
Limitations: The main contributions of our works are theoretical. From a theoretical point of view,
the limitations of our paper are discussed in Sections 3 and 5. In particular, we believe that tightening
the gap between the upper and lower bounds in regret will require novel and non-trivial algorithmic
ideas - we leave this as an important direction of future work.

Broader Impact: Due to the theoretical nature of the work, we do not foresee any adverse societal
impact.

A Low rank matrix completion

Below, we describe the Estimate sub-routine to estimate a M⇥N low rank matrix Q of rank r given
a partially observed set of noisy entries {Zij}(i,j)2⌦ corresponding to a subset ⌦ ✓ [M]⇥ [N]. Here
EZij = Qij for all (i, j) 2 ⌦ and furthermore, {Zij}(i,j)2⌦ are independent sub-gaussian random
variables with variance proxy at most �2.

Algorithm 4 Estimate (Low-rank matrix completion ) [17]

Require: Matrix dimensions (M,N), noise variance �
2, rank r, subset of indices that are observed ⌦ ✓

[M]⇥ [N] and noisy observations {Zij}(i,j)2⌦.
1: Partition the rectangular matrix into square matrices. Without loss of generality, assume M  N. For each

i 2 [N], randomly set ⇣i to be a value in the set [dN/Me] uniformly at random. Partition indices in [N]
into [N](1), [N](2), . . . , [N](k) where k = dN/Me and [N](q) = {i 2 [N] | ⇣i = q} for each q 2 [k]. Set
⌦(q)  ⌦ \ ([M]⇥ [N](q)) for all q 2 [k]. {If M � N, we partition the indices in [M].}

2: for q 2 [k] do
3: Solve the following convex program with � = C��

p
|⌦| /max(M,N), for some constant C� > 0

min
eQ(q)2RM⇥|[N](q)|

X

(i,j)2⌦(q)

(eQ(q)
i�u(j) � Zij

⌘2

2
+ �keQ(q)k?

where keQ(q)k? denotes nuclear norm of matrix eQ(q) and �u(j) is index of j in set [N](q).
4: end for
5: Return eQ 2 RM⇥N such that eQ[M],[N](q) = eQ(q) for all q 2 [k].

B Explore-Then-Commit (ETC)

We first present a greedy algorithm in the blocked setting with B = 1 (no repetition) that uses the
Explore-Then-Commit (ETC) framework. Such an algorithm has two disjoint phases - exploration
and exploitation. We will first jointly explore the set of items (without repeating same item for any
user) for all users for a certain number of rounds and compute an estimate eP of the reward matrix P.
Subsequently, in the exploitation phase, for each user, we recommend the best estimated distinct items
(that have not been recommended in the exploration phase to that user) inferred from the estimated
reward matrix eP. Note that if we explore too less, then our estimate will be poor and hence we will
suffer large regret once we commit in the exploitation phase. On the other hand, if we explore too
much, then the exploration cost will be high. Our goal is to balance both the exploration length and
the exploitation cost under the blocked setting. Thus, we obtain the following result:
Theorem 3. Consider the GBB setting with M users, C = O(1) clusters, N items, T recommendation
rounds and blocking constraint B = 1. Set d2 = min(M,N). Let R(t)

u⇢u(t)
be the reward in each

round, defined as in (1). Suppose d2 = ⌦(µr log(rd2)). Let P 2 RM⇥N be the expected reward
matrix that satisfies the conditions stated in Lemma 1 , and let �2 be the noise variance in rewards.
Then, Algorithm 5, applied to the online rank-r matrix completion problem under the blocked setting
guarantees the regret defined as in eq. 2 to be:

Reg(T) = eO
⇣
µT2/3||P||1/31 max

⇣
1,

N

M

⌘1/3
+ µ

2||P||1 max
⇣
1,

N

M

⌘
+ ||P||1T�2

⌘
. (6)

In order to understand the result, note that the second term in the regret bound stems from the fact
that in our algorithmic framework, the low rank matrix completion module needs a certain number of
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Algorithm 5 ETC (Explore-Then-Commit Algorithm with Blocking constraint B = 1)

Require: users M, items N, rounds T, noise �
2, rank r of P.

1: Set p = eO
⇣
(NkPk1)�2/3

⇣
T�rp
d2

p
µ3
⌘2/3W µ2

d2

⌘
. Set d2 = min(M,N) and � = C�

p
d2p for

constant C.
2: For each tuple of indices (i, j) 2 [M] ⇥ [N], independently set �ij = 1 with probability p and

�ij = 0 with probability 1� p.
3: Denote ⌦ = {(i, j) 2 [M]⇥ [N] | �ij = 1} and m = maxi2[M] | |j 2 [N] | (i, j) 2 ⌦| to be the

maximum number of index tuples in a particular row. For all (i, j) 2 ⌦, set Maskij = 0.
4: for rounds t = 1, 2, . . . ,m do
5: For each user u 2 U , recommend an item ⇢u(t) in {j 2 [N] | (u, j) 2 ⌦,Maskuj = 0} and

set Masku⇢u(t) = 1. If not possible then recommend any item ⇢u(t) in [N] s.t. (u, ⇢u(t)) 62 ⌦

and has not been recommended yet to user u. Observe R(t)
u⇢u(t)

.
6: end for
7: Compute the estimate eP 2 RM⇥N as output of eP  

Estimate([M], [N],�2
, r,⌦, {R(t)

u⇢u(t)
)}t2[m]).

8: for each of remaining rounds do
9: Set j0u = argmaxj2[N]

ePue⇡u(j) for each user u, s.t. e⇡u(j0u) has not been recommended before
to u.

10: For each user u 2 [M], recommend the item e⇡u(j0u) to user u.
11: end for

observed indices and therefore a certain number of exploration rounds (note that p � Cµ
2
d
�1
2 log3 d2

for some constant C > 0 in Lemma 1). Similarly, the third term stems from the failure of the
estimation module; again, the term T�2 can be replaced by T�c for any constant c > 0. The first
term in the regret bound captures the dependence on the number of rounds T - the scaling of T2/3 is
sub-optimal and our subsequent goal is to improve this dependence to the rate of

p
T.

Proof of Theorem 3. Suppose we explore for a period of S rounds such that the exploration period
succeeds with a probability of 1� ⌫. Conditioned on the event that the exploration period succeeds,
we obtain an estimate eP of the reward matrix P satisfying kP� ePk1  ⇢. Recall ⇡u : [N]! [N]
to be the permutation on [N] such that for any i, j 2 [N]; i < j, we have Pu⇡u(i) � Pu⇡u(j).
Similarly, denote e⇡u : [N]! [N] such that for for any i, j 2 [N]; i < j, we have ePue⇡u(i) � ePue⇡u(j).
Now consider any index i 2 [T] for which we will analyze Pue⇡u(i) � Pu⇡u(i) which is the error
if we choose the i

th item according to the estimated matrix eP (instead of P). There are several
cases that we need to consider. First, suppose e⇡u(i) = ⇡u(j) where j  i. In that case, we have
Pue⇡u(i) �Pu⇡u(i) � 0. Now, consider the other case where j > i implying that the element in the
j
th position in the permutation ⇡u has shifted to the left in e⇡u. In order for this to happen, there

must exist an element i1  i  i2 for which e⇡u(i2) = ⇡u(i1) implying that an element i1 in the
permutation ⇡u has shifted to the right in e⇡u. Therefore,

Pue⇡u(i) �Pu⇡u(i) = Pue⇡u(i) � ePue⇡u(i) +
ePue⇡u(i) � ePue⇡u(i2)

+ ePue⇡u(i2) �Pue⇡u(i2) +Pue⇡u(i2) �Pu⇡u(i) � �2⇢

where we used the fact that kP � ePk1  ⇢, ePue⇡u(i) � ePue⇡u(i2) � 0 (since i  i2), Pue⇡u(i2) �
Pu⇡u(i) = Pu⇡u(i1) �Pu⇡u(i) � 0 (since i1  i). Therefore, at each step of the exploitation stage,
for each user u, we recommend one of the top T� S items (as inferred from eP) with the highest
reward that have not been recommended until that round to the user u; in each such step, we will suffer
a regret of at most 2⇢ if we compare with the item at the same index in ⇡u. As before, conditioned on
the event that the exploration fails (and in the exploration stage as well), the regret at each step can be
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bounded from above by 2kPk1. In that case, we have

Reg⇧(T) =
1

M

X

u2[M]

X

t2[T]

Pu⇡u(t) �
X

t2[T]

Pu⇢u(t)  max
u2[M]

⇣ X

t2[T]

Pu⇡u(t) �
X

t2[T]

Pue⇡u(t)

⌘

 2SkPk1 + 2(T� S)⇢Pr(Exploration succeeds) + 2(T� S)kPk1 Pr(Exploration fails)
 2SkPk1 + 2T⇢+ 2T�kPk1.

We use Lemma 1 to set S = O

⇣
Np +

p
Np logM��1

⌘
such that ⇢ = O

⇣
�rp
d2

q
µ3 log d2

p

⌘
and

⌫ = 1� � �O(d�3
2 ). We have

Reg(T)  O

⇣
Np+

p
Np logM��1

⌘
kPk1 + TO

⇣
�rp
d2

s
µ3 log d2

p

⌘
+ T(� + d

�3
2 )kPk1.

For simplicity, we ignore the logarithmic and lower order terms and attempt to minimize NpkPk1 +

T
⇣

�rp
d2

q
µ3 log d2

p

⌘
(Simplified Expression) by choosing p = (NkPk1)�2/3

⇣
T�rp
d2

p
µ3 log d1

⌘2/3
,

� = T�4. If p � Cµ
2
d
�1
2 log3 d2, then notice that Np � 1 and therefore Np +

p
Np logM��1 =

O(Np
p
logM��1). Subsequently, we have

Reg(T) = O

⇣
T2/3(�2

r
2kPk1)1/3

⇣
µ
3N log d2

d2

⌘1/3
log
p
MT+ kPk1T�2

⌘
.

There exists an edge case when the value of p that minimizes the simplified expression satisfies
p  Cµ

2
d
�1
2 log3 d2. Then we can substitute p = Cµ

2
d
�1
2 log3 d2. In that case, the second term

in the simplified expression will still be bounded as before. On the other hand the first term in the
simplified expression will now be bounded by O(Nµ

2

d2
log3 d2 log

2(MNT)||P||1). Hence, our regret
will be bounded by

Reg(T) = O

⇣
T2/3(�2

r
2kPk1)1/3

⇣
µ
3N log d2

d2

⌘1/3
log
p
MT+

Nµ2

d2
log5(MNT)||P||1 + kPk1T�2

⌘

= eO
⇣
µT2/3||P||1/31 max

⇣
1,

N

M

⌘1/3
+ µ

2||P||1 max
⇣
1,

N

M

⌘
+ ||P||1T�2

⌘
.

C Experiments

We conduct detailed synthetic experiments in order to validate the theoretical guarantees/properties
of our algorithm. For this purpose we use a simplified version of B-LATTICE described in Alg. 6 (all
experiments have been performed on a Google Colab instance with 12GB RAM) :

In PB-LATTICE(Alg. 6), we do not use the exploit component for simplicity. Intuitively, if the
user is recommended a golden item during the explore component, it is a good event in any case.
Furthermore, in Step 14, we use k-means to cluster the users. Since we obtain a significantly large
embedding vector for each user in Step 13, k�means is quite practical.

We run PB-LATTICEon several synthetic datasets. There are two main baselines for us to consider 1)
Greedy Algorithm namely Alg. 5 2) In the setting where the user u, on being recommended item
j provides a like (+1) with probablity Puj and a dislike (�1) with probability 1 � Puj , we also
compare with Collaborative-Greedy in [4]. However, recall that [4], even in the restricted setting,
only provides theoretical guarantees on the number of likeable items (items with probability of liking
> 0.5) recommended during the course of T rounds.

We generate three synthetic datasets to validate our algorithms. For each of them, we take M = 150
users, N = 150 items and T = 60 rounds (hence the total items recommended will be 9000). The
reward matrix P = UVT (U 2 RM⇥C and V 2 RN⇥C) is generated as in [25] - in the i

th row of
U, the (i%C)th entry is set to be 1 while the other entries are 0; the entries of V are sampled in the
following way for the three datasets.
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(a) V has entries distributed according to N (0, 25). We
observe R(t)

u⇢u(t) = N (Pu⇢u(t)), 0.25)

(b) V has entries generated according to N (0, 25). We
observe R(t)

u⇢u(t) = N (Pu⇢u(t)), 0.25)

(c) V has entries distributed according to U(0, 5). We
observe R(t)

u⇢u(t) = N (Pu⇢u(t)), 0.25)

(d) V has entries distributed according to U(0, 5). We
observe R(t)

u⇢u(t) = N (Pu⇢u(t)), 0.25)

(e) V has entries distributed in [0.05, 0.95] with equal
probability. We observe R(t)

u⇢u(t) = 2Ber(Pu⇢u(t))� 1

(f) V has entries distributed in [0.05, 0.95] with equal
probability. We observe R(t)

u⇢u(t) = 2Ber(Pu⇢u(t))� 1

Figure 1: Cumulative Regret of the greedy algorithm (Alg. 5) and the Blocked LATTICE algorithm
(simplified version in Alg. 6). In the setting where our observations are in {+1,�1} i.e. the user
likes (+1) an item with probability p and dislikes with probability 1� p, we also compare with the
algorithm provided in [4] named Collaborative-Greedy. In all our settings, we have M = 150 users,
N = 150 items, C = 4 clusters and T = 60 rounds. The ground truth reward matrix P = UVT is
generated in the following way: each row of U is a standard basis vector while each entry of V is
sampled independently from N (0, 25) in (a) , each entry of V is sampled independently from U(0, 5)
in (b) and each entry of U is sampled independently from U(0, 1) in (c). In (a) and (b), gaussian
noise with variance 0.25 is added to the expected observation and in (c), we observe +1 (probability
is expected reward) or -1. Notice that PB-LATTICE has 1) a small cold-start period 2) always makes
good recommendations 3) better empirical rewards than other baselines.
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Algorithm 6 PB-LATTICE (Practical Blocked Latent bAndiTs via maTrIx ComplEtion with blocking
constraint B = 1)

Require: Phase index `, phase length m`, List of disjoint nice subsets of users M(`), list of corre-
sponding subsets of active items N (`), clusters C, rounds T, noise �

2
> 0, round index t0, gap

factor ⌫`.
1: Set � = 10�

p
(m`/M).

2: for rounds t0 + 1, t0 + 2, . . . ,min(t0 +m,T) do
3: for i

th nice subset of users M(`,i) 2M(`) with active items N (`,i) (ith set in list N (`)) do
4: Initialize ⌦(i) = �
5: for user u in M(`,i) do
6: Choose a random item j 2 N (`,i) for recommendation to user u. If j is not blocked,

recommend j to user u and observe Zuj to be the feedback from user u for item j. If
j is blocked, then recommend any j

0 2 N (`,i) that is unblocked for user u 2 M(`,i).
Observe Zuj0 to be the feedback from user u for item j

0.
7: Update ⌦(i) = ⌦(i) [ {(u, j)}
8: end for
9: end for

10: end for
11: for i

th nice subset of users M(`,i) 2M(`) with active items N (`,i) (ith set in list N (`)) do
12: Initialize M(`+1) = [] and N (`+1) = [].
13: Compute T 2 RM⇥N by solving the convex program

min
T2RN⇥M

1

2

X

(i,j)2⌦(i)

⇣
Zij �Tij

⌘2
+ �kTM(`,i),N (`,i)k?, (7)

14: Solve k-means for users in M(`,i) using the vector embedding formed by the rows in
TM(`,i),N (`,i) . Choose best k  C by using ELBOW method. Denote the cluster of users by
{M(`,i,j)}j .

15: for each cluster of users M(`,i,j) do
16: Compute set of active arms N (`,i,j) as {s 2 N (`,i) | Tus � Tue⇡u(T) � ⌫` for some u 2

M(`,i,j)}. Here e⇡u is the permutation of the surviving items in N (`,i) in descending order
of estimated reward for user u.

17: Append M(`,i,j) to M(`+1) and N (`,i,j) to N (`+1).
18: end for
19: Compute m`+1, ⌫`+1 as a function of `. Set t = min(t0 +m,T).
20: If t < T, invoke Algorithm PB-LATTICE(phase `+1, phase length m`+1, list of users M(`+1),

list of items N (`+1), clusters C, rounds T, noise �
2, round index t0 +m, gap factor ⌫`+1).

