i=1

qicijφj(x)

2
− E[n2] (156)

(a)
= min

q∈Rr

d∑
j=1

(
fj −

r∑
i=1

qicij

)2

+

∞∑
j=d+1

f2
j (157)

(b)

≤ min
q∈Rr

d∑
j=1

(
fj −

r∑
i=1

qicij

)2

+ λd+1, (158)

where (a) follows similarly to the analysis made in the previous step, and (b) follows since for any1010

f ∈ F{λj} it holds that1011

∞∑
j=d+1

f2
j ≤ λd+1

∞∑
j=d+1

f2
j

λj
≤ λd+1

∞∑
j=1

f2
j

λj
≤ λd+1. (159)

Combining (147) and (155) and using λd+1 ↓ 0 completes the proof for the pure minimax regret.1012

The proof for the mixed minimax is analogous and thus is omitted.1013

We also use the following simple and technical lemma.1014

Lemma 21. For R ∈ R(d) and f ∈ F (d)11015

regret(R, f) = f>
(
Id −R>(RR>)−1R

)
f, (160)

where R ∈ Rr×d is the matrix of coefficients of the orthogonal expansion of ψi =
∑d
j=1 cijφj for1016

i ∈ [r], so that R(i, j) = cij .1017

1Note that any f ∈ F (d) may be uniquely identified with a d-dimensional vector f ∈ Rd. With a slight
abuse of notation we do not distinguish between the two.
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Proof. It holds that1018

regret(R, f) = min
q∈Rr

E


 d∑
j=1

fjφj(x) + n−
r∑
i=1

qi

d∑
j=1

cijφj(x)

2
− E

[
n2
]

(161)

= min
q∈Rr

E

 d∑
j=1

(
fj −

r∑
i=1

qicij

)
φj(x)

 (162)

= min
q∈Rr

d∑
j=1

(
fj −

r∑
i=1

qicij

)2

(163)

= min
q∈Rr

d∑
j=1

[
f2
j − 2fj

r∑
i=1

qicij +

r∑
i1=1

r∑
i2=1

qi1ci1jqi2ci2j

]
(164)

= min
q∈Rr

f>f − 2q>Rf + q>RR>q (165)

= f>
(
Id −R>(RR>)−1R

)
f, (166)

where the last equality is obtained by the minimizer q∗ = (RR>)−1Rf .1019

Proof of Theorems 18 and 19. By Proposition 20, we may first consider the finite dimensional case,1020

and then take the limit d ↑ ∞. By Lemma 21, in the d-dimensional case (for both the representation1021

and the response function), the regret is formally as in the linear setting under the MSE of Theorem1022

2, by setting therein Σx = Id, and S = diag(λ1, . . . , λd) (c.f. Lemma 15). The claim of the1023

Theorem 18 then follows by taking d ↑ ∞ and noting that λd+1 ↓ 0. The proof of Theorem 19 is1024

analogous and thus omitted.1025

G Iterative algorithms for the Phase 1 and Phase 2 problems1026

In this section we describe our proposed algorithms for the solution Phase 1 and Phase 2 problems1027

of Algorithm 1. Those algorithms are general, and only require providing gradients of the regret1028

function (1) and an initial representation and a set of adversarial functions. These are individually1029

determined for each setting. See Section H for the way these are determined in Examples 6 and 8.1030

G.1 Phase 1: finding a new adversarial function1031

We propose an algorithm to solve the Phase 1 problem (26), which is again based on an iterative1032

algorithm. We denote the function’s value at the tth iteration by f(t). The proposed Algorithm 21033

operates as follows. At initialization, the function f(1) ∈ F is arbitrarily initialized (say at random),1034

and then the optimal predictor Q(j) is found for each of the k possible representations R(j), j ∈ [k].1035

Then, the algorithm iteratively repeats the following steps, starting with t = 2: (1) Updating the1036

function from f(t−1) to f(t) based on a gradient step of1037 ∑
j∈[k]

p(j) · E
[
loss(f(t−1)(x), Q(j)(R(j)(x)))

