
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A EQUIVARIANCE AND SYMMETRY

Equivariant neural networks are designed to explicitly incorporate symmetries that are present in
the underlying data. Symmetries, often derived from first principles or domain knowledge, such as
rotational or translational invariance, allow the network to process inputs in a way that is consistent
with these transformations. This is particularly important when the ground truth functions respect such
symmetries, as the incorporation of these properties can significantly enhance model performance
and generalization.

Group A group of symmetries or simply group is a set G together with a binary operation � : G⇥
G ! G called composition satisfying three properties: 1) identity: There is an element 1 2 G such
that 1�g = g�1 = g for all g 2 G; 2) associativity: (g1�g2)�g3 = g1�(g2�g3) for all g1, g2, g3 2 G;
3) inverses if g 2 G, then there is an element g�1 2 G such that g � g�1 = g

�1 � g = 1.

Examples of groups include the dihedral groups D4 (symmetries of a square) and D8 (symmetries of
an octagon), as well as the orthogonal group O(2), which represents all rotations and reflections in
2D space. Both D4 and D8 are discrete subgroups of O(2).

Representation A group representation defines how a group action transforms elements of a vector
space by mapping group elements to linear transformations on that space. More specifically, a group
representation of a group G on a vector space V is is a homomorphism: ⇢ : G ! GL(X), where
GL(X) is the group of invertible linear transformations on V . This means for any g1, g2 2 G, ⇢ is a
linear transformation (often represented by a matrix) such that the group operation in G is preserved:

⇢(g1g2) = ⇢(g1)⇢(g2) (3)

Equivariance Formally, a neural network is said to be equivariant to a group of transformations G
if applying a transformation from the group to the input results in a corresponding transformation to
the output. Mathematically, for a function f : X ! Y to be G-equivariant, the following condition
must hold:

f(⇢in(g)(x)) = ⇢out(g)f(x) (4)
for all x 2 X and g 2 G, where ⇢in : G ! GL(X) and ⇢out : G ! GL(Y) are input and output
representations (Bronstein et al., 2021). Invariance is a special case of equivariance where the output
does not change under the group action. This occurs when the output representation ⇢out(g) is trivial.
Figure 8 visualize how the equivariant and invariant networks work.

Figure 8: An equivariant model (left) ensures that its output transforms in a specific, predictable way
under a group of transformations applied to the input, preserving the structure of the transformation
(e.g., rotating the input results in a correspondingly rotated output). In contrast, an invariant model
(right) produces an output that remains unchanged regardless of any transformations applied to the
input from the same group.

Equivariance via weight-sharing One of the primary approaches to incorporating symmetry into
neural networks is through weight sharing (Satorras et al., 2021; Cohen et al., 2018; Wang et al.).
This approach enforces equivariance by constraining the network’s architecture so that the weights
are shared across different group elements. For example, in G-convolutions (Cohen & Welling,
2016), the same set of weights is shared across the transformed versions of the input, ensuring that
the network’s predictions remain consistent under those transformations. In a layer of G-steerable

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

CNNs (Weiler & Cesa, 2019), a set of equivariant kernel bases is precomputed based on the input
and output representations, and the convolution kernel used is a linear combination of this equivariant
kernel basis set, where the coefficients are trainable. Similar approaches can also be used to develop
equivariant graph neural networks (Geiger & Smidt, 2022). These architectures directly modify the
network’s layers to be equivariant, ensuring that each layer processes symmetries in a way that is
aligned with the desired group. While powerful, this approach imposes architectural constraints,
which may limit the flexibility of the network and prevent leveraging large pretrained models.