21: end for

1. (D1:) Each entry of V is sampled from a gaussian distribution N (0, 25) with mean zero and
variance 25. User u on being recommended item j provides a random feedback distributed
according to N (Puj , 0.25).

2. (D2:) Each entry of V is sampled from a uniform distribution U(0, 5) with range in [0, 5].
User u on being recommended item j provides a random feedback distributed according to
N (Puj , 0.25).

3. (D3:) Each entry of V is sampled from a uniform distribution [0.05, 0.95] with equal
probability. User u on being recommended item j provides a like (+1) with probability
Puj and a dislike (�1) with probability 1�Puj .

For the PB-LATTICEalgorithm (Alg. 6), we choose the hyper-parameters on the phase lengths and gap
parameters as m` = 10 + 2` and ⌫` = ||P||1/(8 · 2`). Since PB-LATTICEis a recursive algorithm,
we initialize PB-LATTICEwith phase index 1, phase length 12, list of users [[M]], list of items [[N]],
clusters C, rounds T, noise �

2, round index 1, gap factor ||P||1/16. For the greedy algorithm
(Alg. 5), we experiment with two exploration periods (m = 10 and m = 30). Finally, for the
Collaborative-Greedy algorithm in [4], we choose ✓ = 0.5 and ↵ = 0.5.
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Results and Insights: The cumulative reward until round t (defined as M�1
Pt

j=1

PM
u=1 Pu⇢u(j))

and the round wise reward at round t (defined as M�1
PM

u=1 Pu⇢u(t)) is plotted for all the three
datasets D1, D2, D3. in Figures 1a, 1b, 1c, 1d, 1e and 1f. Apart from obtaining good empirical
rewards, PB-LATTICEhas several practically relevant properties which are demonstrated through our
experiments:

1. Note from Figures 1b and 1d that the greedy algorithm has a large cold-start period for good
exploitation properties. If the exploration is too small, then the estimation becomes poor.
On the other hand, PB-LATTICEimproves in phases - therefore, it has a small cold-start
period i.e. it starts recommending relevant items very quickly and also has good estimation
guarantees

2. Collaborative-greedy in [4] proposes exploration rounds throughout the entire course of T
rounds. This is often impractical as users will demand good recommendations throughout.
This is demonstrated in Fig. 1f where the red curve (round-wise reward of Collaborative-
Greedy) has several dips but the round-wise regret of PB-LATTICEstays high.

D Detailed Proof of Theorem 1

Next, we characterize some properties namely the condition number and incoherence of sub-matrices
of P restricted to a nice subset of users. The following Lemmas 2 and 3 can be found in [25]
Lemma 2. Suppose Assumption 1 is true. Consider a sub-matrix Psub of P having non-zero singular
values �0

1 > · · · > �
0
C0 (for C0  C). Then, if the rows of Psub correspond to a nice subset of users,

we have �0
1

�0
C0
 �1

�C

p
⌧ .

Lemma 3. Suppose Assumption 1 is true. Consider a sub-matrix Psub 2 RB0⇥A0
(with SVD

decomposition Psub = eUe⌃eV) of P whose rows correspond to a nice subset of users. Then,���
��� eU
���
���
2,1

q

C⌧
N0 and

���
��� eV
���
���
2,1

q

µC
↵M0 .

Lemmas 2 and 3 allow us to apply low rank matrix completion (Lemma 1) to relevant sub-matrices
of the reward matrix P.

D.1 Main Analysis

Blocked LATTICE is run in phases consisting of exploit component and explore component indexed
by ` = 1, 2, . . . . Note that the exploit component of a phase is followed by the explore component.
However, for the first phase, the exploit component has a length of zero rounds. Importantly note
that any phase (say `) for distinct nice subsets of users M(`,i)

,M(`,j) will be run asynchronously as
reward observations corresponding to one subset is not used to determine the policy for any other
subset of users. At the beginning of the explore component of each phase `, we have the following
set of desirable properties:

(A) We will run the explore component of phase ` asynchronously and separately for a list of
disjoint nice subsets of users M(`) ⌘ {M(`,i)

, . . . ,M(`,a`)} and respective sets of arms
N (`) ⌘ {N (`,1)

, . . . ,N (`,a`)} where a`  C such that [i2[a`]M(`,i) ✓ [M], M(`,i) \
M(`,j) = ; for any i, j 2 [a`] (i.e. the groups of users are nice subsets of [M] with no
overlap) and N (`,i) ✓ [N] (i.e. the active set of items N (`,i) for users in M(`,i) are a subset
of [N] but the active sets can overlap). The sets {(M(`,i)

,N (`,i)}i2[a`] remain unchanged
during the explore component of phase `. As mentioned before, the round at which the
explore component of the phase ` starts is different for each subset of nice users M(`,i).

(B) At any round t 2 [T] in a particular phase `, let us denote by O(`,t)
M(`,i) to be the set of

items chosen for recommendation (see Step 5 in Alg. 3) in exploit components so far (from
round t = 1) for users in M(`,i). In other words, the items in O(`,t)

M(`,i) have already been
recommended to all users in M(`,i) up to `

th phase. In that case, we also maintain that

O(`,t)
M(`,i) ✓ {⇡u(t)}T/Bt=1 .
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the best T/B items (golden items) not chosen for recommendation so far in the exploit phases
for users in M(`,i) are contained in the set of surviving items i.e. if Z = [N] \O(`,t)

M(`,i) , then
it must happen that

N (`,i) ◆
[

u2M(`,i)

{⇡u(t
0) | Z}

T/B�
���O(`,t)

M(`,i)

���
t0=1 for all i 2 [a`] (8)

Note that eq. 8 implies that for every user u 2M(`,i), there are sufficient golden items
in N (`,i) to be recommended for the remaining rounds. To see this, note that there are
T/B golden items at the beginning and no golden items which are unblocked are eliminated.
Hence the number of remaining rounds at any point must be smaller than the number of
possible allowed recommendations of golden items belonging to the surviving set of items.

(C) Furthermore, for all i 2 [a`], the set N (`,i) must also satisfy the following:
����Pu⇡u(1)|N (`,i) � min

j2N (`,i)
Puj

����  ✏` for all u 2M(`,i) (9)

where ✏` is a fixed exponentially decreasing sequence in ` (in particular, we choose ✏1 =

||P||1 and ✏` = C
02�` min

⇣
kPk1,

�
p
µ

logN

⌘
for ` > 1 for some constant C 0

> 0).

Next, at the beginning of the exploit component of phase ` + 1, we will have the following set of
desirable properties:

(a) At every round t in the exploit component of phase `+ 1, we maintain a list of disjoint nice
subsets of users M(`+1) ⌘ {M(`+1,1)

, . . . ,M(`+1,a`+1)} (where [i2[a`+1]M(`+1,i) ✓
[M]) and corresponding sets of items N (`+1,t) ⌘ {N (`+1,t,1)

, . . . ,N (`+1,t,a`+1)} where
a`+1  C and [i2[a`+1]N (`+1,t,i) ✓ [N]. Note that in the exploit component, we also use
the round index in the superscript for item subsets as they can change during the exploit
component (unlike the explore component).

(b) We ensure that for any user u 2M(`+1,i), the set of items chosen for recommendation in
the exploit component of phase `+ 1 belongs to the set of best T items i.e. {⇡u(t)}Tt=1.

Since LATTICE is random, we will say that our algorithm is (✏`, `)�good if at the beginning of the
explore component of the `

th phase the algorithm can maintain a list of users and items satisfying
properties A-C. Let us also define the event E(`)

2 to be true if properties (A-C) are satisfied at the
beginning of the explore component of phase ` by the phased elimination algorithm. We can show that
if our algorithm is (✏`, `)�good then the low rank matrix completion step (denoted by the event E(`)

3 )
in the explore component of phase ` is successful (i.e. the event E(`)

3 is true) with high probability.

Conditioned on the aforementioned two events E(`)
2 , E(`)

3 , with probability 1, during all rounds t of
the exploit component in phase `+ 1, properties a� b are satisfied and the event E(`+1)

2 is going to
be true. We are going to prove inductively that our algorithm is (✏`, `)-good for all phases indexed by
` for our choice of {✏`}` with high probability.

Base Case: For ` = 1 (the first phase), the number of rounds in the exploit component is zero and
we start with the explore component. We initialize M(1,1) = [N], N (1,1) = [M] and therefore, we
have ���� max

j2N (`,1)
Puj � min

j2N (`,1)
Puj

����  ||P||1 for all u 2 [M].

Clearly, [M] is a nice subset of users and finally for every user u 2 [M], the best T/B items (golden
items) {⇡u(t)}T/Bt=1 belong to the entire set of items. Thus for ` = 1, conditions A-C are satisfied at
the beginning of the explore component and therefore the event E(1)

2 is true. Hence, our initialization
makes the algorithm (||P||1, 1)-good.

Inductive Argument: Suppose, at the beginning of the phase `, we condition on the eventsT`
j=1 E

(j)
2 that Algorithm is (✏j , j)�good for all j  `. This means that conditions (A-C) are

satisfied at the beginning of the explore component of all phases up to and including that of ` for each
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reward sub-matrix (indexed by i 2 [a`]) corresponding to the users in M(`,i) and items in N (`,i).
Next, our goal is to run low rank matrix completion in order to estimate each of the sub-matrices
corresponding to {(M(`,i)

,N (`,i))}i2[a`].

Exploration Strategy: Consider a particular nice subset of users M(`,i) and corresponding active
items N (`,i) (s.t. |N (`,i)| � T1/3) at the beginning of the explore component of phase ` for M(`,i).
For each user u 2M(`,i), we are going to sample each item j 2 N (`,i) with probability p (to be
determined based on the desired error guarantee). Suppose the set of indices sampled in the explore
component of phase ` is denoted by ⌦(`) ✓M(`,i) ⇥ N (`,i). Now, for each user u 2M(`,i) we
recommend all the unblocked items in the set A(`)

u ⌘ {j 2 N (`,i) | (u, j) | ⌦(`)} and obtain the
corresponding noisy reward (note that for blocked items in the aforementioned set, we have already
obtained the corresponding noisy rewards).

For simplicity, we intend to complete the explore component at the same round for all users in M(`,i).
If, for two users u, v 2 M(`,i), it happens that recommendation of all items in A(`)

u is complete
for user u but recommendation of all items in A(`)

v is incomplete for user v, then for the remaining
rounds we recommend to user u arbitrary unblocked items from N (`,i). Note that this is always
possible since the set N (`,i) has sufficiently many unblocked items allowing recommendations in the
remaining rounds at beginning of explore component of phase `. We start with the following lemma
to characterize the round complexity of estimating the sub-matrix PM(`,i),N (`,i) up to entry-wise
error �`+1 with high probability using the noisy observations corresponding to the subset of indices
⌦(`):
Lemma 4. Consider a particular subset of nice users M(`,i) and corresponding active items
N (`,i) (such that min

⇣
M/(⌧C),

��N (`,i)
��
⌘
� T1/3) at the beginning of the explore component

of phase `. Suppose d1 = max(|M(`,i)|, |N (`,i)|) and d2 = min(|M(`,i)|, |N (`,i)|). Let us fix
�`+1 = ⌦(�

p
µ3 log d1/

p
d2) and condition on the event E(`)

2 . Suppose Assumptions 1 and 2 are
satisfied. In that case, in explore component of phase `, by choosing 1 � p = c

⇣
�2eµ3 log d1

�2
`+1d2

⌘
(for

some constant c > 0) and using

m` = O

⇣
�
2eµ3 log(M

W
N)

�2
`+1

max
⇣
1,

N⌧

M

⌘
logT)

⌘⌘

rounds under the blocked constraint, we can compute an estimate eP(`) 2 RM⇥N such that with
probability 1�O(T�3), we have

���
���eP(`)

M(`,i),N (`,i) �PM(`,i),N (`,i)

���
���
1
 �`+1. (10)

where �
2 is the noise variance, µ is the incoherence of reward matrix P and eµ is the incoherence

factor of reward sub-matrix PM(`,i),N (`,i) .

Proof of Lemma 4. We are going to use Lemma 1 in order to compute an estimate eP(`)
M(`,i),N (`,i) of

the sub-matrix PM(`,i),N (`,i) satisfying
���
���eP(`)

M(`,i),N (`,i) �PM(`,i),N (`,i)

���
���
1
 �`+1. Since M(`,i)

is a nice subset of users, the cardinality of
��M(`,i)

�� must be larger than M/(⌧C). Recall that ⌧ is
the ratio of the maximum cluster size and the minimum cluster size; M/C being the average cluster
size implies that the minimum cluster size is bounded from above by M/(⌧C). From Lemma 1, we

know that by using m` = O

⇣
p
��N (`,i)

�� +
q��N (`,i)

�� p log(
��M(`,i)

�� ��1)
⌘

rounds (see Lemma 1)

restricted to users in M(`,i) such that with probability at least 1� (� + d
�12
2 ) (see Remark 5),

���
���eP(`)

M(`,i),N (`,i) �PM(`,i),N (`,i)

���
���
1

= O

 
�
p
eµ3 log d1p
pd2

!
.

where d1 = max(|M(`,i)|, |N (`,i)|), d2 = min(|M(`,i)|, |N (`,i)|) and eµ is the incoherence factor
of the matrix PM(`,i),N (`,i) . In order for the right hand side to be less than �`+1, we can set
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p = c

⇣
�2eµ3 log d1

�2
`+1d2

⌘
for some appropriate constant c > 0. Since the event E(`)

2 is true, we must have

that
��M(`,i)

�� � M/(⌧C); hence d2 � min
⇣
M/(⌧C),

��N (`,i)
��
⌘

. Therefore, we must have that

m` = O

⇣
�
2eµ3 log(M

W
N)

�2
`+1

max
⇣
1,

N⌧

M

⌘
logT)

⌘⌘

where we substitute �
�1 = 1/poly(T) and furthermore, the condition of the Lemma statement

implies that d�12
2 = O(T�3). Hence, we complete the proof of the lemma.

Remark 5 (Remark 1 in [8]). The error probability can be reduced from O(� + d
�3
2 ) to O(� + d

�c
2 )

for any constant c > 0 with only constant factor changes in the round complexity m and the estimation
guarantees kP� ePk1. We will use c = 12 in rest of the paper.

Note that although eµ, the incoherence factor of the sub-matrix PM(`,i),N (`,i) is unknown, from
Lemma 3, we know that eµ is bounded from above by O(µ) (recall that C,↵, ⌧ = O(1)).

Exploration Strategy continued: In particular, we choose �`+1 = ✏`/176C at the beginning of
the explore component of phase ` for the set of users M(`,i) with active items N (`,i). One edge
case scenario is when for a particular set of nice users M(`,i), at the beginning of the explore
component of phase `, we have

��N (`,i)
��  T1/3. In this case, this set of nice users M(`,i) do not

progress to the next phase and in the explore component, we simply recommend arbitrary items
in N (`,i) to users in M(`,i) for the remaining rounds. Another interesting edge case scenario is
when d2 = min(

��M(`,i)
�� ,
��N (`,i)

�� , ) is so small that the requisite error guarantee �`+1 (eq. 10)
cannot be achieved even by setting p = 1 i.e. we recommend all the items in the active set. Recall
that by our induction assumption, N (`,i) is sufficiently large so that it is possible to recommend
unblocked items for the number of remaining rounds (say T� t` with t` being the round at which the
explore component of phase ` starts). In that case, the set of users M(`,i) do not progress to the
subsequent phase; we simply recommend arbitrary unblocked items in the set N (`,i) to the users in
M(`,i) for the remaining rounds. In both the above edge case scenarios, the explore component of
phase ` for users in M(`,i) would last for the remaining rounds from where it starts. We can now
show the following lemma:

Lemma 5. Consider a particular subset of nice users M(`,i) and corresponding surviving items
N (`,i) at the beginning of the explore component of phase `. Suppose d1 = max(|M(`,i)|, |N (`,i)|)
and d2 = min(|M(`,i)|, |N (`,i)|). Now �`+1 = ✏`/176C is such that there does not exist any
p 2 [0, 1] for which RHS in eq. 3 can be �`+1 for estimation of matrix P restricted to the rows in
M(`,i) and columns in N (`,i). In that case, we must have for all users u 2M(`,i),

(T� t`) max
y2N (`,i)

⇣
Pu⇡u(1)|N (`,i) �Puy

⌘
= eO

⇣
�C
p
µ3 log d1 max

⇣p
T,T

r
C

M⌧

⌘⌘

where t` is the round at which the explore component of phase ` starts.