]
, (167)

that is, the weighted loss function of the previous iteration function, which is then followed by a1038

projection to the feasible class of functions F , denoted as ΠF (·) (2) Finding the optimal predictor1039

Q(j) for the current function f(t) and the given representations {R(j)}j∈[k], and computing the1040

respective loss for each representation,1041

L(j) := E
[
loss(f(t)(x), Q(j)(R(j)(x)))

]
. (168)

This loop iterates for Tf iterations, or until convergence.1042
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Algorithm 2 A procedure for finding a new function via the solution of (26)

1: procedure PHASE 1 SOLVER({R(j), p(j)}j∈[k],F ,Q, d, r, Px)
2: begin
3: Initialize Tf . Number of iterations parameters
4: Initialize ηf . Step size parameter
5: Initialize f(1) ∈ F . Function initialization, e.g., at random
6: for j = 1 to k do
7: set Q(j) ← arg minQ∈Q E

[
loss(f(1)(x), Q(R(j)(x)))

]
8: end for
9: for t = 2 to Tf do

10: update f(t−1/2) = f(t−1) + ηf ·
∑
j∈[k] p

(j)
(t−1) · ∇fE

[
loss(f(t−1)(x), Q(j)(R(j)(x)))

]
. A gradient update of the function

11: project f(t) = ΠF (f(t−1/2)) . Projection on the class F
12: for j = 1 to k do
13: set Q(j) ← arg minQ∈Q E

[
loss(f(t)(x), Q(R(j)(x)))

]
. Update of predictors

14: set L(j) ← E
[
loss(f(t)(x), Q(j)(R(j)(x)))

]
. Compute loss of each representation

15: end for
16: end for
17: return f(T ), and the regret

∑
j∈[k] p

(j) · L(j)

18: end procedure

Design choices and possible variants of the basic algorithm At initialization, we have chosen a1043

simple random initialization for f(1), but it may also be initialized based on some prior knowledge1044

of the adversarial function. For the update of the predictors, we have specified a full computation of1045

the optimal predictor, which can be achieved in practice by running another iterative algorithm such1046

as stochastic gradient descent (SGD) until convergence. If this is too computationally expensive,1047

the number of gradient steps may be limited. The update of the function is done via projected SGD1048

with a constant step size ηf , yet it is also possible to modify the step size with the iteration, e.g., the1049

common choice ηf/
√
t at step t Hazan [35]. Accelerated algorithms, e.g., moment-based may also1050

be deployed.1051

Convergence analysis A theoretical analysis of the convergence properties of the algorithm ap-1052

pears to be challenging. Evidently, this is a minimax game between the response player and the1053

predictor player, but not a concave-convex game. As described in Appendix B, even concave-convex1054

games are not well understood at this point. We thus opt to validate this algorithm numerically.1055

G.2 Phase 2: finding a new representation1056

We propose an iterative algorithm to solve the Phase 2 problem (27), and thus finding a new repre-1057

sentation R(k+1). To this end, we first note that the objective function in (27) can be separated into1058

a part that depends on existing representations and a part that depends on the new one, specifically,1059

as1060 ∑
j1∈[k]

∑
j2∈[m0+k]

p(j1) · o(j2) · E
[
loss(f (j2)(x), Q(j1,j2)(R(j1)(x)))

]
+

∑
j2∈[m0+k]

p(k+1) · o(j2) · E
[
loss(f (j2)(x), Q(k+1,j2)(R(k+1)(x)))

]
=
∑
j1∈[k]

∑
j2∈[m0+k]

p(j1) · o(j2) · L(j1,j2)

+
∑

j2∈[m0+k]

p(k+1) · o(j2) · E
[
loss(f (j2)(x), Q(k+1,j2)(R(k+1)(x)))

]
, (169)

where1061

L(j1,j2) := E
[
loss(f (j2)(x), Q(j1,j2)(R(j2)(x)))