Equivariance via canonicalization An alternative to weight sharing is incorporating symmetry
through canonicalization (Kaba et al., 2022; Mondal et al., 2023), where, instead of modifying the
network’s architecture to handle symmetries, the input data is transformed into a canonical form.
In this approach, a separate canonicalization network, which is itself equivariant, preprocesses the
input, transforming it into a standard, or canonical, representation. This canonicalized input is
then passed to a standard prediction network that does not need to be aware of the symmetries. If
the corresponding inverse transformation is applied to the output of the prediction network, the
entire model becomes equivariant; otherwise, the model remains invariant. This method has several
advantages. First, it does not require altering the architecture of the prediction network, allowing for
the use of large pre-trained models without modification. Second, by ensuring that the input data is in
a canonical form, the prediction network only needs to learn the mapping from the canonical input to
the output, without needing to learn all transformed samples. This can lead to improved performance
and robustness, especially in scenarios where the prediction task does not naturally align with the
symmetry group or where architectural constraints might hinder performance. Thus, in our work,
we leverage canonicalization to achieve equivariance in the segmentation task. By transforming the
input into a canonical form using a simple equivariant canonicalization network, we ensure that our
prediction network remains unconstrained and can fully utilize its capacity for learning without the
need for architectural modifications. This approach offers the benefits of symmetry-aware processing
while maintaining the flexibility and power of unconstrained neural network architectures.

B DETAILED DATASET DESCRIPTION

Image Data Collection and Preprocessing For model development and evaluation, we collected
1,437 CT scans from 7 public datasets. A detailed summary of the datasets is provided in Table 5. In
total, 24 organs are labled in the assembled datasets, with a strong focus on segmentation targets in the
abdominal region. The organ class distribution across the datasets is shown in Fig 9. To standardize
quality and reduce domain gaps, we applied a preprocessing pipeline to all datasets. Specifically, we
mapped the Hounsfield unit range [-180, 240] to [0, 1], clipping values outside this range. To address
dimension mismatches between datasets, masks, and images, all scans and masks were resized to
1024 ⇥ 1024. The 3D scan volumes were sliced along the axial plane to generate 2D images and
corresponding masks. To ensure labeling quality, organ segments with fewer than 1,000 pixels in
3D volumes or fewer than 100 pixels in 2D slices were excluded. The finalized dataset consisted of
101,217 images, with 91,344 (90.25%) used for training and validation, and 9,873 (9.75%) reserved
for testing.

Table 5: Overview of the datasets used in this study.

Dataset # Training
scans

Testing
scans

Annotated organs1

AbdomenCT-1K 722 — Liv, Kid, Spl, Pan
MSD2 157 — Lun, Spl
WORD 100 20 Liv, Spl, LKid, RKid, Sto, Gal, Eso, Pan, Duo, Col, Int, LAG, RAG, Rec, Bla, LFH,

RFH
FLARE22 40 5 Liv, RKid, Spl, Pan, Aor, IVC, RAG, LAG, Gal, Eso, Sto, Duo, LKid
CHAOS 40 — Liv
BTCV 30 — Spl, RKid, LKid, Gal, Eso, Liv, Sto, Aor, IVC, PVSV, Pan, RAG, LAG
RAOS3 — 40 Liv, Spl, LKid, RKid, Sto, Gal, Eso, Pan, Duo, Col, Int, LAG, RAG, Rec, Bla, LFH,

RFH, Pro, SV

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Test Data Creation Different from existing work that solely chases for a higher segmentation
accuracy, in this paper, we expect to evaluate the segment model’s performance in dual tasks: The
free-form text understanding ability and segmentation ability.

Figure 9: Distribution of labeled organs across the collected datasets. The image count for each organ
and its corresponding ratio is marked in the plot.