Proof. Note that by our induction hypothesis, we must have B
��N (`,i)

�� � T � t` because the set
of surviving items must contain sufficient unblocked items (for recommendation in the remaining
rounds) for every user u 2M(`,i). Hence, by setting p = 1 in eq. 3, with a certain number of rounds,
we can obtain an estimate Q of P satisfying

����QM(`,i),N (`,i) �PM(`,i),N (`,i)

����
1 = O

⇣
�
p

µ3 log d1p
d2

⌘
.

Hence, this implies that our choice of �`+1 satisfies �`+1 = O

⇣
�
p

µ3 log d1p
d2

⌘
implying that ✏` =

O

⇣
�C
p

µ3 log d1p
d2

⌘
. Now, there are two possibilities: 1) either d2 =

��M(`,i)
�� implying that M/(⌧C) 
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��M(`,i)
�� 

��N (`,i)
��. In that case, we have that ✏` = O

⇣
�C1.5
p

µ3 log d1p
M⌧

⌘
. Now, because of our

induction assumption, we will have

max
y2N (`,i)

⇣
Pu⇡u(1)|N (`,i) �Puy

⌘
 ✏` = O

⇣
�C1.5

p
µ3 log d1p
M⌧

⌘
.

Therefore, for any user u 2M(`,i), if we recommend arbitrary unblocked items in N (`,i) for the
remaining rounds then we can bound the following quantity

(T� t`) max
y2N (`,i)

⇣
Pu⇡u(1)|N (`,i) �Puy

⌘
= O

⇣
�TC1.5

p
µ3 log d1p
M⌧

⌘
.

2) The second possibility is the following: d2 =
��N (`,i)

�� � B�1(T � t`). In that case, from our
induction assumption, we have that (B = ⇥(logT))

max
y2N (`,i)

⇣
Pu⇡u(1)|N (`,i) �Puy

⌘
 ✏` = eO

⇣
�C
p

µ3 log d1p
T� t`

⌘
.

and therefore

(T� t`) max
y2N (`,i)

⇣
Pu⇡u(1)|N (`,i) �Puy

⌘
 ✏`(T� t`) = eO

⇣
�C
p
µ3 log d1p
T� t`

· (T� t`)
⌘

= eO
⇣
�C
p
µ3T log d1

⌘
.

Consider M0(`) ✓M(`) to be the family of nice subsets of users which do not fall into the edge
case scenarios i.e. 1) there exists 0  p  1 for which the theoretical bound in RHS in eq. 3 can be
smaller than �`+1 2) we have

��N (`,i)
�� � T1/3. More precisely M0(`) corresponds to the set

n
M(`,i) 2M(`) with active items N (`,i) | �`+1 = ⌦

⇣�
q
µ3 logmax(

��M(`,i)
�� ,
��N (`,i)

��)
q

min(
��M(`,i)

�� ,
��N (`,i)

��)

⌘

and
���N (`,i)

��� � T1/3
o

Suppose M/(⌧C) = ⌦(T1/3). As mentioned before, the event E(`)
3 is true if the algorithm has

successfully computed an estimate eP(`) 2 RM⇥N such that for all M(`,i) 2M0(`)

���
���eP(`)

M(`,i),N (`,i) �PM(`,i),N (`,i)

���
���
1
 �`+1 for all M(`,i) 2M0` (11)

implying that for each of the distinct nice subsets M(`,i) 2 M0(`), after the explore component
of phase `, the algorithm finds a good entry-wise estimate of the sub-matrix PM(`,i),N (`,i) . In the
following part of the analysis, we will repeatedly condition on the events E(`)

2 (conditions A-C are
satisfied at the beginning of the explore component of phase `) and the event E(`)

3 (eq. 10 is true for
all nice subsets M(`,i) 2M0(`) in the explore component of phase `). Note that the event E(`)

2 is
true due to the induction hypothesis and conditioned on the event E(`)

2 , the event E(`)
3 is true with

probability at least 1�O(T�3C) (after taking a union bound over C clusters).

Fix any M(`,i) ✓M0(`) and condition on the events E(`)
2 , E(`)

3 . For each user u 2M(`,i), once the
algorithm has computed the estimate eP(`)

M(`,i),N (`,i) in eq. 11, let us denote a set of good items for
the user u by

T (`)
u ⌘ {j 2 N (`,i) | ePuj � ePue⇡u(TB�1�

���O(`,t)

M(`,i)

���)|N (`,i) � 2�`+1} (12)

R(`)
u ⌘ {j 2 N (`,i) | ePuj � ePue⇡u(1)|N (`,i) � 2�`+1} (13)
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where t is the round index at the end of the explore component of phase ` and |O(`,t)
M(`,i) | is the number

of rounds in exploit components of phases that the user u 2M(`,i) has encountered so far. Note from
our algorithm, that users in the same nice subset M(`,i) have encountered exactly the same number of
rounds in exploit components of phases until the end of phase `. Recall that users in M(`,i) have been
recommended the same set of items until blocked (unless blocked already for some user in which case
the item in question has already been recommended B times) in the exploit components of phases
until the end of phase ` (this set of items chosen for recommendation in the exploit components up
to end of phase ` is denoted by O(`,t)

M(`,i)). If we condition on the event E(`)
3 , then we can show the

following statement to be true (in the following lemma, we remove the superscript t in O(`,t)
M(`,i) for

simplicity - the round index t corresponds to the end of phase ` for users in M(`,i)):

Lemma 6. Condition on the events E(`)
2 , E(`)

3 being true. Consider a nice subset of users M(`,i) 2
M0(`) and their corresponding set of active items N (`,i) for which guarantees in eq. 11 holds. Let
O(`)

M(`,i) be the set of items that have been chosen for recommendation to users in M(`,i) in exploit
components of the first ` phases. Denote Z = [N] \ O(`)

M(`,i) . In that case, for every user u 2M(`,i),

the items ⇡u(s) | Z for all s 2 [TB�1 �
���O(`)

M(`,i)

���] must belong to the set T (`)
u .

Proof. Let us fix a user u 2M(`,i) with active set of arms N (`,i). Let us also fix an item a ⌘ ⇡u(t) |
Z for t 2 [TB�1 �

���O(`)
M(`,i)

���]. Recall that e⇡ | Z is the permutation of the items sorted in descending

order according to their estimated reward in eP(`)
M(`,i),N (`,i) . Now there are two possibilities regarding

the position of the arm a in the permutation e⇡ | Z - 1) ⇡u(t) | Z ⌘ e⇡u(t1) | Z for some t1  t

which implies that in the permutation e⇡ | Z , the position of the arm a is t1. In that case, the arm
a survives in the set T (`)

u by definition (see eq. 12) 2) Now, suppose that ⇡u(t) | Z ⌘ e⇡u(t1) | Z
for some t1  t which implies that in the permutation e⇡ | Z , the arm a has been shifted to the
right (from ⇡ | Z). In that case, there must exist another item b ⌘ ⇡u(t2) | Z for t2 > t such that
⇡u(t2) | Z ⌘ e⇡u(t3) | Z for t3  t. Now, we will have

eP(`)
ub � eP

(`)
ua = eP(`)

ub �Pub +Pub �Pua +Pua � eP(`)
ua  2�`+1

where we used the following facts a) conditioned on the event E(`)
3 , we have eP(`)

us �Pus  �`+1 for
all u 2M(`,i)

, s 2 N (`,i) b) Pub �Pua  0 by definition. Hence, this implies that a 2 T (`)
u .

Corollary 1. Condition on the events E(`)
2 , E(`)

3 being true. Consider a nice subset of users M(`,i) 2
M0(`) and their corresponding set of active items N (`,i) for which guarantees in eq. 11 holds.
Suppose t` is the final round of the explore component of phase ` for users in M(`,i). In that case,
for user u, the set T (`)

u contains sufficient items that are unblocked and can be recommended for the
remaining T� t` rounds.

Proof. From Lemma 11, we showed that T (`)
u comprises the set of items ⇡u(s) | Z for all s 2

[TB�1 �
���O(`)

M(`,i)

���] where Z = [N] \ O(`)
M(`,i) . Now, suppose the kth item in the set Hu ⌘ {⇡u(t0) |

Z}
T�

���O(`)

M(`,i)

���
t0=1 has been recommended to user u bk < B times in previous phases. In that case, the

number of allowed recommendations of items in T (`)
u is at least TB�1 � B

���O(`)
M(`,i)

����
P

k2Hu
bk

which is more than the remaining rounds that is at most TB�1�B
���O(`)

M(`,i)

����
P

k2Hu
bk (B

���O(`)
M(`,i)

���
rounds have already been used up when the golden items were identified and recommended).

Consider a nice subset of users M(`,i) 2M0(`) and its corresponding active set of items N (`,i) for
which eq. 11 holds true. At the end of the explore component of phase `, based on the estimate
eP(`)
M(`,i),N (`,i) , we construct a graph G(`,i) whose nodes are given by the users in M(`,i). Now, we
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draw an edge between two users u, v 2M(`,i) if
���eP(`)

ux � eP(`)
vx

���  2�`+1 for all considered items

x 2 N (`,i).
Lemma 7. Condition on the events E(`)

2 , E(`)
3 being true. Consider a nice subset of users M(`,i) 2

M0(`) and their corresponding set of active items N (`,i) for which guarantees in eq. 11 holds.
Consider the graph G(`,i) formed by the users in M(`,i) such that an edge exists between two users
u, v 2 M(`,i) if

���eP(`)
ux � eP(`)

vx

���  2�`+1 for all considered items x 2 N (`,i). Nodes in G(`,i)

corresponding to users in the same cluster form a clique. Also, users in each connected component of
the graph G(`,i) form a nice subset of users.

Proof. For any two users u, v 2M(`,i) belonging to the same cluster, consider an arm x 2 N (`,i).
We must have

eP(`)
ux � eP(`)

vx = eP(`)
ux �Pux +Pux �Pvx +Pvx � eP(`)

vx  2�`+1.

Now, consider two users u, v 2M(`,i) that belongs to different clusters P,Q respectively. Note that
since the event E(`) is true, M(`,i) is a union of clusters comprising P,Q. Furthermore, we have
already established that nodes in G(`,i) (users in M(`,i)) restricted to the same cluster form a clique.
There every connected component of the graph G(`,i) can be represented as a union of a subset of
clusters.

Lemma 8. Condition on the events E(`)
2 , E(`)

3 being true. Consider a nice subset of users M(`,i) 2
M0(`) and their corresponding set of active items N (`,i) for which guarantees in eq. 11 holds. In
that case, for any subset Y ✓ N (`,i) and any s 2 [|Y|], for every user u 2M(`,i), we must have

ePue⇡u(1)|Y � ePue⇡u(s)|Y � 6�`+1  Pu⇡u(1)|Y �Pu⇡u(s)|Y  ePue⇡u(1)|Y � ePue⇡u(s)|Y + 6�`+1.

Proof. Since, we condition on the event E(`)
3 , we must have computed an estimate eP(`), an estimate

of P restricted to users in M(`,i) and items in N (`,i) such that
���
���eP(`)

M(`,i),N (`,i) �PM(`,i),N (`,i)

���
���
1
 �`+1.

We can decompose the term being studied in the following manner:

eP(`)
u⇡u(1)|Y �

eP(`)
u⇡u(s)|Y

= eP(`)
u⇡u(1)|Y �

eP(`)
ue⇡u(1)|Y + eP(`)

ue⇡u(1)|Y �
eP(`)
ue⇡u(s)|Y + eP(`)

ue⇡u(s)|Y �
eP(`)
u⇡u(s)|Y .

Let us bound the quantity eP(`)
ue⇡u(s)|Y �

eP(`)
u⇡u(s)|Y . In order to analyze this quantity, we will consider

a few cases. In the first case, suppose that ⇡u(s) | Y = e⇡u(t1) | Y for t1 � s. In that case, we
will have that eP(`)

ue⇡u(s)|Y �
eP(`)
u⇡u(s)|Y � 0. In the second case, suppose ⇡u(s) | Y = e⇡u(t2) | Y for

t2 < s and ⇡u(t3) | Y = e⇡u(s) | Y for t3 < s. In that case, we have

eP(`)
ue⇡u(s)|Y �

eP(`)
u⇡u(s)|Y

= eP(`)
ue⇡u(s)|Y �Pue⇡u(s)|Y +Pue⇡u(s)|Y �Pu⇡u(s)|Y +Pu⇡u(s)|Y � eP

(`)
u⇡u(s)|Y

= eP(`)
ue⇡u(s)|Y �Pue⇡u(s)|Y +Pu⇡u(t3)|Y �Pu⇡u(s)|Y +Pu⇡u(s)|Y � eP

(`)
u⇡u(s)|Y � �2�`+1

where we used the fact Pu⇡u(t3)|Y �Pu⇡u(s)|Y � 0. In the final case, we assume that ⇡u(s) | Y =
e⇡u(t2) | Y for s > t2 and ⇡u(t3) | Y = e⇡u(s) | Y for t3 > s. This means that both the items
⇡u(s) | Y,⇡u(t3) | Y have been shifted to the left in the permutation e⇡u | Y . Hence,

eP(`)
ue⇡u(s)|Y �

eP(`)
u⇡u(s)|Y

= eP(`)
ue⇡u(s)|Y �Pue⇡u(s)|Y +Pue⇡u(s)|Y �Pu⇡u(s)|Y

+Pu⇡u(s)|Y � eP
(`)
u⇡u(s)|Y � �2�`+1 +Pue⇡u(s)|Y �Pu⇡u(s)|Y = �2�`+1 +Pu⇡u(t3)|Y �Pu⇡u(s)|Y .
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Hence there must exist an element ⇡u(t4) | Y such that t4 < s and e⇡u(t5) | Y = ⇡u(t4) | Y for
t5 > s. In that case, we must have

Pu⇡u(t3)|Y �Pu⇡u(s)|Y � Pu⇡u(t3)|Y �Pu⇡u(t4)|Y

= Pu⇡u(t3)|Y � eP
(`)
u⇡u(t3)|Y + eP(`)

u⇡u(t3)|Y �
eP(`)
u⇡u(t4)|Y + eP(`)

u⇡u(t4)|Y �Pu⇡u(t4)|Y

� �2�`+1 + eP(`)
u⇡u(t3)|Y �

eP(`)
u⇡u(t4)|Y = �2�`+1 + eP(`)

ue⇡u(s)|Y �
eP(`)
ue⇡u(t5)|Y � �2�`+1.

Therefore, in this case, we get that eP(`)
ue⇡u(s)

� eP(`)
u⇡u(s)

� �4�`+1. Again, we will have that

eP(`)
u⇡u(1)|Y �

eP(`)
ue⇡u(1)|Y = eP(`)

u⇡u(1)|Y �P(`)
u⇡u(1)|Y

+P(`)
u⇡u(1)|Y �P(`)

ue⇡u(1)|Y +P(`)
ue⇡u(1)|Y �

eP(`)
ue⇡u(1)|Y � �2�`+1.

By combining the above arguments, we have that
eP(`)
u⇡u(1)|Y �

eP(`)
u⇡u(s)|Y �

eP(`)
ue⇡u(1)|Y �

eP(`)
ue⇡u(s)|Y � 6�`+1.

By a similar set of arguments involving triangle inequalities, we will also have
eP(`)
u⇡u(1)|Y �

eP(`)
u⇡u(s)|Y 

eP(`)
ue⇡u(1)|Y �

eP(`)
ue⇡u(s)|Y + 6�`+1.

This completes the proof of the lemma.

We now show the following lemma characterizing the union of good items for a connected component
of the graph G(`,i). Recall that T�

���O(`)
M(`,i)

��� counts the number of rounds excluding the ones used

up in exploit component so far up to the `
th phase.