]
, (170)
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and the predictors {Q(j1,j2)}j1∈[k],j2∈[m0+k] can be optimized independently of the new representa-1062

tion R(k+1). We propose an iterative algorithm for this problem, and denote the new representation1063

at the tth iteration of the algorithm by R(k+1)
(t) . The algorithm’s input is a set of m0 + k adver-1064

sarial functions {f (i)}i∈[m0+k], and the current set of representations {R(j)}j∈[k]. Based on these,1065

the algorithm may find the optimal predictor for f (j2) based on the representation R(j1), and thus1066

compute the loss1067

L
(j1,j2)
∗ := min

Q∈Q
E
[
loss(f (j2)(x), Q(R(j1)(x)))

]
(171)

for j1 ∈ [k] and j2 ∈ [m0 + k]. In addition, the new representation is arbitrarily initialized (say, at1068

random) asR(k+1)
(1) , and the predictors {Q(k+1,j2)

(1) }j2∈[m0+k] are initialized as the optimal predictors1069

for f (j2) given the representation R(k+1)
(1) . The algorithm keeps track of weights for the represen-1070

tations (including the new one), which are initialized uniformly, i.e., p(j1)
(1) = 1

k+1 for j1 ∈ [k + 1]1071

(including a weight for the new representation). The algorithm also keeps track of weights for the1072

functions, which are also initialized uniformly as o(j2)
(1) = 1

m0+k for j2 ∈ [m0 + k]. Then, the1073

algorithm iteratively repeats the following steps, starting with t = 2: (1) Updating the new represen-1074

tation from R
(k+1)
(t−1) to R(k+1)

(t) based on a gradient step of the objective function (27) as a function of1075

R(k+1). Based on the decomposition in (169) the term of the objective which depends on R(k+1) is1076

p
(k+1)
(t−1)

∑
j2∈[m0+k]

o
(j2)
(t−1) · E

[
loss(f (j2)(x), Q(k+1,j2)(R(k+1)(x)))

]
, (172)

that is, the loss function of the previous iteration new representation, weighted according to the1077

current function weights o(j2)
(t−1). Since the multiplicative factor p(k+1)

(t−1) is common to all terms, it is1078

removed from the gradient computation (this aids in the choice of the gradient step). This gradient1079

step is then possibly followed by normalization or projection, which we denote by the operator1080

ΠR(·). For example, in the linear case, it make sense to normalize R(k+1) to have unity norm (in1081

some matrix norm of choice). After updating the new representation to R(k+1)
(t) , optimal predictors1082

are found for each function, the loss is computed1083

L
(k+1,j2)
(t) := min

Q∈Q
E
[
loss(f (j2)(x), Q(R

(k+1)
(t) (x)))

]
(173)

for all j2 ∈ [m0 + k], and the optimal predictor is updated to {Q(k+1,j2)
(t) }j2∈[m0+k] based on this1084

solution. (2) Given the current new representation R(k+1)
(t) , the loss matrix1085

{L(j1,j2)
(t) }j1∈[k],j2∈[m0+k] (174)

is constructed where for j1 ∈ [k] it holds that L(j1,j2)
(t) = L(j1,j2) for all t (i.e., the loss of previous1086

representations and functions is kept fixed). This is considered to be the loss matrix of a two-player1087

zero-sum game between the representation player and the function player, where the representation1088

player has k + 1 possible strategies and the function player has m0 + k strategies. The weights1089

{p(j1)
(t) }j1∈[k+1] and {o(j2)

