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A SUPPLEMENTARY

A.1 DATA COLLECTION SETUP AND TACTILE-HAND VISUALIZATION

Figure. 5 shows our data collection setup and tactile-hand visualization to facilitate understanding
of the hand-tactile pressure map signal. Additional Visualization and Data Overview We add

a) Data collection setup
b) tactile glove visualization 

Figure 5: Data Collection Setup and Tactile-Hand Visualization
additional visualization to illustrate our data in Fig. 6. Visualization of motion sequences can be
found on our supplementary website. Background on Glove The glove is made using piezoresistive

Figure 6: Data Visualization. We show a demo of our data with 12 samples from our 89 objects.

film. The working principle of this material is when the material stretches, it causes the deformation
of carbon nanotubes, which then induces the relative electrical resistance changes and thus difference
in voltage readouts. The material in general is sturdy and the material property does not change much
with wear and tear.

Glove Calibration. The glove only needs to be calibrated once to convert the sensor readouts in
voltages to force magnitudes in Newton before use. We show the process of data calibration in Fig. 7.

a) Calibration Setup b)             Calibration Signal Conversion

Figure 7: Sensor Calibration. The left shows the sensor calibration setup before the embroidery of
the insulation layer. The right shows the collected calibration data from 0 to 50N of continuous force
applied to each of the 16× 16 voltage readout positions.
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A.2 DOWNSTREAM TASKS

To motivate downstream robotic applications, we show two experiments inspired by robotic perception
applications. The high-level intuition is that if our learned embedding space trained with human-
collected data can sufficiently represent data collected by robotic arms, we can transfer knowledge
from human demonstration to robotic tasks. First, we collected some data using a robotic hand
to show the cross-modal prediction results leveraging the pretrained embedding with human data.
Additionally, we would like to see how much knowledge is transferrable from human demonstrations
to data to a robotic hand. To achieve this goal, we train a simple classifier using our trained embedding
space with human data to enable manipulation and object classification through tactile sequences.
While we only show two applications here, other downstream tasks can be enabled by our proposed
method and dataset.

Robotics inspired application. We recognize that different robotic hands might induce different
levels of domain gap. To minimize the domain gap, we use a robotic motor to drive a tenden-driven
OpenBionics hand, and record a tactile sequence shown below Fig. 8 a) and b). We use test-time
optimization approach to find a latent code in the shared embedding space to decode into other
modalities. We notice that because the robotic hand is non-conformable, the collected sequences of
data are of inherent domain gap and thus result in different possible predictions that equally fit the
optimization energy.

a) OpenBionic Hand b)      Robotic Data d)      Tactile to Video Predictionc)      Video to Tactile Prediction

Figure 8: Robotic application using shared manifold learning trained with human collected data. a)
and b) show the task and data collection setup. c) d) shows the cross-modal prediction results of only
using the video or the tactile sequence to infer the other modality of signals. The top row shows the
query signal, and the bottom two rows showcase different predictions made by our method.
Object classification with shared embedding . One other potential application is to help robotic
tasks in low-light settings, by equipping robotic hands with tactile sensors. We can leverage our
pretrained cross-modal manifold to recognize objects and even operate objects when vision is
impaired. With our trained shared latent space we train a classifier to classify the corresponding
object category and manipulation type from the signal sequence. We withhold some latent codes
from the classifier to test the baseline performance on human data. We use test-time optimization
to obtain a latent code in the shared embedding space using the robotic tactile data. We show the
performance in Table. 2 below.

test data type manipulation object

human test data 0.96 0.97
robotic tactile data 0.86 0.48

Table 2: Object classification of human and robotic data using shared embedding space
We notice that human manipulation and robotic manipulation share a significant amount of trans-
ferrable and common knowledge. In that a classifier trained using the shared latent code that has
only seen human data and also be used to classify robotic manipulation data. On the other hand, the
non-conformability of the robotic hand significantly restricts the information on the details of the
object geometry in the tactile signal and thus limits the accuracy of classifying objects using robotic
tactile data.

While these are simple robotic applications of our proposed dataset and method, we note here that
other more advanced robotic applications are possible. We focus on learning a joint representation
for different modalities of signals and leave more challenging robotic tasks as future work.
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A.3 MULTI-MODAL PREDICTION

We randomly initialize three different latent codes to start our test-time optimization for a given
tactile video sequence. We show that we are able to recover different cross-modal sequences with
different initializations, shown in Figure. 9. We want to note that it is possible that different latent
initializations converge to the same mode of prediction when there exists a global optima, or when
two latent codes are initialized around the same neighborhood of a local minima.

Query Signal

Prediction 1

Prediction 2

Prediction 3

GT

Figure 9: MultiModal Prediction via variational initialization test-time optimization.

A.4 ABLATION EXPERIMENTS

Table 3: Ablation Study
video to tactile tactile to video

first frame inference 0.0028 0.0247
w/out projection layer 0.0022 0.0194
dim zh= 256 0.0018 0.0212
dim zh= 128 0.0018 0.0201
dim zh= 64 0.0019 0.0196
dim zh= 5 0.0023 0.0188
ours 0.0019 0.0174

We show our ablation experiments in Table. 3. We observe that removing the projection layer
results in decrease of cross-modal prediction performance. We can also observe that by varying the
latent dimension of the tactile signal zh, the performance for video to tactile prediction does not
change too much, which means that zh is over-parameterized. Through decreasing the latent dim
zh, performance for tactile to video starts to increase. when latent dimension decreases, the neural
field enforce the latent code to use limited space to register the same amount of information, and thus
captures the principled information in sparse signals such as tactile. Our proposed method leverages
latent dimension of 16, which trades off the marginal gain of accuracy reconstructing tactile signal,
but captures much more principled information in the tactile space. Finally, we also show that our
model can also be directly adopted to only use the first frame signal during test-time optimization, we
notice a performance decrease from using the full sequence data. We believe the difference resulted
from an increase of variational inference, or in other words, with less optimization signal, there are
now more local minima during test-time optimization that fit the optimization objective.

A.5 IMPLEMENTATION DETAILS

All our manifolds are randomly initialized with Gaussian distribution with (µ,σ) = (0, 1). Tactile
manifold Mh is initialized to be 16 dimensional and all other manifolds are initialized to be 256
dimensional. We use MLPs to express our neural fields Φ. All MLP neural fields are of three
layers and 512 hidden dimension. Specifically, the shared manifold is initialized to be an 256
dimensional embedding of with Ntrain = 123, 561 randomly sampled from a Gaussian distribution
of (µ,σ) = (0, 1). Γc is parameterized by a 256 × 256 matrix, and Γh is parameterized using a
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256 × 16 matrix. Neural fields ϕc,ϕx,ϕh are all 6-layer MLPs using ReLU activation and 512
dimensional hidden-layers. We also use positional encoding for our signal-agnosticneural field with
frequency coefficient set to ω = 30.

A.6 TRAINING DETAILS

All baseline methods and our proposed method are implemented using the open-source Py-
torch (Paszke et al., 2019) package with CUDA 11.7 backend. We use the same hardware and
training setup to train all methods mentioned in this work. We use a workstation equipped with
NVIDIA Tesla V100 GPUs and 64-core AMD CPUs. We use Adam optimizer for training the
baselines and our methods with learning rate initialized to be 1e − 3; batch size is set to 64. All
methods are trained to full convergence. For test-time optimization of latent code for GEM (Du et al.,
2021) and our proposed approach, we use Adam optimizer to run 1000 timesteps with batchsize of
32. For 1000 timesteps, we use 56 seconds in total, 17.87 iteration/second, on average every example
use 1.75 seconds.
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