Lemma 9. Condition on the events E(`)
2 , E(`)

3 being true. Consider a nice subset of users M(`,i) 2
M0(`) and their corresponding set of active items N (`,i) for which guarantees in eq. 11 holds.
Consider a subset of users G 2M(`,i) forming a connected component. Fix any set Y =

S
u2G T (`)

g \
J for some J such that for every user u 2 G, we have e⇡u(s0) | N (`,i) ⌘ e⇡u(s) | Y for s

0 =

TB�1 �
���O(`)

M(`,i)

��� and some common index s. In that case, we must have

max
v2G

⇣
max
x,y2Y

ePvx � ePvy

⌘
 max

u2G

⇣
ePue⇡u(1)|Y � ePue⇡u(s0)|N (`,i)

⌘
+ 24C�`+1

Proof. Let us fix a user v 2 G. We have maxx,y2Y ePvx � ePvy = ePve⇡v(1)|Y �miny2Y ePvy. Now,
there are two possibilities for any y 2 Y: first, suppose that y 2 T (`)

v . In that case, we have
ePve⇡v(1)|Y � ePvy = ePve⇡v(1)|Y � ePve⇡v(s)|Y + ePve⇡v(s)|Y � ePve⇡v(s0)|T (`)

v
+ eP

ve⇡v(s0)|T (`)
v
� ePvy

Recall that the set T (`)
v was constructed as

T (`)
v ⌘ {j 2 N (`,i) | ePvj � ePve⇡v(s0)|N (`,i) � 2�`+1} where s

0 = TB�1 �
���O(`)

M(`,i)

��� (14)

Since y 2 T (`)
v , we can bound eP

ve⇡v(s0)|T (`)
v
� ePvy  2�`+1. Also, from the construction of T (`)

v ,

{e⇡v(r) | N (`,i)}sr=1 is present in the set T (`)
v . Also, since T (`)

u is just a subset of N (`,i), the positions
of the items {e⇡v(r) | N (`,i)}sr=1 do not change in the permutation corresponding to the items in
T (`)
v sorted by estimated reward for v in decreasing order i.e. e⇡v(r) | N (`,i) = e⇡v(r) | T (`)

v for any
r 2 [s]. Hence ePve⇡v(s)|Y � ePve⇡v(s0)|T (`)

v
= 0. Hence, by combining the above, we have

ePve⇡v(1)|Y � ePvy  ePve⇡v(1)|Y � ePve⇡v(s)|Y + 2�`+1.

Next, consider the case when y 62 T (`)
v . Hence, there must exist an user u such that y 2 T (`)

u \ T (`)
v

and u is connected to v via a path of length L  2C� 1 (since there are C clusters and users in the
same cluster form a clique as proved in Lemma 7). In that case, we have the following decomposition:
ePve⇡v(1)|Y � ePvy = ePve⇡v(1)|Y � ePve⇡u(1)|Y + ePve⇡u(1)|Y � ePve⇡u(s)|Y + ePve⇡u(s)|Y � ePue⇡u(s)|Y

+ ePue⇡u(s)|Y � ePue⇡u(s0)|T (`)
u

+ eP
ue⇡u(s0)|T (`)

u
� ePuy + ePuy � ePvy
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Now, let us consider the terms pairwise. Due to our construction of the graph G(`,i), for two users
u, v connected via a path of length L, we must have

���eP(`)
ux � eP(`)

vx

���  2L�`+1. Note that

eP(`)
ve⇡v(1)|Y �

eP(`)
ve⇡u(1)|Y = eP(`)

ve⇡v(1)|Y �P(`)
ue⇡v(1)|Y + eP(`)

ue⇡v(1)|Y

� eP(`)
ue⇡u(1)|Y +P(`)

ue⇡u(1)|Y �
eP(`)
ve⇡u(1)|Y  4L�`+1

where we used that eP(`)
ue⇡v(1)|Y�

eP(`)
ue⇡u(1)|Y  0. Next, we have ePve⇡u(1)|Y�ePve⇡u(s)|Y  ePue⇡u(1)|Y�

ePue⇡u(s)|Y + 4L�`+1. Furthermore, again we have e⇡u(r) | N (`,i) = e⇡u(r) | T (`)
u for any r 2 [s]

and therefore ePue⇡u(s)|Y � ePue⇡u(s0)|T (`)
v

= 0. Finally, eP
ue⇡u(s0)|T (`)

u
� ePuy + ePuy � ePvy  4L�`+1

(since eP
ue⇡u(s0)|T (`)

u
� ePuy  2�`+1). Hence by combining, we have that

ePve⇡v(1)|Y � ePvy  ePue⇡u(1)|Y � ePue⇡u(s)|Y + 12L�`+1.

Hence, we complete the proof of the lemma (by substituting L  2C).

Lemma 10. Condition on the events E(`)
2 , E(`)

3 being true. Consider a nice subset of users M(`,i) 2
M0(`) and their corresponding set of active items N (`,i) for which guarantees in eq. 11 holds.
Consider two users u, v 2M(`,i) having an edge i.e.

���eP(`)
ux � eP(`)

vx

���  2�`+1 for all x 2 N (`,i). In

that case, for any subset Y ✓ N (`,i) and any s 2 [|Y|], for every user u 2M(`,i), we must have

ePve⇡v(1)|Y � ePve⇡v(s)|Y � 12�`+1  ePue⇡u(1)|Y � ePue⇡u(s)|Y  ePve⇡v(1)|Y � ePve⇡v(s)|Y + 12�`+1

Proof. We can decompose the term being studied in the following manner:

eP(`)
ve⇡u(1)|Y �

eP(`)
ve⇡u(s)|Y

= eP(`)
ve⇡u(1)|Y �

eP(`)
ve⇡v(1)|Y + eP(`)

ve⇡v(1)|Y �
eP(`)
ve⇡v(s)|Y + eP(`)

ve⇡v(s)|Y �
eP(`)
ve⇡u(s)|Y .

Let us bound the quantity eP(`)
ve⇡v(s)|Y �

eP(`)
ve⇡u(s)|Y . In order to analyze this quantity, we will consider

a few cases. In the first case, suppose that e⇡u(s) | Y = e⇡v(t1) | Y for t1 � s. In that case, we
will have that eP(`)

ve⇡v(s)|Y �
eP(`)
ve⇡u(s)|Y � 0. In the second case, suppose e⇡u(s) | Y = e⇡v(t2) | Y for

t2 < s and e⇡u(t3) | Y = e⇡v(s) | Y for t3 < s. In that case, we have

eP(`)
ve⇡v(s)|Y �

eP(`)
ve⇡u(s)|Y

= eP(`)
ve⇡v(s)|Y �

eP(`)
ue⇡v(s)|Y + eP(`)

ue⇡v(s)|Y �
eP(`)
ue⇡u(s)|Y + eP(`)

ue⇡u(s)|Y �
eP(`)
ve⇡u(s)|Y � �4�`+1

where we used the fact eP(`)
ue⇡v(s)|Y �

eP(`)
ue⇡u(s)|Y = eP(`)

ue⇡u(t3)|Y �
eP(`)
ue⇡u(s)|Y � 0. In the final case, we

assume that e⇡u(s) | Y = e⇡v(t2) | Y for s > t2 and e⇡u(t3) | Y = e⇡v(s) | Y for t3 > s. This means
that both the items e⇡u(s) | Y, e⇡u(t3) | Y have been shifted to the left in the permutation e⇡v | Y .
Hence,

eP(`)
ve⇡v(s)|Y �

eP(`)
ve⇡u(s)|Y

= eP(`)
ve⇡v(s)|Y �

ePue⇡v(s)|Y + ePue⇡v(s)|Y � ePue⇡u(s)|Y

+ ePue⇡u(s)|Y � eP
(`)
ve⇡u(s)|Y � �4�`+1 + ePue⇡v(s)|Y � ePue⇡u(s)|Y

= �4�`+1 + ePue⇡u(t3)|Y � ePue⇡u(s)|Y .

Hence there must exist an element e⇡u(t4) | Y such that t4 < s and e⇡v(t5) | Y = e⇡u(t4) | Y for
t5 > s. In that case, we must have

ePue⇡u(t3)|Y � ePue⇡u(s)|Y � ePue⇡u(t3)|Y � ePue⇡u(t4)|Y

= ePue⇡u(t3)|Y � eP
(`)
ve⇡u(t3)|Y + eP(`)

ve⇡u(t3)|Y �
eP(`)
ve⇡v(t4)|Y + eP(`)

ve⇡v(t4)|Y �
ePue⇡u(t4)|Y

� �4�`+1 + eP(`)
ve⇡u(t3)|Y �

eP(`)
ve⇡v(t4)|Y = �4�`+1 + eP(`)

ve⇡v(s)|Y �
eP(`)
ve⇡v(t5)|Y � �4�`+1.
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Therefore, in this case, we get that eP(`)
ve⇡v(s)

� eP(`)
v⇡u(s)

� �8�`+1. Hence we get

eP(`)
ve⇡v(1)|Y �

eP(`)
ve⇡u(s)|Y = eP(`)

ve⇡v(1)|Y �
eP(`)
ve⇡v(s)|Y

+ eP(`)
ve⇡v(s)|Y �

eP(`)
ve⇡u(s)|Y �

eP(`)
ve⇡v(1)|Y �

eP(`)
ve⇡v(s)|Y � 8�`+1.

Also, we will have that

eP(`)
ve⇡u(1)|Y �

eP(`)
ve⇡v(1)|Y = eP(`)

ve⇡u(1)|Y �P(`)
ue⇡u(1)|Y

+ eP(`)
ue⇡u(1)|Y �

eP(`)
ue⇡v(1)|Y +P(`)

ue⇡v(1)|Y �
eP(`)
ve⇡v(1)|Y � �4�`+1.

By combining the above arguments, we have that

eP(`)
ue⇡u(1)|Y �

eP(`)
ue⇡u(s)|Y �

eP(`)
ve⇡u(1)|Y �

eP(`)
ve⇡u(s)|Y � 4�`+1 � eP(`)

ve⇡v(1)|Y �
eP(`)
ve⇡v(s)|Y � 12�`+1.

By a similar set of arguments involving triangle inequalities, we will also have

eP(`)
ue⇡u(1)|Y �

eP(`)
ue⇡u(s)|Y 

eP(`)
ve⇡v(1)|Y �

eP(`)
ve⇡v(s)|Y + 12�`+1.

This completes the proof of the lemma.

Now, for any fixed subset Y ✓ N (`,i), let us define the set R(`)
u | Y for user u below:

R(`)
u | Y = {j 2 Y | ePuj � ePue⇡u(1)|Y � 2�`+1}

Hence, R(`)
u | Y corresponds to the set of items for user u that is close to the item with the highest

estimated reward for user u restricted to the set Y at the end of the explore component of phase `.

Lemma 11. Condition on the events E(`)
2 , E(`)

3 being true. Consider a nice subset of users M(`,i) 2
M0(`) and their corresponding set of active items N (`,i) for which guarantees in eq. 11 holds. Fix any
subset Y ✓ N (`,i). In that case, for every user u 2M(`,i), the item with the highest reward ⇡u(1) | Y
in the set Y must belong to the set R(`)

u | Y . Moreover, max
s,s02R(`)

u |Y |Pus �Pus0 |  4�`+1.

Proof. Let us fix a user u 2M(`,i) with active set of arms N (`,i). Now, we will have

ePue⇡u(1)|Y � eP
(`)
u⇡u(1)|Y = eP(`)

ue⇡u(1)|Y

�Pue⇡u(1)|Y +Pue⇡u(1)|Y �Pu⇡u(1)|Y +Pu⇡u(1)|Y � eP
(`)
u⇡u(1)|Y  2�`+1

which implies that ⇡u(1) | Y 2 R(`)
u | Y . Here we used the fact that eP(`)

ue⇡u(1)|Y�Pue⇡u(1)|Y  �`+1,

Pu|Y�eP
(`)
u⇡u(1)|Y  �`+1 and Pue⇡u(1)|Y�Pu⇡u(1)|Y  0. Next, notice that for any s, s

0 2 R(`)
u | Y

Pus �Pus0 = Pus � eP(`)
us + eP(`)

us � eP
(`)
ut1 +

eP(`)
ut1 � eP

(`)
us0 +

eP(`)
us0 �Pus0  4�`+1.

Lemma 12. Condition on the events E(`)
2 , E(`)

3 being true. Consider a nice subset of users M(`,i) 2
M0(`) and their corresponding set of active items N (`,i) for which guarantees in eq. 11 holds.
Fix any subset Y ✓ N (`,i). Consider two users u, v 2M(`,i) having an edge in the graph G(`,i).
Conditioned on the events E(`)

2 , E(`)
3 , we must have

max
x2R(`)

u |Y,y2R(`)
v |Y

|Pux �Puy|  16�`+1 and max
x2R(`)

u |Y,y2R(`)
v |Y

|Pvx �Pvy|  16�`+1

Proof. From the construction of G(`,i), we know that users u, v 2 M(`,i) have an edge
if
���eP(`)

ux � eP(`)
vx

���  2�`+1 (and therefore |Pux �Pvx| 
���eP(`)

ux �Pux

��� +
���Pvx � eP(`)

vx

��� +
���eP(`)

ux � eP(`)
vx

���  4�`+1) for all x 2 N (`,i). For simplicity of notation, let us denote Ru to
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be the set R(`)
u | Y . Suppose Pu⇡u(1)|Y = a and Pv⇡v(1)|Y = b. Consider any pair of items

x 2 Ru, y 2 Rv respectively. Therefore, for x 2 Ru this must mean that Pux � a� 4�`+1 (note
that ⇡u(1) | Y 2 Ru). For y 2 Rv, we must similarly have Pvy � b � 4�`+1. Since u, v are
connected by an edge, we must have Pvx � a � 8�`+1 and Puy � b � 8�`+1. Now, we have
Pv⇡v(1)|Y � Pvx implying that b � a� 8�`+1; hence

Pux �Puy  Pu⇡u(1)|Ru
�Puy  a� (b� 8�`+1)  16�`+1.

A similar analysis for v shows that Pvy�Pvx  16�`+1. This completes the proof of the lemma.

Lemma 13. Condition on the events E(`)
2 , E(`)

3 being true. Consider a nice subset of users M(`,i) 2
M0(`) and their corresponding set of active items N (`,i) for which guarantees in eq. 11 holds. Fix
any subset Y ✓ N (`,i). Consider two users u, v 2M(`,i) having a path of length L in the graph
G(`,i). Conditioned on the events E(`)

2 , E(`)
3 , we must have

max
x2R(`)

u |Y,y2R(`)
v |Y

|Pux �Puy|  8(L+ 1)�`+1

and max
x2R(`)

u |Y,y2R(`)
v |Y

|Pvx �Pvy|  8(L+ 1)�`+1

Proof. Recall from the construction of G(`,i) that conditioned on E(`)
3 users u, v 2M(`,i) have an

edge if
���eP(`)

ux � eP(`)
vx

���  2�`+1 (and therefore |Pux �Pvx|  4�`+1) for all x 2 N (`,i). Again,

for simplicity of notation, let us denote Ru to be the set R(`)
u | Y . Suppose Pu⇡u(1)|Y = a and

Pv⇡v(1)|Y = b. Consider any pair of items x 2 Ru, y 2 Rv respectively. Therefore, for x 2 Ru

this must mean that Pux � a � 4�`+1. For y 2 Rv, we must similarly have Pvy � b � 4�`+1.
Since u, v are connected by an path of length L (say a1, a2, . . . , a(L�1)), we must have Pa1x �
a � 8�`+1, Pa2x � a � 12�`+1 and finally Pvx � a � 4(L + 1)�`+1. By a similar analysis
Puy � b� 4(L+ 1)�`+1. Now, we have Pv⇡v(1)|Y � Pvx implying that b � a� 4(L+ 1)�`+1;
hence

Pux �Puy  Pu⇡u(1)|Ru
�Puy  a� (b� 4(L+ 1)�`+1)  8(L+ 1)�`+1.

Again, a similar analysis for v shows that Pvy �Pvx  8(L+ 1)�`+1. This completes the proof of
the lemma.