(t) }j2∈[m0+k] are then updated according to the MWU rule. Specifically, for1090

an inverse temperature parameter β (or a regularization parameter), the update is given by1091

p
(j)
(t) =

p
(j)
(t−1) · β

L(j)∑
j̃∈[k] p

(j̃)
(t−1) · βL

(j̃)
(175)

for the representation weights and, analogously, by1092

o
(j)
(t) =

o
(j)
(t−1) · β

−L(j)∑
j̃∈[k] o

(j̃)
(t−1) · β−L

(j̃)
(176)

for the function weights (as the function player aims to maximize the loss). This can be considered as1093

a regularized gradient step on the probability simplex, or more accurately, a follow-the-regularized-1094

leader [35]. The main reasoning of this algorithm is that at each iteration the weights {p(j)}j∈[k+1]1095
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and {o(j)}j∈[m0+k] are updated towards the solution of the two-player zero-sum game with payoff1096

matrix {−L(j1,j2)
(t) }j1∈[k+1],j2∈[m0+k]. In turn, based only on the function weights {o(j)}j∈[m0+k],1097

the new representation is updated to R(k+1)
(t) , which then changes the pay-off matrix at the next1098

iteration. It is well known that the MWU solved two-player zero-sum game [33], in which the1099

representation player can choose the weights and the function player can choose the function.1100

This loop iterates for Tstop iterations, and then the optimal weights are given by the average over the1101

last Tavg iterations [33], i.e.,1102

p
(j)
∗ =

1

Tavg

Tstop∑
t=Tstop−Tavg+1

p
(j)
(t) , (177)

and1103

o
(j)
∗ =

1

Tavg

Tstop∑
t=Tstop−Tavg+1

o
(j)
(t) . (178)

In the last TR − Tstop iterations, only the representation R(k+1)
(t) and the predictors are updated. The1104

algorithm then outputs R(k+1)
(T ) as the new representation and the weights {p(j)

∗ }j∈[k+1].1105

Design choices and possible variants of the basic algorithm At initialization, we have cho-1106

sen a simple random initialization for R(k+1)
(1) , but it may also be initialized based on some prior1107

knowledge of the desired new representation. The initial predictors {Q(k+1,j2)
(1) }j2∈[m0+k] will then1108

be initialized as the optimal predictors for R(k+1)
(1) and {f (j2)}j2∈[m0+k]. We have initialized the1109

representation and function weights uniformly. A possibly improved initialization for the function1110

weights is to put more mass on the more recent functions, that is, for large values of j2, or to use1111

the minimax strategy of the function player in the two-player zero-sum game with payoff matrix1112

{−L(j1,j2)
(t) }j1∈[k],j2∈[m0+k] (that is, a game which does not include the new representation). As1113

in the Phase 1 algorithm, the gradient update of the new representation can be replaced by a more1114

sophisticated algorithm, the computation of the optimal predictors can be replaced with (multiple)1115

update steps, and the step size may also be adjusted. For the MWU update, we use the proposed1116

scaling in [33]1117

β =
1

1 +
√

c lnm
T

(179)

for some constant c. It is well known that using the last iteration of a MWU algorithm may fail [97],1118

while averaging the weights value of all iterations provides the optimal value of a two-player zero-1119

sum games [33]. For improved accuracy, we compute the average weights over the last Tavg iterations1120

(thus disregarding the initial iterations). We then halt the weights update and let the function and1121

predictor update to run for T − Tstop iterations in order to improve the convergence of R(k+1).1122

Finally, the scheduling of the steps may be more complex, e.g., it is possible that running multiple1123

gradient steps follows by multiple MWU steps may improve the result.1124

H Details for the examples of Algorithm 11125

As mentioned, the solvers of the Phase 1 and Phase 2 problems of Algorithm 1 require the gradients1126

of the regret (1) as inputs, as well as initial representation and set of adversarial functions. We next1127

provide these details for the examples in Section 4. The code for the experiments was written in1128

Python 3.6 the code is available at this link. The optimization of hyperparameters was done using1129

the Optuna library. The hardware used is standard and detailed appear in Table 1.1130

H.1 Details for Example 6: the linear MSE setting1131

In this setting, the expectation over the feature distribution can be carried out analytically, and the1132

regret is given by1133

regret(R, f | Σx) = E
[(
f>x− q>R>x

)2]
(180)

34
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Algorithm 3 A procedure for finding a new representation R(k+1) via the solution of (27)