In order to verify the model’s ability to understand the language descriptions, we construct a query
dataset (test set) from two resources: 1. Real-world human queries; 2. LLM-generated synthetic
queries. For the first kind of real-world queries, we have two groups of annotators, Domain Expert

and Non-Expert. Domain experts are from clinical hospitals who provide the query materials from
their daily diagnosis notes, this group of people tends to use professional vocabulary, and their
intention might not be explicitly expressed in a professional report, such as in the report, the doctor
writes ‘Concerns in the hepatic area that warrant a more focused examination’, which implicitly
means the ‘liver is the area of interest under certain symptom’. Another group of query providers is
the non-expert, who are not specialized in clinical or equipped with medical specialties. We explain
to this group of people that their task is to write a sentence and show the intention of segmenting
the target organ/tissue in a CT scan, e.g., the liver. This aspect of real queries represents a more
general and non-specialist approach to expressing the need for segmentation (such as in the student
learning scenarios). Apart from real query data, we incorporate synthetic test queries to enlarge the
test samples and add randomness in various expressions. The synthetic test is generated by GPT-4o
following the template shown below:

The Prompt Template to Generate Synthetic Queries.

System Description: You are a doctor with expert knowledge of organs.

Task Description: Now you are making a diagnosis of a patient on the CT scan over {body part}.
You find a potential problem on {organ name} and want to see more details in this area, please query
for segmentation by free-form text. Please make sure to deliver the segment target explicitly, and you
are encouraged to propose various expressions.

Format: {segmentation query}, {explain reason}.

Example: Given that, {body part} is abdomen and {organ name} is liver.
1For simplicity, the following abbreviations are used: Liv (liver), Kid (kidney), Spl (spleen), Pan (pancreas),

Col (colon), Int (intestine), Sto (stomach), LKid (left kidney), RKid (right kidney), Aor (aorta), Eso (esophagus),
IVC (inferior vena cava), Duo (duodenum), RAG (right adrenal gland), LHF (left head of femur), Bla (bladder),
Rec (rectum), Gal (gallbladder), LAG (left adrenal gland), RHF (right head of femur), PVSV (portal vein and
splenic vein), Pro (prostate), and SV (seminal vesicles).

2Only the lung and spleen subsets from MSD were used.
3We used CancerImages (Set1) from RAOS as our out-of-domain test set. To avoid overlap, any scans in

RAOS that were extended from WORD were excluded from testing.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Your response should be something like: {Please identify the liver for me for more analysis.}
{Because elevated liver enzymes alanine aminotransferase (ALT) in the blood tests might indicate
liver inflammation or damage}.

Output: {Placeholder}

The overall structure of the test dataset is shown in Figure 10. It consists of 25% expert queries, 25%
normal queries, and half synthetic queries. In total, we have 2880 (24 organs x10 queries x3 x2x2)
text queries. Each of the queries is labeled with the correct organ name to segment. This will be used
to evaluate the ability of our learned TextEncoder model to understand correct intentions based on
free-form language description.

At the same time, the organ names are connected to another segmentation test set, which contains
several (how many) medical images such as CT scans, MRIs, etc. And stand on the results of
interest-category identification, we conduct further segmentation result analysis, including the normal
segmentation precision study, and also the equivariant identified segmentation study.

[Real]
Expert Queries:

‘Concerns in the hepatic area
that warrant a more focused
examination.’

[Real]
Normal Queries:

‘I want to get the liver area.’
‘Can you show me the liver?’

[Synthetic]
Template based free-form
query generation:

‘I am interested in a detailed
view that isolates the liver
from surrounding tissues and
organs, as I have observed a
potential issue in this area on
the CT scan.’

Liver

Language
Test Set

Expert
25%

Non-expert
25%

Synthetic
50%

Figure 10: The Language Test Set for Verifying the Query Understanding Ability. It contains three
aspects of components, real data - expert group, real data - non-expert group, and synthetic data.

Figure 11: Positional prompt dataset provider split, we take the slices with more than ↵ labels, where
we set ↵ = 8 in this illustration (while 13 is the total label amount) as a split threshold, ensure that
the slice used for training the label-agnostic provides sufficient semantics in the image content, such
as left, upmost or largest, etc. Similarly, we process the other datasets such as BTCV and WORD.

19