Corollary 2. Condition on the events E(`)
2 , E(`)

3 being true. Consider a nice subset of users M(`,i) 2
M0(`) and their corresponding set of active items N (`,i) for which guarantees in eq. 11 holds. Fix any
subset Y ✓ N (`,i). Consider two users u, v 2M(`,i) having a path in the graph G(`,i). Conditioned
on the events E(`)

2 , E(`)
3 , we must have

max
x2R(`)

u |Y,y2R(`)
v |Y

|Pux �Puy|  16C�`+1 and max
x2R(`)

u |Y,y2R(`)
v |Y

|Pvx �Pvy|  16C�`+1

Proof. The proof follows from the fact that any two users u, v 2M(`,i) connected via a path must
have a shortest path of length at most 2C � 1 conditioned on the events E`

2, E
(`)
3 . This is because,

from Lemma 13, we know that users in the same cluster form a clique and since there are at most C
clusters, the shortest path must be of length at most 2C� 1.

Hence, for a particular set of users M(`,i) 2M0(`), consider the j
th connected component of G(`,i)

comprising of users M(`,i,j). If we consider the union of items S ⌘ [u2M(`,i,j)R(`)
u | Y for any

subset Y | N (`,i), then from Corollary 2, we must have that for any user u 2M(`,i,j),

max
x,y2S

|Pux �Puy|  16C�`+1. (15)

This follows from the fact that every element s 2 S must exist in R(`)
v | Y for some v 2M(`,i,j);

moreover, v is connected to u and therefore the shortest path joining them must be of length at most
2C� 1. Finally we use Corollary 2 to conclude equation 15.
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Lemma 14. Condition on the events E(`)
2 , E(`)

3 being true. Consider a nice subset of users M(`,i) 2
M0(`) and their corresponding set of active items N (`,i) for which guarantees in eq. 11 holds.
Consider the jth connected component of the graph G(`,i) comprising of users M(`,i,j). Let N (`,i,j) ⌘
[u2M(`,i,j)T (`)

u denote the union of good items for users in M(`,i,j). In that case,

1. For every user u 2M(`,i,j), the items ⇡u(s) | [N]\O(`)
M(`,i) for s 2 [TB�1�

���O(`)
M(`,i)

���] must

belong to the set N (`,i,j) i.e. the golden items that have not been chosen for recommendation
to users in M(`,i,j) in exploit components of previous phases must belong to the surviving
set of items N (`,i,j).

2. For any subset Y ✓ N (`,i,j) and any s  |Y|, we must have the following for any A > 0:

If ePue⇡u(1)|Y � ePue⇡u(s)|Y � A for some u 2M(`,i,j)

then Pv⇡v(1)|Y �Pv⇡v(s)|Y

� ePve⇡v(1)|Y � ePve⇡v(s)|Y � 4�`+1 � A� (2C� 1)4�`+1 for all v 2M(`,i,j)
.

Proof. The proof of the first part follows directly from Lemma 11 where we showed that for a
particular user u 2M(`,i), the items P

u⇡u(s)|[N]\O(`)

M(`,i)

for s 2 [TB�1 �
���O(`)

M(`,i)

���] must belong to

the set T (`)
u (and the fact that N (`,i,j) ◆ T (`)

u ).

We move on to the proof of the second part of the lemma. Recall that any two users u, v 2M(`,i)

have an edge in the graph G(`,i) if
���eP(`)

ux � eP(`)
vx

���  2�`+1 for all x 2 N (`,i). In that case, we have

ePve⇡v(1)|Y � ePve⇡v(s)|Y � ePve⇡u(1)|Y � ePve⇡u(s)|Y

� ePue⇡u(1)|Y � ePue⇡u(s)|Y � 4�`+1 � A� 4�`+1.

We are going to prove the Lemma statement by induction on length of the shortest path joining the
users u, v. The base case (when the path length is 1 i.e. u, v are joined by an edge) is proved above.
Suppose the statement is true when length of the shortest path is L � 1. In that case, we have the
following set of inequalities (suppose w is the neighbor of v and the length of the shortest path joining
u,w is L� 1)

ePve⇡v(1)|Y � ePve⇡v(s)|Y � ePve⇡w(1)|Y � ePve⇡w(s)|Y

� ePwe⇡w(1)|Y � ePwe⇡w(s)|Y � 4L�`+1 � A� 4L�`+1.

The lemma statement follows from the fact that the length of the shortest path between users u, v in
the same connected component is at most 2C� 1. This completes the proof of the lemma.

Partition of M(`,i) in phase ` + 1 into nice subsets of users and their corresponding active
subsets of items: Consider a nice set of users M(`,i) at the end of the explore component of phase
` i.e. the start of the subsequent phase ` + 1 for the users in M(`,i). At this point, conditioned on
events E(`)

2 , E(`)
3 , our goal is to further partition the users in M(`,i) into more nuanced nice subsets.

Suppose the number of rounds is at least T1/3
/B = eO(T1/3) implying that the active set of items

N (`,i) is of size at least e⌦(T1/3) (induction assumption property B). Suppose, we index the connected
components of the graph G(`,i) formed by the users in M(`,i) 2M0(`). Now, for each index j, the
set of users corresponding to the j

th connected component of the graph {G(`,i)} forms the j
th nice

subset of users (Lemma 7) stemming from users in M(`,i) 2M0(`) - let us denote this set of users by
M(`+1,z) for some index s > 0. For this set of users M(`+1,z), at the start of the exploit component
of phase `+ 1 (round t), we define the active set of items N (`+1,t,z) to be

S
u2M(`+1,z) T (`)

u . Hence
{(M(`+1,z)

,N (`+1,t,z)}z forms the family of nice sets of users (that progress to the (`+ 1)th phase)
and their corresponding active set of items at the beginning (exploit component) of phase `+ 1 for
users stemming from M0(`). Next, we discuss our recommendation strategy for M(`+1,z) (a nice
subset of users) in the exploit component of phase `+ 1.
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Strategy in exploit component of phase `+ 1: Note that in the exploit component of phase `+ 1
for users in M(`,i,j) ⌘M(`+1,z) (new notation indicating that M(`,i,j) ⌘M(`+1,z) is a nice subset
of users at phase ` + 1) for some indices i, j and z, we follow a recursive approach to identify
and recommend items in {⇡u(t)}TB

�1

t=1 for all users u 2M(`+1,z). At the beginning of the exploit
component of phase ` + 1 (say round t), we will also initialize O(`+1,t)

M(`+1,z) to be the set of items
O(`)

M(`,i) (i.e. the golden items that have been chosen for recommendation in the exploit components
of previous phases (1� `) to users in M(`,i) and recommended sufficiently enough number of times
to be blocked). At start of the exploit component of phase `+ 1 (round t), recall that the active set of
items is given by N (`+1,t,z) ⌘

S
u2M(`+1,z) T (`)

u . We reiterate here that t corresponds to the index
of the starting round in the exploit component of phase `+ 1 for users in the nice subset M(`+1,z).

Let us denote s = TB�1 �
���O(`+1,t)

M(`+1,z)

��� and Y = N (`+1,t,z). First of all, note that from Lemma 14,

for all users u 2M(`+1,z) the items ⇡u(r) | [N] \ O(`+1,t)
M(`+1,z) for r 2 [s] must belong to the set Y i.e.

the best s items among those that are not in the set O(`+1,t)
M(`+1,z) must survive in Y (Lemma 14). Now,

we look at two possibilities:

1. (Possibility A): For all users u 2M(`+1,z), we have that ePue⇡u(1)|Y�ePue⇡u(s)|Y  64C�`+1

In that case, we stop the exploit component of phase ` + 1 and move on to the explore
component of phase ` + 1 for users in M(`+1,z) and active items Y . Conditioned on
events E(`)

2 , E(`)
3 , in Lemma 15, we show that the above condition implies for every user

u 2M(`+1,z), we must have

max
x,y2Y

 88C�`+1.

Furthermore, for Z = [N] \ O(`+1)
M(`+1,z) , it must happen that Y ◆ {⇡u(s) |

Z}
T/B�

���O(`+1)

M(`+1,z)

���
s=1 for every user u 2 M(`+1,z). In other words, for each user u 2

M(`+1,z), the set Y must contain all the top TB�1 golden items ( {⇡u(r)}TB
�1

r=1 ) that were
not recommended in the exploit components so far.

2. (Possibility B): For some user u 2 M(`+1,z), we have that ePue⇡u(1)|Y � ePue⇡u(s)|Y �
64C�`+1. In that case, from Lemma 14, we know that for every user v 2M(`+1,z), we
must have Pv⇡v(1)|Y �Pv⇡v(s)|Y � 56C�`+1 . In that case, if we consider the set of items
S ⌘ [u2M(`+1,z)R(`)

u | Y , then from Lemma 13 (or see eq. 15), we must have that for
every user u 2M(`+1,z),

max
x,y2S

|Pux �Puy|  16C�`+1 (16)

For every user u 2M(`+1,z), recall that in Lemma 11, we showed that ⇡u(1) | Y 2 R(`)
u |

Y and in Lemma 14, we showed that ⇡u(1) | Y = ⇡u(1) | [N \
���O(`+1,t)

M(`+1,z)

���]. Hence,

⇡u(1) | Y = ⇡u(1) | [N \
���O(`+1,t)

M(`+1,z)

���] belongs to the set S for every user u 2M(`+1,z).

Hence we must have that the items S is a subset of {⇡u(r) | [N] \ O(`+1,t)
M(`+1,z)}sr=1. Suppose

we index the items in S . For each of the subsequent B |S| rounds (indexed by b 2 [BS]), for
every user u 2M(`+1,z), we go to the d(b/B)eth item in S and recommend it to user u if
unblocked. On the other hand, if the d(b/B)eth item in S is blocked (or becomes blocked)
for the user u 2M(`+1,z), then we simply recommend any unblocked item in N (`+1,t,z).
This is always possible because we will prove via induction (see Lemma 15 and in particular
eq. 23) that at every round in the exploit component of phase `+1, the number of unblocked
items for any user u 2 M(`+1,z) in the set N (`+1,t,z) (where t is the previous decision
round for M(`+1,z) on whether possibility A or B is true) is always larger than the number
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of remaining rounds. We make the following updates:

O(`+1,t+|S|)
M(`+1,z)  O(`+1,t)

M(`+1,z) [ S (17)

N (`+1,t+|S|,z)  N (`+1,t,z) \ O(`+1,t+|S|)
M(`+1,z) (18)

t t+ |S| and Y  N (`+1,t,s) (19)

i.e we update the set O(`+1,t)
M(`+1,z) by taking union with the set of |S| identified items in

{⇡u(t)}Tt=1 for all users u 2M(`+1,z). After these |S| rounds, for the set of users M(`+1,z),
the set of active items N (`+1,t,z) is pruned by removing the items in S and the time index is
increased from t to t+ |S|.
At this point, we repeat the same process again for users in M(`+1,z) with the pruned
set of active items N (`+1,t,s) i.e. we check for possibility A or possibility B. If we
encounter possibility B, then we again find the set of items S ⌘ [u2M(`+1,z)R(`)

u | Y
and recommended it to all users in M in |S|B steps as outlined above. We do this step
recursively until we encounter Step A for the users in M(`+1,z) and at that point we exit the
exploit component of phase `+ 1 and enter the explore component of phase `+ 1.

As before, at the beginning of the explore component of phase ` + 1 for the nice subset of users
M(`+1,z), let us denote the set of active items by N (`+1,z) and the set of items considered for
recommendation in the exploit phases including the (`+ 1)th one by O(`+1)

M(`+1,z) (i.e. we remove the t
in the superscript for simplicity). Therefore, at the end of the explore component of phase `+ 1 for
the nice subset of users M(`+1,z), the set of active items N (`+1,z) satisfy the following:
Lemma 15. Consider a nice subset of users M(`+1,z) and their corresponding set of active items
N (`+1,z) at the end of the exploit stage of phase ` + 1 i.e. for all users u 2 M(`+1,z), we have
ePue⇡u(1)|N (`+1,z) � ePue⇡u(s)|N (`+1,z)  64C�`+1 for s = TB�1 �

���O(`+1)
M(`+1,z)

���. Suppose M(`+1,z)

is comprised of the users in a connected component of the graph G(`,i) which in turn is formed by the
users in M(`,i) for which guarantees in eq. 11 holds true i.e. we condition on the events E(`)

2 , E(`)
3

being true. In that case, we must have that

1. for all users u 2M(`+1,z),
max

x,y2N (`+1,z)
|Pux �Puy|  88C�`+1

i.e. the best and worst items in the set N (`+1,z) for any user u 2 M(`+1,z) has close
rewards.

2. Denote Z = [N] \ O(`+1)
M(`+1,z) to be set of items not chosen for recommendation to users in

M(`+1,z) in the exploit component of phases until (and including) phase `+1. Then it must
happen that

O(`+1)
M(`+1,z) ✓ {⇡u(t)}TB

�1

t=1 (20)

N (`+1,z) ◆
[

u2M(`+1,z)

{⇡u(t
0) | Z}

TB�1�
���O(`+1)

M(`+1,z)

���
t0=1 . (21)

Proof. Suppose at the end of the explore component of phase `, M(`+1,z) ✓M(`,i). We will prove
a more general statement. Consider the rounds t1, t2, . . . at which we check for possibility A or
possibility B (this includes the starting and ending rounds of the exploit component of phase `+1). At
any such round tr, for all users u 2M(`+1,z), we must have that e⇡u(TB�1 �

���O(`,tr)
M(`,i)

���) | N (`,i) 2
N (`+1,tr,z) and

max
x,y2N (`+1,tr,z)

|Pux �Puy|  max
v2M(`+1,z)

⇣
ePue⇡u(1)|N (`+1,tr,z) � ePue⇡u(s)|N (`+1,tr,z)

⌘
+ 24C�`+1

(22)

N (`+1,tr,z) ◆
[

u2M(`+1,z)

{⇡u(t
0) | Z}st0=1 where Z ⌘ [N] \ O(`+1,tr)

M(`+1,z) (23)

O(`+1,tr)
M(`+1,z) ✓ {⇡u(t)}TB

�1

t=1 (24)
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for s = T�
���O(`+1,tr)

M(`+1,z)

���We will prove the statement above via induction on the recursions performed
in the exploit component of the phase ` + 1. For the base case, we consider the round t1 which
corresponds to the beginning of the exploit component of phase ` + 1. At this round, recall that
N (`+1,t1,z) = [u2M(`+1,z)T (`)

u . Of course, with s = T�
���O(`)

M(`,i)

���, for every user u 2M(`+1,z),

we must have {e⇡u(r) | N (`,i)}sr=1 2 T (`)
u (Lemma 11) and since N (`+1,z) is a union of the sets

T (`)
u , e⇡u(r) | N (`,i) = e⇡u(r) | N (`+1,z) for all r 2 [s]. Hence by invoking Lemma 9 (in the

statement of Lemma 9, we have J = � i.e. Y = N (`+1,z) and e⇡u(s) | N (`,i) = e⇡u(s) | N (`+1,z)

for s = T�
���O(`,tr)

M(`,i)

���), we obtain the statement of the Lemma for round t1.

Suppose the induction statement is true for round ta and the second possibility i.e. possibility B

became true. In that case, we do not exit the recursion and our goal is to show that the lemma
statement is true at the next decision round ta+1. The induction hypothesis implies that for every
user u 2 M(`+1,z), we have that e⇡u(TB�1 �

���O(`)
M(`,i)

���) survives in the set of items N (`+1,ta,z)

and furthermore, we have e⇡u(TB�1 �
���O(`)

M(`,i)

���) | N (`,i) = e⇡u(s) | N (`+1,ta,z) for s = TB�1 �
���O(`+1,ta)

M(`+1,z)

��� (note that s is common for all users in M(`+1,z)). The induction hypothesis also implies
that

N (`+1,tr,z) ◆
[

u2M(`+1,z)

{⇡u(t
0) | Z}st0=1 where Z ⌘ [N] \ O(`+1,ta)

M(`+1,z) and s = T�
���O(`+1,ta)

M(`+1,z)

���

(25)

O(`+1,tr)
M(`+1,z) ✓ {⇡u(t)}TB

�1

t=1 (26)

Again, at the decision round ta, since the possibility B was true, for one of the users u 2M(`+1,z),
we must have for s = T�

���O(`+1,ta+1)
M(`+1,z)

���,

ePue⇡u(1)|N (`+1,ta,z) � ePue⇡u(s)|N (`+1,ta,z) � 64C�`+1

implying that for every user v 2M(`+1,z), we have

ePve⇡v(1)|N (`+1,ta,z) � ePve⇡v(s)|N (`+1,ta,z) � 56C�`+1.