1: procedure PHASE 2 SOLVER({R(j1)}j∈[k], {f (j2)}j2∈[m0+k],R,F ,Q, d, r, Px)
2: begin
3: Initialize TR, Tstop, Tavg . Number of iterations parameters
4: Initialize ηR . Step size parameter
5: Initialize β ∈ (0, 1) . Inverse temperature parameter
6: Initialize f(1) ∈ F . Function initialization, e.g., at random
7: Initialize p(j)

(1) ← 0 for j ∈ [k] and p(k+1)
(1) ← 0 . A uniform weight initialization for the

representations
8: Initialize o(j2)

(1) ←
1

m0+k for j2 ∈ [k] . A uniform weight initialization for the functions
9: for j1 = 1 to k do

10: for j2 = 1 to m0 + k do
11: Set Q(j1,j2) ← arg minQ∈Q E

[
loss(f (j2)(x), Q(R(j1)(x)))

]
. Optimal predictors for existing representations and input functions

12: Set L(j1,j2) ← minQ∈Q E
[
loss(f (j2)(x), Q(j1,j2)(R(j1)(x)))

]
. The minimal loss

13: end for
14: end for
15: for j2 = 1 to m0 + k do
16: Initialize R(k+1)

(1) . Arbitrarily, e.g., at random

17: Set Q(k+1,j2)
(1) ← arg minQ∈Q E

[
loss(f (j2)(x), Q(R(k+1)(x)))

]
for j2 ∈ [m0 + k]

. Optimal predictors for new representation and input functions
18: end for
19: for t = 2 to TR do
20: update . A gradient update of the new representation

R
(k+1)
(t−1/2) = R

(k+1)
(t−1) + ηR ·

∑
j2∈[m0+k]

o
(j2)
(t−1) ·∇R(k+1)E

[
loss(f (j2)(x), Q(k+1,j2)(R

(k+1)
(t−1) (x)))

]
21: projection R(k+1)

(t) = ΠR(R
(k+1)
(t−1/2)) . Standardization based on the classR

22: for j = 1 to k do
23: Set Q(k+1,j2) ← arg minQ∈Q E

[
loss(f (j2)(x), Q(R

(k+1)
(t) (x)))

]
. Update of predictors for the new representation

24: L
(k+1,j2)
(t) ← E

[
loss((f (j2)(x), Q(k+1,j2)(R

(k+1)
(t) (x)))

]
. Compute loss

25: end for
26: Set L(j1,j2)

(t) ← L(j1,j2) for j1 ∈ [k] and j2 ∈ [m0 + k]

27: if t < Tstop then

28: update p(j)
(t) ←

p
(j)

(t−1)
·βL

(j)

∑
j̃∈[k] p

(j̃)

(t−1)
·βL(j̃)

for j ∈ [k] . A MWU

29: update o(j)
(t) ←

o
(j)

(t−1)
·β−L

(j)

∑
j̃∈[m0+k] o

(j̃)

(t−1)
·β−L(j̃)

for j ∈ [m0 + k] . A MWU

30: else if t = Tstop then
31: update p(j)

(t) = p
(j)
(t) ←

1
Tavg

∑Tstop
t=Tstop−Tavg+1 p

(j)
(t) for j ∈ [k]

. Optimal weights by averaging last Tavg iterations

32: update o(j)
(t) ←

1
Tavg

∑Tstop
t=Tstop−Tavg+1 o

(j)
(t) for j ∈ [m0 + k]

. Optimal weights by averaging last Tavg iterations
33: else
34: update p(j)

(t) ← p
(j)
(t−1) for j ∈ [k] . No update for the last T − Tstop iterations

35: update o(j)
(t) ← o

(j)
(t−1) for j ∈ [m0 + k] . No update for the last T − Tstop iterations

36: end if
37: return R(k+1)

(T ) and {p(j)
(TR)}j∈[k+1]

38: end for
39: end procedure
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Table 1: Hardware details

CPU RAM GPU
Intel i9 13900k 64GB RTX 3090 Ti

= f>Σxf − 2q>R>Σxf + q>R>Rq. (181)

The regret only depends on the feature distribution Px via Σx. For each run of the algorithm, the co-1134

variance matrix Σx was chosen to be diagonal with elements drawn from a log-normal distribution,1135

with parameters (0, σ0), and S = Id.1136

Regret gradients The gradient of the regret w.r.t. the function f is given by1137

∇fE
[(
f>x− q>R>x

)2]
= 2f>Σx − 2q>R>Σx (182)

and the projection on FS is1138

ΠF (f) =

{
f
‖f‖S , ‖f‖S≥ 1

f, ‖f‖S< 1
. (183)

However, we may choose to normalize by f
‖f‖S even if ‖f‖S≤ 1 since in this case the regret is1139

always larger if f is replaced by f
‖f‖S (in other words, the worst case function is obtained on the1140

boundary of FS). The gradient w.r.t. the predictor q is given by1141

∇qE
[(
f>x− q>R>x

)2]
=
[
−2f>ΣxR+ 2q>R>ΣxR

]
. (184)

Finally, to derive the gradient w.r.t. R, let us denote R := [R1, R2, . . . , Rr] ∈ Rd×r where Ri ∈ Rd1142

is the ith column (i ∈ [r]), and q> = (q1, q2, . . . , qr). Then, q>R>x =
∑
i∈[d] qiR

>
i x and the loss1143

function is1144

E
[(
f>x− q>R>x

)2]
= E


f>x−∑

i∈[d]

qix
>Ri

2
 (185)

= f>Σxf − 2q>R>Σxf + q>R>ΣxRq. (186)

The gradient of the regret w.r.t. Rk is then given by1145

∇Rk
{
E
[(
f>x− q>R>x

)2]}
= −2E

[(
f>x− q>R>x

)
· qkx>

]
(187)

= −2qk
(
f>Σx − q>R>Σx

)
, (188)

hence, more succinctly, the gradient w.r.t. R is1146

∇R
{
E
[(
f>x− q>R>x

)2]}
= −2q

(
f>Σx − q>R>Σx

)
. (189)

We remark that in the algorithm these gradients are multiplied by weights. We omit this term when-1147

ever the weight is common to all terms in order to keep the effective step size constant.1148

Initialization Algorithm 1 requires an initial representation R(1) and an initial set of functions1149

{f (j)}j∈[m0]. In the MSE setting, each function f ∈ Rd is also a single column of a representation1150

matrix R ∈ Rd×r. A plausible initialization matrix R(1) ∈ Rd×r is therefore the worst r functions.1151

These, in turn, can be found by running Algorithm (1) to obtain m̃ = r functions, by setting r̃ = 1. A1152

proper initialization for this run is simply an all-zero representation R̃(1) = 0 ∈ Rd×1. The resulting1153

output is then {R̃(j)
(T )}j∈[r] which can be placed as the r columns of R(1). This initialization is then1154

used for Algorithm 1.1155

Algorithm parameters The algorithm parameters used for Example 6 are shown in Table 2. The1156

parameters were optimally tuned for σ0 = 1.1157
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Table 2: Parameters for linear MSE setting example

Parameter βr βf ηr ηf

Value 0.94 0.653 0.713 0.944

Parameter TR Tf Tavg Tstop

Value 100 until convergence 10 80

Figure 3: The ratio between the regret achieved by Algorithm 1 and the theoretical regret in the
linear MSE setting. Left: d = 20, σ0 = 1, varying r. Right: r = 5, d = 20, varying σ0.