The above equation further implies that (Lemma 8), for every user v 2M(`+1,z), we will have

Pv⇡v(1)|N (`+1,ta,z) �Pv⇡v(s)|N (`+1,ta,z) � 50C�`+1.

Hence, as mentioned before, if we consider the set of items S ⌘ [u2M(`+1,z)R(`)
u | N (`+1,ta,z),

then from Lemma 13 (or see eq. 15), we must have that for every user u 2 M(`+1,z), ⇡u(1) |
N (`+1,ta,z) 2 S and

max
y2S

��Pu⇡u(1)|N (`+1,ta,z) �Puy

��  16C�`+1. (27)

Hence, if we remove the set S to update N (`+1,ta,z) i.e. N (`+1,ta+1,z)  N (`+1,ta,z) \ S , for every
user u 2M(`+1,z), we must have

e⇡u(TB
�1 �

���O(`)
M(`,i)

���) | N (`,i) = e⇡u(TB
�1 �

���O(`+1,ta)
M(`+1,z)

���) | N (`+1,ta,z)

= e⇡u(TB
�1 �

���O(`+1,ta+1)
M(`+1,z)

���) | N (`+1,ta+1,z).

This is because for each user u, only elements which have larger rewards than e⇡u(TB�1 ����O(`+1,ta)
M(`+1,z)

���) | N (`+1,ta,z) are removed which makes the aforementioned item survive in

N (`+1,ta+1,z) and also moves its position up (recall that O(`+1,ta+1)
M(`+1,z)  O(`+1,ta)

M(`+1,z) [ S) in the
list of surviving items sorted in decreasing order by expected reward. Hence, we can apply Lemma
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9 to conclude the first part of the induction proof. In order to show the final statement, with
s = TB�1 �

���O(`+1,tr)
M(`+1,z)

���, we can simply substitute that

max
v2M(`+1,z)

⇣
ePue⇡u(1)|N (`+1,tr,z) � ePue⇡u(s)|N (`+1,tr,z)

⌘
 64C�`+1

when possibility A became true at a decision round tr and we exit the exploit component to enter the
explore component of phase `+ 1 for users in M(`+1,z).

Moreover, we will also have that

S ✓ {⇡u(r) | N (`+1,ta,z)}sr=1 where s = TB�1 �
���O(`+1,ta)

M(`+1,z)

��� (28)

=) S ✓ {⇡u(r) | Z}sr=1 where Z ⌘ [N] \ O(`+1,ta)
M(`+1,z) and s = T�

���O(`+1,ta)
M(`+1,z)

��� (29)

=) S ✓ {⇡u(t)}TB
�1

t=1 (30)

=) N (`+1,ta+1,z) ◆
[

u2M(`+1,z)

{⇡u(t
0) | Z}TB

�1�s
t0=1 (31)

where Z ⌘ [N] \ O(`+1,ta+1)
M(`+1,z) and s =

���O(`+1,ta+1)
M(`+1,z)

��� (32)

This first implication is due to our induction hypothesis (see eq.25) which implies that the best
s items in the smaller set N (`+1,ta,z) is same as the best s = TB�1 �

���O(`+1,ta)
M(`+1,z)

��� items in the

larger set [N] \ O(`+1,ta)
M(`+1,z) . Hence, it is evident that the set S must also be a subset of the best TB�1

items (golden items) for user u namely {⇡u(t)}t2[TB�1]. Since the above facts are true for all users
u 2 M(`+1,z), we can also conclude that the new pruned set of items N (`+1,ta+1,z) at the next
decision round ta+1 is a superset of the best TB�1 �

���O(`+1,ta+1)
M(`+1,z)

��� items for every user u. This
completes the second part of the induction proof.

Lemma 16. Conditioned on the events E(`)
2 , E(`)

3 , with choice of �`+1 = ✏`+1/88C, conditions A-C
will be satisfied at the beginning of the explore component of phase ` for the different nice subsets
{M(`+1,z)}z and their corresponding set of active arms {N (`+1,z)}z implying that the event E(`+1)

2
will be true.

Proof. 1. Proof of condition A: Due to our induction hypothesis, condition A is true for the
explore component of phase `. Hence, the explore component of phase ` is implemented
separately and asynchronously for each disjoint nice subset of users M(`,i) 2M0(`) ✓M(`)

(recall that M0(`) corresponds to the nice subsets of users which do not fall into the edge case
scenarios). Let us fix one such nice subset of users M(`,i) 2M0(`). After the successful
low rank matrix completion step (event E(`)

3 is true), we find the connected components of a
graph G(`,i) which in turn correspond to nice subsets of users as well (see Lemma 7). Since
the above facts are true for all nice subsets of users in M0(`), the nice subsets of users that
progress to the (`+ 1)th phase are disjoint. Since these set of users are not modified during
the exploit component of phase ` + 1, condition A is true at the beginning of the explore
component of phase `+ 1.

2. Proof of conditions B and C: Again, let us fix a subset of nice users M(`+1,z) that has
progressed to phase `+ 1 and was in turn a part of the nice subset of users M(`,i) in phase
`. In other words, the set of users M(`+1,z) corresponds to a connected component of the
graph G(`,i). From Lemma 15, we can conclude that conditions B and C are true at the
beginning of the explore component of phase ` + 1 for users in M(`+1,z) with choice of
�`+1 = ✏`+1/88C where ✏`+1 was pre-determined. Therefore, the conditions B and C hold
for all nice subsets of users {M(`+1,z)}z that have progressed to phase `+ 1.

Hence, conditioned on the events E(`)
2 , E(`)

3 , with choice of �`+1 = ✏`+1/88C, the algorithm will be
(✏`+1, `+ 1)�good and the event E(`+1)

2 will be true.
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D.2 Analyzing the regret guarantee

Lemma 17. Consider a fixed decreasing sequence {✏`}`�1 where ✏1 = ||P||1 and ✏` =

C
02�` min

⇣
kPk1,

�
p
µ

logN

⌘
for ` > 1 for some constant C

0
> 0. Let us denote the event

E =
T

` E
(`)
2

T
` E

(`)
3 to imply that our algorithm is (✏`, `)�good at all phases indexed by ` and

the explore components of all phases are successful with the length of the explore component of phase
` being

m` = O

⇣
�
2eµ3 log(M

W
N)

�2
`+1

max
⇣
1,

N⌧

M

⌘
logT)

⌘⌘
.

The above statement implies that for any nice subset of users M(`,i) that has progressed to the `
th

phase with active items N (`,i) at the beginning of the explore components, with m` rounds, we can
compute an estimate ePM(`,i),N (`,i) of PM(`,i),N (`,i) satisfying

���
���eP(`)

M(`,i),N (`,i) �PM(`,i),N (`,i)

���
���
1
 �`+1.

In that case, the event E is true with probability at least 1� CT�2.

Proof. Notice that

Pr(Ec) = 1� Pr(
[

`

E(`)c
2

[

`

E(`)c
3 )

� 1� (Pr(E(1)c
2 ) + Pr(E(1)c

3 | E(1)
2 ))

�
X

`>1

⇣
Pr(E(`)c

2 |
\

`0<`

(E(`0)
2 \ E(`)

3 )) + Pr(E(`)c
3 | E(`)c

2 ,

\

`0<`

(E(`0)
2 \ E(`)

3 ))
⌘

� 1� (Pr(E(1)c
2 ) + Pr(E(1)c

3 | E(1)
2 ))

�
X

`>1

⇣
Pr(E(`)c

2 | E(`�1)
2 , E(`�1)

3 ) + Pr(E(`)c
3 | E(`)

2 )
⌘
� 1� CT�2

where we used the following facts 1) Pr(E(1)c
2 ) = 0 and Pr(E(`)c

2 | E(`�1)
2 , E(`�1)

3 ) = 0 for all `
(Lemma 16) 2) Pr(E(`)c

3 | E(`)
2 )  CT�2 implied from Lemma 4 with additional union bounds over

the number of phases (at most the number of rounds T) and the number of disjoint nice subsets of
users that have progressed in each phase (at most the number of clusters C). An important fact to
keep in mind is that the above analysis is possible since the observations used to compute estimates
are never repeated in Alg. 2 and we are able to avoid complex dependencies.

Now, we are ready to prove our main regret bound. Suppose we condition on the event E as defined
in Lemma 17. Conditioned on the event E , let us denote by ⇢u to be some sequence of items
recommended to the user u 2 [M] by our algorithm. The probability of this sequence of items being
recommended is Pr(\u2[M]⇢u | E).

D.2.1 Swapping argument

Let us fix a particular user u 2 [M] and a sequence of recommended items ⇢u such that ⇢u(t) 2 [N]
is the item recommended to user u at round t. For sake of analysis, we will construct a permutation
✓u : [T] ! {⇢u(t)}t2[T] of the items {⇢u(t)}t2[T] with sequential modifications (✓u is initialized
with ⇢u). For any phase indexed by `, consider the exploit and explore components for a nice subset
of users M(`,i). The sequence of items recommended to user u during the explore component remain
unchanged i.e. for any phase `, ✓u(t) = ⇢u(t) for all rounds t 2 [t] such that t corresponds to the
explore component of phase ` for the user u.

Now, for the exploit component in phase `, recall that O(`)
M(`,i) \ O

(`�1)
M(`,i) is the set of items chosen

for recommendation particularly in the exploit component of phase ` (we remove the super-script t
since we refer to the end of the exploit components in phase ` and phase `� 1 respectively). Suppose
at round t in the explore component of phase `, the b

th item in the set O(`)
M(`,i) \ O

(`�1)
M(`,i) was chosen
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to be recommended to all users in M(`,i) but was found to be blocked for user u 2M(`,i) before
it could be recommended B times. Let us also denote N (`,ta,i) to be set of active items for users in
M(`,i) at round t (i.e. ta was the previous decision round where it was decided whether possibility
A or possibility B was true). Since the b

th item in the set O(`)
M(`,i) \ O

(`�1)
M(`,i) was blocked for user u,

instead we recommend any unblocked item for user u from the current set of active items N (`,ta,i).
This is always possible; we showed in Lemma 15 (see eq. 23) that the active set of items always
contain sufficient unblocked items for possible recommendations for remaining rounds for any user in
the corresponding nice subset of users during the exploit component. Now there are two possibilities:

1. (bth item in the set O(`)
M(`,i) \O

(`�1)
M(`,i) was recommended in round t

0 in the explore component
of previous phase `

0) We consider the active set of items N (`0,h) (such that u 2M(`0,h) in
phase `

0) where `
0
< ` is the phase index (and t

0 is the round index) when the b
th item in

O(`)
M(`,i) \ O

(`�1)
M(`,i) (say a) was recommended to the user u during the explore component.

Let us denote the item that we have recommended as replacement to user u at round t by a
0.

Note that since a
0 2 N (`,ta,i), it must happen that a0 2 N (`0,h) since N (`,ta,i) ✓ N (`0,h).

In that case, we have

⇢u(t) = a
0 and ⇢u(t

0) = a

We swap the above items so that in the modified sequence, we have

✓u(t) = a and ✓u(t
0) = a

0

The goal of the swapping operation at round t in the exploit component is to modify the
sequence of items such that 1) the item a chosen for recommendation at round t is assigned
to round t in the exploit component 2) the item a actually recommended in round t

0
< t and

phase `
0
< ` is replaced by another item a

0 (actually recommended at round t > t
0 in phase

` > `
0) such that both a, a

0 belongs to the same set of active items N (`0,h) (u 2M(`0,h)

for some h). We will also say that the item a chosen for recommendation is replaced by a
swapping operation of length 1. This is because the chosen element for recommendation a

was recommended in the explore component of a previous phase. A more precise definition
of the length of a swapping operation is provided below.

2. (bth item in the set O(`)
M(`,i) \O

(`�1)
M(`,i) was recommended in the exploit component of previous

phase): This is the more difficult case. As before, let us denote the b
th item in the set

O(`)
M(`,i) \ O(`�1)

M(`,i) by a. Of course, the item a could not have been chosen for recom-
mendation in the exploit component of a previous phase (i.e. a cannot belong in the set
O(`0)

M(`0,j) \ O
(`0�1)

M(`0,j) for any `
0
< ` with u 2M(`0,j) in phase `

0.) In that case, the item a

was recommended in the exploit component of phase ` as part of a swapping operation.
With this intuition in mind, let us define length of a swapping operation precisely:
Definition 3 (Length of swapping operation). For a user u, suppose a1 2 O(`)

M(`,i) \O
(`�1)
M(`,i)

is an item chosen for recommendation in the exploit component of phase ` but found to be
blocked. In that case, we will say that a1 is replaced by a swapping operation of length L+1
if there exists L+ 1 items a1, a2, . . . , aL, aL+1, L+ 1 phases p1 > p2 > · · · > pL > pL+1

and respective rounds t1, t2, . . . , tL, tL+1 such that 1) a1 is chosen for recommendation
in exploit component of phase p1 at round t1 2) for each 2  i < L, ai�1 has been
recommended in the exploit component of phase pi at round ti when the intended item
chosen for recommendation was ai 3) aL has been recommended in the explore component
of phase pL+1 at round tL+1 3) aL+1 is the item recommended to user u in place of a1 in
phase p1 at round t1.
As before, aL+1 belongs to current set of active items N (`,ta,i) at round t1 for users in
M(`,i) (recall that ta is the decision round just prior to t1). In the above definition, note that
L must be finite since there are a finite number of components and the first phase only has
an explore component (recall that exploit component in the first phase has zero rounds).
For a user u 2M(`,i), suppose a1 2 O(`)

M(`,i) \ O
(`�1)
M(`,i) is an item chosen for recommen-

dation in the exploit component of phase ` but found to be blocked. Moreover suppose a1

must be replaced by a swapping operation of length L (see Definition 3 for notations). In
that case, we make the following modifications to the permutation ✓u:

✓u(ti) = ai for all 1  i  L+ 1
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Lemma 18. Condition on the event E . Consider the modified sequence of distinct items {✓u(t)}t2[T]
for a certain fixed user u. For any phase ` to which the user u has progressed as part of the nice
subset M(`,i), consider the exploit component starting from round index texploit,start,` to texploit,end,`.
In that case, the set of elements {✓u(t) | t 2 [texploit,start,`, texploit,end,`]} is equivalent to the set of
elements O(`)

M(`,i) \O
(`�1)
M(`,i) repeated B times i.e. the golden items chosen for recommendation in the

exploit component of phase ` to users in M(`,i). Similarly, consider the explore component starting
from round index texplore,start,` to texplore,end,`. In that case, for any t 2 [texplore,start,`, texplore,end,`], it
must happen that ✓u(t) 2 N (`,i) i.e. the set of active items for M(`,i) during the explore component
of phase `.

Proof. We start with the following claim.

Claim 1. For a user u 2M(`,i), suppose a1 2 O(`)
M(`,i) \ O

(`�1)
M(`,i) is an item chosen for recommen-

dation in the exploit component of phase ` at round t1 but found to be blocked for user u. Moreover
suppose a1 has been replaced by a swapping operation of length L+1 (see Definition 3 for notations).
In that case, we already have ✓u(ti) = ai for all 2  i  L. We only need to modify the sequence
by making the following two changes: 1) ✓u(t1) = a1 2) ✓u(tL+1) = aL+1. Note that in the true
sequence, aL+1 has been recommended in the round t1 replacing the intended item a1.

Proof. We will prove the claim via induction. Notation-wise, suppose for any `
0  `, the user u

belongs to the set M(`0,i) and the set of active items at round t1 for users in M(`,i) is denote by N
(for simplicity, we remove the superscripts). The base case for L = 0 is true by construction - here
the item a1 is recommended in the explore component of phase p2 at round t2. We find an unblocked
item a2 in the set N ✓ N (`,i) (note that items are never added to the active set across phases and
only pruned), recommend it at round t1 according to our algorithm. For analysis, we modify

✓u(t1) = a1 and ✓u(t2) = a2

Now, suppose our claim is true for some L = l. Now, for L = l + 1, note that a1 was recommended
in the exploit component of phase p2 at round t2; this implies that a1 must have been used to replace
another item a2 via a swapping operation of length l. By our induction hypothesis, we must have
✓u(ti) = ai for all 2  i  L (as a matter of fact, we will have ✓u(tL+1) = a1). Therefore, only
the pair of modifications ✓u(t1) = a1 and ✓u(tL+1) = aL+1 suffice to bring the desired changes in
✓u.