Additional results Additional results of the accuracy of the Algorithm 1 in the linear MSE setting1158

are displayed in Figure 3. The left panel of Figure 3 shows that the algorithm output is accurate for1159

small values of r, but deteriorates as r increases. This is because when r increases then so is `∗ and1160

so is the required number of matrices in the support of the representation rule (denoted bym). Since1161

the algorithm gradually adds representation matrices to the support, an inaccurate convergence at an1162

early iteration significantly affects later iterations. One possible way to remedy this is to run each1163

iteration multiple times, and choose the best one, before moving on to the next one. Another reason1164

is that given large number of matrices in the support (large m), it becomes increasingly difficult1165

for the the MWU to accurately converge. Since the iterations of the MWU do not converge to the1166

equilibrium point, but rather their average (see discussion in Appendix B) this can only be remedied1167

by allowing more iterations for convergence (in advance) for large values of m. The right panel of1168

Figure 3 shows that the algorithm output is accurate for a wide range of the condition number of1169

the covariance matrix. This condition number is determined by the choice of σ0, where low values1170

typically result covariance matrices with condition number that is close to 1, while high values will1171

typically result large condition number. The right panel shows that while the hyperparameters were1172

tuned for σ0 = 1, the result is fairly accurate for a wide range of σ0 values, up to σ0 ≈ 5. Since for1173

Z ∼ N(0, 1) (standard normal) it holds that P[−2 < Z < 2] ≈ 95%, the typical condition number1174

of a covariance matrix drawn with σ0 = 5 is roughly e2σ0

e−2σ0
≈ 4.85 · 108, which is a fairly large1175

range.1176

H.2 Details for Example 8: the linear cross-entropy setting1177

In this setting,1178

regret(R, f | Px) = min
q∈Rr

E
[
DKL

(
[1 + exp(−f>x)]−1 || [1 + exp(−q>R>x)]−1

)]
, (190)

and the expectation over the feature distribution typically cannot be carried out analytically. We thus1179

tested Algorithm 1 on empirical distributions of samples drawn from a high-dimensional normal1180

distribution. Specifically, for each run, B = 1000 feature vectors were drawn from an isotropic1181

normal distribution of dimension d = 15. The expectations of the regret and the corresponding1182

gradients were then computed with respect to (w.r.t.) the resulting empirical distributions.1183

Regret gradients We use the facts that1184

∂

∂p1
DKL(p1 || p2) = log

p1(1− p2)

p2(1− p1)
(191)
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and1185
∂

∂p2
DKL(p1 || p2) =

p2 − p1

p2(1− p2)
. (192)

For brevity, let us next denote1186

p1 :=
1

1 + exp(−f>x)
(193)

and1187

p2 :=
1

1 + exp(−q>R>x)
. (194)

We next repeatedly use the chain rule for differentiation. First,1188

∇fp1 = ∇f
[

1

1 + exp(−f>x)

]
=

exp(−f>x) · x
[1 + exp(−f>x)]

2 = p1(1− p1) · x· (195)

and1189

∇qp2 = ∇q
[

1

1 + exp(−q>R>x)

]
=

exp(−q>R>x) ·R>x
[1 + exp(−q>R>x)]

2 = p2(1− p2) ·R>x· (196)

So, assuming that Px is such that the order of differentiation and expectation may be interchanged1190

(this can be guaranteed using dominated/monotone convergence theorems), the gradient of the regret1191

w.r.t. f is1192

∇f regret(R, f | Px) = E
[
∂

∂p1
DKL(p1 || p2)×∇fp1

]
(197)

= E
[
log

(
p1(1− p2)

p2(1− p1)

)
· p1(1− p1) · x

]
(198)

= E

[
(f> − q>R>)x

exp(−f>x)

[1 + exp(−f>x)]
2 · x

]
(199)

= E

[
exp(−f>x)

[1 + exp(−f>x)]
2 · x

>(f −Rq)x

]
. (200)

Next, under similar assumptions, the gradient of the regret w.r.t. the predictor q is1193

∇qregret(R, f | Px) = E
[
∂

∂p2
DKL(p1 || p2)×∇qp2

]
(201)

= E
[(

1

1 + exp(−q>R>x)
− 1

1 + exp(−f>x)

)
·R>x

]
. (202)

Finally, as for the MSE case, to derive the gradient w.r.t. R, we denote R := [R1, R2, . . . , Rr] ∈1194

Rd×r where Ri ∈ Rd is the ith column (i ∈ [r]), and q> = (q1, q2, . . . , qr). Then, q>R>x =1195 ∑
i∈[d] qiR

>
i x and1196

p2 =
1

1 + exp(−
∑
i∈[d] qiR

>
i x)

. (203)

Then, the gradient of p2 w.r.t. Rk is then given by1197

∇Rkp2 = p2(1− p2) · qix, (204)

hence, more succinctly, the gradient w.r.t. R is1198

∇Rp2 = p2(1− p2) · xq>. (205)

Hence,1199

∇Rregret(R, f | Px) = E
[
∂

∂p2
DKL(p1 || p2)×∇Rp2

]
(206)

= E
[
(p2 − p1) · xq>

]
(207)

= E
[(

1

1 + exp(−q>R>x)
− 1

1 + exp(−f>x)

)
· xq>

]
. (208)
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Table 3: Parameters for linear cross entropy setting example

Parameter βr βf ηr ηf

Value 0.9 0.9 10−3 10−1

Parameter TR Tf Tavg Tstop

Value 100 1000 25 50

Initialization Here the initialization is similar to the linear MSE setting, except that since a column1200

of the representation cannot ideally capture even a single adversarial function, the initialization1201

algorithm only searches for a single adversarial function (m̃ = 1). This single function is then used1202

to produce R(1) as the initialization of Algorithm 1.1203

Algorithm parameters The algorithm parameters used for Example 8 are shown in Table 3.1204

1205

I An experiment with a NN architecture1206

In the analysis and the experiments above we have considered basic linear functions. As mentioned,1207

since the operation of Algorithm 1 only depends on the gradients of the loss function, it can be easily1208

generalized to representations, response functions and predictors for which such gradients (or sub-1209

gradients) can be provided. In this section, we exemplify this idea with a simple NN architecture.1210

For x ∈ Rd, we let the rectifier linear unit (ReLU) be denoted as (x)+.1211

Definition 22 (The NN setting). Assume the same setting as in Definitions 1 and 7, except that the1212

class of representation, response and predictors are NN with c hidden layers of sizes hR, hf , hq ∈1213

N+, respectively, instead of linear functions. Specifically: (1) The representation is1214

R(x) = R>c

(
· · ·
(
R>1 (R>0 x)+

)
+

)
+

(209)

for some (R0, R1, · · ·Rc) ∈ R := {Rd×hR × RhR×hR · · ·RhR×hR × RhR×r} where d > r. (2)1215

The response is determined by1216

f(x) = f>c

(
· · ·
(
F>1 (F>0 x)+

)
+

)
+

(210)

where (F0, F1, . . . , fc) ∈ F := {Rd×hf × Rhf×hf · · ·Rhf×hf × Rhf }. (3) The predictor is deter-1217

mined by for some1218

q(z) = q>c

(
· · ·
(
Q>1 (Q>0 z)+

)
+

)
+

(211)

where (Q0, Q1, . . . , qc) ∈ Q := {Rr×hq × Rhq×hq · · ·Rhq×hq × Rhq}.1219

Regret gradients Gradients were computed using PyTorch with standard gradients computation1220

using backpropagation for an SGD optimizer.1221

Initialization The initialization algorithm is similar to the initialization algorithm used in the lin-1222

ear cross-entropy setting.1223

Algorithm parameters The algorithm parameters used for the example are shown in Table 4.1224

Results For a single hidden layer, Figure 4 shows the reduction of the regret with the iteration for1225

the cross-entropy loss.1226
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Table 4: Parameters for the NN cross-entropy setting.

Parameter c hR hf hq

Value 1 d d d

Parameter βr βf ηr ηf ηq

Value 0.9 0.9 10−3 10−1 10−1

Parameter TR Tf TQ Tavg Tstop

Value 100 1000 100 10 80

Figure 4: The regret achieved by Algorithm 1 in the NN cross-entropy setting as a function of the
iteration m.
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