We can also conclude from Claim 1 that 1) at any round t in the exploit component of some phase for
user u, if the chosen item to be recommended is found to be blocked, then that chosen item is brought
to the t

th position in the sequence ✓u 2) Once the chosen item is brought to its correct position in ✓u,
it will not be modified/moved in any future round. 3) All chosen items for recommendation to user u
corresponding to exploit components are moved to their correct position (i.e. the intended round for
their recommendation) in the sequence ✓u. Next we make the following claim:

Claim 2. Consider the setting in Claim 1. It must happen that all the items a1, a2, . . . , aL+1 must
belong to the set N (pL+1,i) - the set of active items in the phase pL+1 for users in the nice subset
M(pL+1,i) to which u belongs and aL was recommended in its explore component.

Proof. Again, note that items are never added to the active set across phases and only pruned. If
an item a1 is replaced by aL+1 via a swapping operation of length L + 1, it implies that a1 was
used to replace item a2 (via a swapping operation of length L), a2 was used to replace a3 (via a
swapping operation of length L� 1) and so on. The final golden item for user u in this sequence aL

was recommended in phase pL+1 in the explore component and belonged to the set of active items
N (pL+1,i). Hence, this implies that all the subsequent surviving items a1, a2, a3, . . . , aL�1, aL+1 must
have belonged to the set of active items N (pL+1,i) as well.

From Claim 2, we can conclude that for any round t in the explore component of some phase ` for
user u, if ⇢u(t) is replaced in the sequence ✓u at round t, then ⇢u(t), ✓u(t) belong to the same set of
active items N (`,i). With both these arguments, we complete the proof of the lemma.
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D.2.2 Final Regret analysis

Let us condition on the event E . Consider any user u 2 [M] - recall that {⇢u(t)}t2[T] is the random
variable denoting the sequence of T items recommended to the user u, ⇢u(t) is a realization of
{⇢u(t)}t2[T] conditioned on the event E . Furthermore, ✓u is the modified sequence - a permutation
of the T items {⇢u(t)} recommended for user u. For simplicity of notation, we will assume that
u 2M(`,i) for every phase `. Hence the active set of items during the explore component of phase
` for the nice subset of users M(`,i) is denoted by N (`,i). Also, in line with our previous usage
of notations, let us denote O(`)

M(`,i) \ O(`�1)
M(`,i) to be the set of items chosen for recommendation

particularly in the exploit component of phase `. Moreover, O denotes the entire set of items chosen
for recommendation in all the exploit components to user u. In other words, if `u is the final phase to
which user u has progressed then Ou = O(`u)

M(`u,i) . We denote the regret for the user u by

Regu(T) | E ,= E
h⇣ X

t2[T]

Pu⇡u(t) �Pu⇢u(t)

⌘
| E
i

where the expectation is over the randomness in the algorithm and the noise in the observations.
Note that with this notation, we have Reg(T) | E = M�1

P
u2[M] Regu(T) | E . We now have the

following set of inequalities for regret of user u:

Regu(T) | E , E
h⇣ X

t2[T]

Pu⇡u(t) �Pu⇢u(t)

⌘
| E
i
= E

h⇣ X

t2[T]

Pu⇡u(t) �Pu⇢u(t)

⌘
| E
i

=
X

⇢u(t)

Pr(⇢u(t) = ⇢u(t) | E)
⇣ X

t2[T]

Pu⇡u(t) �Pu✓u(t)

⌘

=
X

⇢u(t)

Pr(⇢u(t) = ⇢u(t) | E)
⇣ X

t2[T]

Pu⇡u(t) �Pue✓u(t)

⌘
.

Let us denote the set of rounds in the exploit component of `th phase by exploit(`,M(`,i)) and the
explore component of `th phase by explore(`,M(`,i)). Therefore we can further decompose the
regret for user u as follows:

Regu(T) | E =
X

⇢u(t)

Pr(⇢u(t) = ⇢u(t) | E)
⇣ X

`2[`u]

X

t2exploit(`,M(`,i))

⇣
Pu⇡u(t) �Pue✓u(t)

⌘

+
X

`2[`u]

X

t2explore(`,M(`,i))

⇣
Pu⇡u(t) �Pue✓u(t)

⌘⌘
.

Next, our arguments are conditioned on the event E and any sequence ⇢u(t) having a non-zero
probability of appearing conditioned on event E . Recall in Lemma 15, we proved by induction
that Ou ✓ {⇡u(t)}Tt=1. Moreover, in Lemma 18, we proved that items chosen for recommendation
in the exploit components for user u are in their correct positions (i.e. the round when they were
intended to be recommended but might have been found to be blocked) in the sequence ✓u. Consider
a permutation of the best T items for user u �u : [T]! {⇡u(t)}Tt=1 such that

�u(t) = ✓u(t) for all t 2 [`exploit(`,M(`,i))

{�u(t)}t2[`explore(`,M(`,i)) ⌘ {⇡u(t
0)}t02[T] \ Ou

where in a round in any exploit component, the permutation � maps the item chosen for recom-
mendation (which we know to be among the best T items) for user u to that round. For any round
belonging to the explore component, the permutation � arbitrarily maps the remaining items among
the best T items (namely the set {⇡u(t0)}t02[T] \Ou). Notice that

P
t2[T] Pu⇡u(t) =

P
t2[T] Pu�u(t).

Therefore, we can further decompose the regret as

Regu(T) | E =
X

⇢u(t)

Pr(⇢u(t) = ⇢u(t) | E)
⇣ X

`2[`u]

X

t2exploit(`,M(`,i))

⇣
Pu�u(t) �Pue✓u(t)

⌘

+
X

`2[`u]

X

t2explore(`,M(`,i))

⇣
Pu�u(t) �Pue✓u(t)

⌘⌘

=
X

⇢u(t)

Pr(⇢u(t) = ⇢u(t) | E)
⇣ X

`2[`u]

X

t2explore(`,M(`,i))

⇣
Pu�u(t) �Pue✓u(t)

⌘⌘
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For the explore component in the phase indexed by `, we have proved in Lemma 14 that the active set
of items N (`,i) is a superset of {⇡u(t0)}t02[T] \ Ou. Therefore, we can bound (using Lemma 4 and
condition C stated at beginning of sec. D.1) for any ` 6= `u (`u denotes index of the final phase that
user u was part of)

X

t2explore(`,M(`,i))

⇣
Pu�u(t) �Pue✓u(t)

⌘
 m` · ✏` = O

⇣
�
2eµ3 log(M

W
N)

�2
`+1

max
⇣
1,

N⌧

M

⌘
logT)

⌘⌘
· ✏`.

where eµ is the incoherence factor of the sub-matrix PM(`,i),N (`,i) . Next, using the facts that �`+1 =
✏`+1/88C, 2✏` = ✏`+1, C, ⌧ = O(1), we get that (after hiding log factors for simplicity)

X

t2explore(`,M(`,i))

⇣
Pu�u(t) �Pue✓u(t)

⌘
= eO

⇣
�
2eµ3

✏`
max

⇣
1,

N

M

⌘⌘
= eO

⇣
�
2
µ
3

✏`
max

⇣
1,

N

M

⌘⌘
.

In the above statement, from Lemmas 2 and 3, we also used the fact that eµ = O(µ) and the condition
number of the sub-matrix PM(`,i),N (`,i) is O(1). Finally, for the explore component of the final
phase `u, from Lemma 11, we will also have (in the final phase, one of the edge case scenarios might
appear)

X

t2explore(`,M(`,i))

⇣
Pu�u(t) �Pue✓u(t)

⌘
= eO

⇣
�µ

3/2 max
⇣p

T,

r
T2

M

⌘⌘
+ eO

⇣
�
2
µ
3

✏`u

max
⇣
1,

N

M

⌘⌘

Hence, we can put together everything to conclude that
X

`2[`u]

X

t2explore(`,M(`,i))

⇣
Pu�u(t) �Pue✓u(t)

⌘

=
X

`

eO
⇣
�
2
µ
3

✏`
max

⇣
1,

N

M

⌘⌘
+ eO

⇣
�µ

3/2 max
⇣p

T,

r
T2

M

⌘⌘


X

`:✏`�

m`�+
X

`:✏`��

eO
⇣
�
2
µ
3

�
max

⇣
1,

N

M

⌘⌘
+ eO

⇣
�µ

3/2 max
⇣p

T,

r
T2

M

⌘⌘

 T�+ J · eO
⇣
�
2
µ
3

�
max

⇣
1,

N

M

⌘⌘
+ eO

⇣
�µ

3/2 max
⇣p

T,

r
T2

M

⌘⌘

where J is the number of phases with ✏` � �. By choosing � =

r
�2µ3

T max
⇣
1, N

M

⌘
, we can bound

X

`2[`u]

X

t2explore(`,M(`,i))

⇣
Pu�u(t) �Pue✓u(t)

⌘
= eO

⇣
J�µ3/2

r
Tmax

⇣
1,

N

M

⌘⌘

where we used the fact that N� T and therefore the last term in the previous equation is a lower order
term compared to the first two ones. Next, recall that we choose ✏` = C

02�` min
⇣
kPk1,

�
p
µ

logN

⌘

(so that the condition on � > 0 in Lemma 1 is automatically satisfied for all `) for some constant
C

0
> 0, the maximum number of phases ` for which ✏` > � can be bounded from above by

J = O

⇣
log
⇣

1
� min

⇣
kPk1,

�
p
µ

logN

⌘⌘⌘
. Therefore, we can hide J inside eO and obtain

X

`2[`u]

X

t2explore(`,M(`,i))

⇣
Pu�u(t) �Pue✓u(t)

⌘
= eO

⇣
�µ

3/2

r
Tmax

⇣
1,

N

M

⌘⌘
.

Therefore, we must have that

Regu(T) | E = eO
⇣
�µ

3/2

r
Tmax

⇣
1,

N

M

⌘⌘
=) Reg(T) | E = eO

⇣
�µ

3/2

r
Tmax

⇣
1,

N

M

⌘⌘
.

Finally, we use the fact that
Reg(T)  Reg(T) | E + Pr(Ec)(Reg(T) | Ec).

From Lemma 17, we know that Pr(Ec)  CT�2, Reg(T) | Ec  T||P||1 therefore,

Reg(T)  Reg(T) | E + Pr(Ec)(Reg(T) | Ec) = eO
⇣
�µ

3/2

r
Tmax

⇣
1,

N

M

⌘
+ T�1||P||1

⌘

which completes the proof of our main result.
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E Proof of Lower Bound (Theorem 2)

Consider our problem setting with M users, N items and T rounds, blocking constraint B, noise
variance proxy �

2 = 1 and all expected rewards in [0, 1]. Here we consider C = 1 i.e. all users
belong to the same cluster. Let us denote a particular policy chosen by the recommendation system
as ⇡ that belongs to the class of polices ⇧. Moreover, let us also denote by E the set of possible
environments corresponding to the expected reward matrices that has all rows to be same (satisfies
cluster structure for C = 1). In that case, the minimax regret is given by

inf
⇡2⇧

sup
⌫2E

Reg(T; E)

E.1 Lower Bound via reduction

We can ease the problem by assuming that at each round t = 1, 2, . . . ,T, the users come in a
sequential fashion - the jth user is recommended an item based on all previous history of observations
including the feedback obtained from recommending items from users 1, 2, . . . , j � 1 at round t.
Furthermore, we also assume that the N items can be partitioned into NB/T known groups where
each group has identical items - hence we have a simple multi-armed bandit problem (MAB) with
NB/T arms and MT rounds with a single user. A lower bound on this simplified MAB problem will
imply a lower bound on our setting i.e by appropriately normalizing, we have

inf
⇡2⇧

sup
⌫2E

Reg(T; E) � 1

M
inf
⇡2⇧

sup
⌫2E

RegMAB(MT; E) = ⌦
⇣ 1

M

r
NB

T
·MT

⌘
= ⌦

⇣rNB

M

⌘

where we simply used the standard regret lower bound in multi-armed bandits with K arms and T
rounds which is ⌦(

p
KT) [19].

E.2 Lower Bound via application of Fano’s inequality

As before, we can ease the original problem by assuming that at each round t = 1, 2, . . . ,T, the users
come in a sequential fashion - the j

th user is recommended an item based on all previous history of
observations including the feedback obtained from recommending items from users 1, 2, . . . , j � 1 at
round t. Clearly, a lower bound on the simplified problem will imply a lower bound on our setting i.e
by appropriately normalizing, we have

inf
⇡2⇧

sup
⌫2E

Reg(T; E) � 1

M
inf
⇡2⇧

sup
⌫2E

RegMAB(MT; E).

Furthermore, ignoring the normalizing factor by M, for C = 1, the simplified problem is equivalent
to a standard Multi-armed bandit (MAB) problem with a single agent with MT rounds and an
additional hard constraint that each item can be pulled at most MB times. We will construct

� N
TB�1

�

environments in the following way: let T ⌘ {S ✓ [N] | |S| = TB�1} be the set of all subsets of
[N] of size TB�1. Now for each subset S 2 T , we construct an environment by assuming that the
agent on pulling any arm in the set S observes a random reward distributed according to N (�, 1)
and on pulling any arm outside the set S observes a random reward distributed according to N (0, 1).
This corresponds to the the reward matrix P (in our original problem) having an entry � in the
TB�1 columns indexed in S and 0 in the remaining columns. Let ES ,PS , ES denote the expectation,
probability measure and the environment if S 2 T is the set of chosen columns for constructing the
environment.

Next we assume that the set S is chosen uniformly at random from T . Hence we must have

inf
⇡2⇧

sup
⌫2E

RegMAB(MT; E) � inf
⇡2⇧

ES⇠T RegMAB(T; ES)

Fix any policy ⇡ 2 ⇧. Condition on the set S being selected from T . Let R(S) be the number of
times arms indexed in the set S are pulled in the MT rounds. In that case we must have

RegMAB(T; ES) � PS(R(S) 
3MT

4
)
MT�

4
.

Now, consider the estimation problem of which set S was selected from T . Let bX be an estimator
that takes as input the observations in the MT rounds and returns a set bS in the following way: it
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finds bS as the set of T arms that have been pulled the most number of times jointly and returns bS
if R( bS) � 3MT/4 and the null set ; otherwise. We consider the estimator bX to make an error if it
returns a set bS such that bS \S  T/4B. If the estimator bX makes an error, note that R( bS) � 3MT/4
implies that R( bS \ S) � MT/2 (since each arm can be pulled at most M times) - hence, it implies
that R(S)  MT/2. Therefore, if we denote Error as the error event, then we must have

RegMAB(T; ES) � PS(R(S) 
3MT

4
)
MT�

4
� PS(Error)

MT�

4

=) inf
⇡2⇧

sup
⌫2E

RegMAB(MT; E) � P(Error)MT�

4
= ES⇠T PS(Error)

MT�

4

Therefore, our goal is to bound the quantity ES⇠T PS(Error). At this point we have reduced our
problem to a multiple hypothesis testing problem. Therefore, in order to lower bound the probability
of the event Error, we use Fano’s inequality for approximate recovery:
Lemma (Fano’s inequality with approximate recovery [28]). For any random variables V, bV on
alphabets V, bV , consider an error when d(V, bV ) � t for some t > 0 and distance function d :
V ⇥ bV ! R. In that case, if we denote the error event by Error, we must have

P(Error) � 1� I(V ; bV ) + log 2

log |V|
Gmax

where Gmax = maxbv2bV
P

v2V 1[d(v, v̂)  t] and I(V ; bV ) is the mutual information between the
random variables V and bV .

In the special case when the random variable V is uniform, then we can upper bound the mutual
information by I(V ; bV )  maxv,bv2V KL(PbV |V=v||PbV |V=v0)  maxv,bv2V KL(Pv||Pv0) where the
second inequality follows from Data-processing inequality (Pv = P (· | v) corresponds to the
probability of the observations given V = v).

Next, we apply it to our setting to prove an estimation error lower bound for our designed estimator bX .
In our setting, Gmax corresponds to the maximum possible number of sets in T that have intersection
of size more than T/4B with some fixed set S 2 T . Clearly we have

Gmax 
TX

t=T/4B+1

✓
N� T

T� t

◆✓
T

t

◆
 T

✓
N� T

T� T/4B

◆✓
T

T/4

◆
 T

⇣2Ne
T

⌘T�T/4B⇣
4e
⌘T/4B

.

Furthermore, in our setting, we also have that
max

S,S02T
KL(PS ||PS0)


X

i2S[S0

ESR({i})max(KL(N (0, 1)||N (�, 1)),KL(N (�, 1)||N (0, 1)))  2MBT�2

- this follows from the fact that the distributions PS , PS0 are most separated in KL-Divergence if
S \ S 0 = ; and by using the fact that each arm can be pulled at most MB times. Therefore, we must
have (provided N = cT for some large enough constant c > 0, and T is large enough) for some
constant c0 > 0

P(Error) � 1� I(S; bS) + log 2

log |T |
Gmax

� 1� 2MBT�2 + log 2

log
⇣

(N/T)T

T

⇣
2Ne
T

⌘T�T/4B⇣
4e

⌘T/4B

⌘

� 1� 2MB2T�2 + B log 2

c0T log(N/T)
� 0.9� 2MB�2

c0 log(N/T)
.

Therefore, substituting � =
c0
p

log(N/T)

B
p
M

, we have that for some constant c00 � 0

inf
⇡2⇧

sup
⌫2E

RegMAB(MT; E) � c
00TB�1

p
M log(N/T)

and therefore

inf
⇡2⇧

sup
⌫2E

Reg(T; E) � 1

M
inf
⇡2⇧

sup
⌫2E

RegMAB(MT; E) = ⌦
⇣T
p

log(N/T)

B
p
M

⌘
.
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Algorithm 7 BBUIC (Blocked Latent Bandits with User and Item Clusters)

Require: Phase index `, List of disjoint nice subsets of users M(`), list of corresponding subsets
of active items N (`), clusters C, rounds T, noise �

2
> 0, round index t0, exploit rounds texploit,

estimate eP of P, incoherence µ, entry-wise error guarantee ✏` of eP restricted to all users in M(`)

and all items in N (`), count matrix K 2 NM⇥N.
1: for i

th nice subset of users M(`,i) 2M(`) with active items N (`,i) (ith set in list N (`)) do
2: Set t = t0. Set ✏`+1 = ✏`/2, �` = ✏`/88C and �`+1 = ✏`+1/88C.
3: Run exploit component for users in M(`,i) with active items N (`,i). Obtain

updated active set of items, round index and exploit rounds N (`,i)
, t, texploit  

Exploit_Item_Cluster(M(`,i)
,N (`,i)

, t, texploit,
ePM(`,i),N (`,i) ,�`).

4: Set d1 = max(|M(`,i)|, |N (`,i)|), d2 = min(|M(`,i)|, |N (`,i)|) and p = c

⇣
�2µ3 log d1

�2
`+1d2

⌘
for

some appropriate fixed constant c > 0.
5: if |N (`,i)| � T1/3 and p < 1 then
6: Run explore component for users in M(`,i) with active items N (`,i). Obtain updated

estimate and round index eP, t  Explore_Item_Cluster(M(`,i)
,N (`,i)

, t, p) such that���
���ePM(`,i),N (`,i) �PM(`,i),N (`,i)

���
���
1
 �`+1 w.h.p.

7: For every user u 2M(`,i), compute T (`)
u ⌘ {j 2 N (`,i) | ePu⇡u(T�texploit)� ePuj  2�`+1}.

8: Construct graph G(`,i) whose nodes are users in M(`,i) and an edge exists between two
users u, v 2M(`,i) if

���eP(`)
ux � eP(`)

vx

���  2�`+1 for all arms x 2 N (`,i).

9: Intitialize lists M(`+1)
i = [] and N (`+1)

i = [].
10: For each connected component M(`,i,j) ([jM(`,i,j) ⌘ M(`,i)), compute N (`,i,j) ⌘

[u2M(`,i,j)T (`)
u .

11: For each connected component M(`,i,j), construct graph G(`,i,j)
item whose nodes are items

in N (`,i) and an edge exists between two items u, v 2 N (`,i) if
���eP(`)

xu � eP(`)
xv

���  16C�`+1

for all users x 2M(`,i,j). Update N (`,i,j) to be the set of items N (`,i,j) ⌘ {x 2 N (`,i) |
x is connected with some node inN (`,i,j)}.

12: Invoke B-LATTICE(`+ 1,M(`+1)
i ,N (`+1)

i ,C,T.�2
, t, texploit,

eP, ✏`+1,K,G(`,i,j)
item ).

13: else
14: For each user u 2M(`,i), recommend T� t unblocked items in N (`,i) until end of rounds.
15: end if
16: end for

F Blocked Bandits having User and Item Clusters with blocking constraint
B = 1

Recall that in this setting, the N items can be grouped into C0 disjoint clusters D(1)
,D(2)

, . . . ,D(C0)

that are unknown. The expected reward for user u (belonging to cluster a 2 [C]) on being recom-
mended item j (belonging to cluster b 2 [C0]) is Pij = Qab where Q 2 RC⇥C0

is the small core
reward matrix (unknown). In this setting, we provide our theoretical guarantees with B = 1 i.e. any
item can be recommended to a user only once under the blocking constraint.

Recall that the main reason our theoretical analysis required B = ⇥(logT) for Thm. 1 setting is that
if the observations that were used to compute estimates of some reward sub-matrix in a certain phase
with certain guarantees that hold with some probability, then conditioning on such estimates with
the said guarantees make the aforementioned observations dependent in analysis of future phases.
In the BBIC setting, we show that in each phase, the possibility of the nice subsets of users and
their corresponding active items is actually bounded and small. On the other hand, the possibilities
were exponentially large in the number of items in the GBB setting. Therefore, we can use a for all
argument here implying that for a set of already used observations, we can show that for all possible
nice subsets of users and their active items, they can be used again to compute acceptable estimates.
Such an analysis allows us to provide theoretical guarantees even with B = 1 for the BBIC setting.
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Algorithm 8 Exploit_Item_Cluster(Exploit Component of a phase)

Require: Phase index `, nice subset of users M, active items N , round index t0, estimate eP of P and
error guarantee �` such that

���
���ePM,N �PM,N

���
���
1
 88C�` with high probability, similarity

graph Gitem over the set of items N .
1: while there exists u 2M(`,i) such that ePue⇡u(1)|N � ePue⇡u(T�texploit)|N � 64C�`} do
2: Compute Ru = {j 2 N | ePuj � ePue⇡u(1)|N � 2�`+1} for every user u 2M. Compute

S = [u2MRu.
3: Update S  {v 2 Gitem | v is connected with some node in S}.
4: for rounds t = t0 + 1, t0 + 2, . . . , t0 + |S|B do
5: for each user u 2M do
6: Denote by x the (t� t0)th item in S . If Kux == 0 (x is unblocked), then recommend x

to user u and update Kux  1. If Kux == 1 (x is blocked), recommend any unblocked
item y in N (i.e Kuy = 0) for the user u and update Kuy  1

7: end for
8: end for
9: Update N  N \ S . Update t0  t0 + |S|.

10: end while
11: Return N , t0.

Algorithm 9 Explore_Item_Cluster(Explore Component of a phase)
Require: Phase index `, nice subset of users M, active items N , round index t0, sampling probability

p.
1: For each tuple of indices (i, j) 2 M ⇥ N , independently set �ij = 1 with probability p and

�ij = 0 with probability 1� p.
2: Denote ⌦ = {(i, j) 2M ⇥N | �ij = 1} and m = maxi2M | |j 2 N | (i, j) 2 ⌦| to be the

maximum number of index tuples in a particular row. Initialize observations corresponding to
indices in ⌦ to be A = �.

3: for rounds t = t0 + 1, t0 + 2, . . . , t0 +m do
4: for each user u 2M do
5: Find an item z in {j 2 N | (u, j) 2 ⌦, �uj = 1}. If Kuz == 0 (z is unblocked), set

⇢u(t) = z and recommend z to user u. Observe R(t)
u⇢u(t)

and update A = A [ {R(t)
u⇢u(t)

},
Kuz  1.

6: If Kuz == 1 (z is blocked), recommend any unblocked item ⇢u(t) in N s.t. (u, ⇢u(t)) 62 ⌦.
Update Ku⇢u(t)  1. Set A = A [ {R(t0)

u⇢u(t0)
} where t

0
< t is the round when ⇢u(t0) = z

was recommended to user u.
7: end for
8: end for
9: Compute the estimate eP = Estimate(M,N ,�

2
,C,⌦,A) and return eP, t0 +m.

Therefore in Algorithm 7 for the BBIC setting, we only have a single counter matrix K 2 {0, 1}M⇥N

which is binary. The matrix K is initialized to be a zero matrix. Whenever an item j is recommended
to user i, we set Kij = 1. If, in a future phase, we need to recommend item j to user i again, due to
the blocking constraint, we simply reuse the observation (see Step 6 in Alg. 9).

F.1 Algorithm and Discussion

We start with a definition for nice subsets of items analogous to the nice subset of users (see Definition
1).
Definition 4. A subset of items S ✓ [N] will be called “nice" if S ⌘

S
j2A D(j) for some A ✓ [C0].

In other words, S can be represented as the union of some subset of clusters of items.

As in the analysis of GBB setting, we will have the desirable properties A-C that should be satisfied
with high probability at the beginning of the explore component of phase `. Recall that we defined
the event E(`)

2 to be true if properties (A-C) are satisfied at the beginning of the explore component
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of phase ` by the phased elimination algorithm. Here, we stipulate a further property D that the
corresponding surviving set of items for each nice subset of users M(`,i) 2M(`) is also a nice subset
of items.

Furthermore, we defined the event E(`)
3 when eq. 10 is true for all nice subsets M(`,i) 2M0(`) in the

explore component of phase `. Algorithm 7 is a similar recursive algorithm as Algorithm 1 and the
only modification is the addition of Step 11. As in Alg. 1, we instantiate Alg. 7 with phase index
1, list of nice subsets of users having a single element comprising all users i.e. M(1) = [[M]] and
corresponding list of active items N (1) = [[N]], clusters C, rounds T, blocking constraint B, noise �2,
round index 1, exploit rounds 0, estimate eP to be 0M⇥N, incoherence µ and ✏1 = O

⇣
kPk1,

�
p
µ

logM

⌘
.

Here, we will have a single count matrix K which is binary and is initialized to be an all zero matrix.
We are going to show recursively that conditioned on E(`)

2 , E(`)
3 , properties A-D will be satisfied at

the beginning of phase `+ 1.

Base Case: For ` = 1 (the first phase), the number of rounds in the exploit component is zero and we
start with the explore component. We initialize M(1,1) = [N], N (1,1) = [M] and therefore, we have���� max

j2N (`,1)
Puj � min

j2N (`,1)
Puj

����  ||P||1 for all u 2 [M].

Clearly, [M] is a nice subset of users, [N] is a nice subset of items and finally for every user u 2 [M],
the best T/B items (golden items) {⇡u(t)}T/Bt=1 belong to the entire set of items. Thus for ` = 1,
conditions A-D are satisfied at the beginning of the explore component and therefore the event E(1)

2
is true. Furthermore, from Lemma 4, eq. 10 is true for the first phase with probability 1� o(T�12)

implying that the event E(1)
3 is true with high probability.

Inductive Argument: Suppose, at the beginning of the phase `, we condition on the eventsT`
j=1 E

(j)
2

T`
j=1 E

(j)
2 that Algorithm is (✏j , j)�good for all j  `. This means that conditions

(A-D) are satisfied at the beginning of the explore component of all phases up to and including that of
` for each reward sub-matrix (indexed by i 2 [a`]) corresponding to the users in M(`,i) and items
in N (`,i). Furthermore, we also condition on the event eq. 10 is true for all nice subsets of users
M(`,i) 2 M(`) and their corresponding set of items N (`,i) - implying that the event E(`)

3 is true.
Recall that for a user v, the set T (`)

v was constructed as

T (`)
v ⌘ {j 2 N (`,i) | ePvj � ePve⇡v(s0)|N (`,i) � 2�`+1} where s

0 = TB�1 �
���O(`)

M(`,i)

��� (33)

which implies that every item in T (`)
v is close to one of the golden items in N (`,i). At the end of

Step 10 in Alg. 7, we can still show that Lemma 9 holds for each set of users M(`,i,j) as they form
a connected component. Notice that in Step 11 in Lemma 9, for each set of users M(`,i,j), we
construct a graph G(`,i,j)

item whose nodes correspond to the items in N (`,i) and an edge exists between
two items u, v 2 N (`,i) if

���eP(`)
xu � eP(`)

xv

���  16C�`+1 for all users x 2M(`,i,j). Analogous to the
proof of Lemma 7, we can conclude here as well that items in the same item cluster form a clique.
Therefore, any connected component in the graph G(`,i,j)

item must correspond to a nice subset of items
since condition D is true and N (`,i) is already a nice subset of items. Hence the set of modified items
N (`,i,j) constructed at the end of Step 11 in Alg. 7 is a nice subset of items. Furthermore, we can
also prove the corresponding version of Lemma 9:

Lemma 19. Condition on the events E(`)
2 , E(`)

3 being true. Consider a nice subset of users M(`,i,j)

and their corresponding set of active items N (`,i,j) for which guarantees in eq. 11 holds. Fix any set
Y = N (`,i,j) \ J for some J such that for every user u 2 G, we have e⇡u(s0) | N (`,i,j) ⌘ e⇡u(s) | Y
for s0 = TB�1 �

���O(`)
M(`,i)

��� and some common index s. In that case, we must have

max
v2G

⇣
max
x,y2Y

ePvx � ePvy

⌘
 max

u2G

⇣
ePue⇡u(1)|Y � ePue⇡u(s0)|N (`,i)

⌘
+ 24(C+ C0)�`+1

Proof. Note that with the analysis of Lemma 9, the conclusion was true for the constructed N (`,i,j)

at the end of Step 10 in Alg. 7. However, in the modified set of items N (`,i,j), we are only adding
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items in N (`,i) that either belong to the same cluster (in which case there is no added gap) or if we are
adding items belonging to a different cluster, then the added gap on the RHS can be at most C0�`+1.
The above statement follows from a similar argument as in Lemma 13 where we showed that gap in
expected reward between two users in M(`,i,j) (or rather two users connected by a path in G(`,i)) for
the same item is at most O(C�`+1).

Hence, we have shown that each subset of users M(`,i,j) is a nice subset of users and furthermore,
the corresponding subset of items constructed at the end of Step 11 is nice subset of items. Next, we
move on to the exploit component of phase ` + 1 where we use a similar trick (See Step 3 in Alg.
8) to ensure that at the end, we are left with a nice subset of items. As before, we can show that the
constructed set of items S is itself a nice subset of items. We can again prove the following modified
version of Corollary 2

Corollary 3. Condition on the events E(`)
2 , E(`)

3 being true. Consider a nice subset of users M(`,i) 2
M0(`) and their corresponding set of active items N (`,i) for which guarantees in eq. 11 holds. Fix any
subset Y ✓ N (`,i). Consider two users u, v 2M(`,i) having a path in the graph G(`,i). Conditioned
on the events E(`)

2 , E(`)
3 , we must have

max
x,y2S

|Pux �Puy|  16(C+ C0)�`+1 and max
x,y2S

|Pvx �Pvy|  16(C+ C0)�`+1

where S ⌘ {z 2 N (`,i,j) | z is connected with R(`)
u [R(`)

v }.

Proof. The proof again follows from the fact that adding items belonging to a different cluster but
connected via a path to the original items in R(`)

u [R(`)
V can only add a term of at most 16C0�`+1 in

the RHS.

Therefore, at the beginning of the explore component of phase `+ 1 for a particular nice subset of
users M(`+1,z), the corresponding set of items N (`+1,z) must be a nice subset of items as well. Most
importantly, what this implies is that for the low rank matrix completion step in the explore component
of phase `+ 1, we can re-use observations from previous phases and provide theoretical guarantees
as well. This is because, in eq. 10 in Lemma 4, we can take a union bound over all possible nice
subsets of users and all possible nice subsets of items. Since the number of clusters C,C0 = O(1),
the total possibilities is O(1) as well (although exponential in the number of clusters). Hence, the
complex dependencies of the previously made observations used to compute prior estimates resulted
by the conditioning on surviving items and users is no longer a problem - we have simply made a for
all argument. The rest of the analysis follows as in the GBB setting and we can arrive at a similar
result as in Theorem 1 but with B = 1 when the set of items can be clustered into C0 = O(1) disjoint
clusters.
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