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Abstract

Direct policy search has been widely applied in modern reinforcement learning and
continuous control. However, the theoretical properties of direct policy search on
nonsmooth robust control synthesis have not been fully understood. The optimal
H∞ control framework aims at designing a policy to minimize the closed-loop
H∞ norm, and is arguably the most fundamental robust control paradigm. In this
work, we show that direct policy search is guaranteed to find the global solution of
the robustH∞ state-feedback control design problem. Notice that policy search
for optimalH∞ control leads to a constrained nonconvex nonsmooth optimization
problem, where the nonconvex feasible set consists of all the policies stabilizing the
closed-loop dynamics. We show that for this nonsmooth optimization problem, all
Clarke stationary points are global minimum. Next, we identify the coerciveness
of the closed-loop H∞ objective function, and prove that all the sublevel sets of
the resultant policy search problem are compact. Based on these properties, we
show that Goldstein’s subgradient method and its implementable variants can be
guaranteed to stay in the nonconvex feasible set and eventually find the global
optimal solution of theH∞ state-feedback synthesis problem. Our work builds a
new connection between nonconvex nonsmooth optimization theory and robust
control, leading to an interesting global convergence result for direct policy search
on optimalH∞ synthesis.

1 Introduction

Reinforcement learning (RL) has achieved impressive performance on many continuous control
tasks [59, 40], and policy optimization is one of the main workhorses for such applications [18, 65, 58,
60]. Recently, there have been extensive research efforts studying the global convergence properties
of policy optimization methods on benchmark control problems including linear quadratic regulator
(LQR) [21, 7, 41, 70, 44, 22, 29], stabilization [52, 51], linear robust/risk-sensitive control [73, 72, 26,
74, 75, 12], Markov jump linear quadratic control [32, 31, 33, 55], Lur’e system control [53], output
feedback control [20, 77, 39, 17, 16, 43, 76], and dynamic filtering [68]. For all these benchmark
problems, the objective function in the policy optimization formulation is always differentiable over
the entire feasible set, and the existing convergence theory heavily relies on this fact. Consequently,
an important open question remains whether direct policy search can enjoy similar global convergence
properties when applied to the famous H∞ control problem whose objective function can be non-
differentiable over certain points in the policy space [1–3, 28, 9, 13, 48]. Different from LQR which
considers stochastic disturbance sequences,H∞ control directly addresses the worst-case disturbance,
and provides arguably the most fundamental robust control paradigm [78, 19, 62, 4, 15, 23]. Regarding
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the connection with RL, it has also been shown thatH∞ control can be applied to stabilize the training
of adversarial RL schemes in the linear quadratic setup [72, Section 5]. Given the fundamental
importance ofH∞ control, we view it as an important benchmark for understanding the theoretical
properties of direct policy search in the context of robust control and adversarial RL. In this work, we
study and prove the global convergence properties of direct policy search on theH∞ state-feedback
synthesis problem.

The objective of the H∞ state-feedback synthesis is to design a linear state-feedback policy that
stabilizes the closed-loop system and minimizes theH∞ norm from the disturbance to a performance
signal at the same time. The design goal is also equivalent to synthesizing a state-feedback
policy that minimizes a quadratic cost subject to the worst-case disturbance. We will present the
problem formulation for theH∞ state-feedback synthesis and discuss such connections in Section 2.
Essentially, H∞ state-feedback synthesis can be formulated as a constrained policy optimization
problem minK∈K J(K), where the decision variable K is a matrix parameterizing the linear state-
feedback policy, the objective function J(K) is the closed-loop H∞-norm for given K, and the
feasible set K consists of all the linear state-feedback policies stabilizing the closed-loop dynamics.
Notice that the feasible set for theH∞ state-feedback control problem is the same as the nonconvex
feasible set for the LQR policy search problem [21, 7]. However, the objective function J(K) for the
H∞ control problem can be non-differential over certain feasible points, introducing new difficulty
to direct policy search. There has been a large family of nonsmoothH∞ policy search algorithms
developed based on the concept of Clarke subdifferential [1–3, 28, 9, 13]. However, a satisfying
global convergence theory is still missing from the literature. Our paper bridges this gap by making
the following two contributions.

1. We show that all Clarke stationary points for theH∞ state-feedback policy search problem
are also global minimum.

2. We identify the coerciveness of the H∞ cost function and use this property to show that
Goldstein’s subgradient method [25] and its implementable variants [71, 14, 9, 10, 37, 38]
can be guaranteed to stay in the nonconvex feasible set of stabilizing policies during the
optimization process and eventually find the global optimal solution of the H∞ state-
feedback control problem. Finite-time complexity bounds for finding (δ, ϵ)-stationary points
are also provided.

Our work sheds new light on the theoretical properties of policy optimization methods onH∞ control
problems, and serves as a meaningful initial step towards a general global convergence theory of
direct policy search on nonsmooth robust control synthesis.

Finally, it is worth clarifying the differences between H∞ control and mixed H2/H∞ design.
For mixed H2/H∞ control, the objective is to design a stabilizing policy that minimizes an H2

performance bound and satisfies anH∞ constraint at the same time [24, 36, 34, 47]. In other words,
mixedH2/H∞ control aims at improving the averageH2 performance while “maintaining" a certain
level of robustness by keeping the closed-loopH∞ norm to be smaller than a pre-specified number.
In contrast,H∞ control aims at “improving" the system robustness and the worst-case performance
via achieving the smallest closed-loopH∞ norm. In [73], it has been shown that the natural policy
gradient method initialized from a policy satisfying theH∞ constraint can be guaranteed to maintain
theH∞ requirement during the optimization process and eventually converge to the optimal solution
of the mixed design problem. However, notice that the objective function for the mixed H2/H∞
control problem is still differentiable over all the feasible points, and hence the analysis technique
in [73] cannot be applied to our H∞ control setting. More discussions on the connections and
differences between these two problems will be given in the supplementary material.

2 Problem Formulation and Preliminaries

2.1 Notation

The set of p-dimensional real vectors is denoted as Rp. For a matrix A, we use the notation AT, ∥A∥,
trA, σmin(A), ∥A∥2, and ρ(A) to denote its transpose, largest singular value, trace, smallest singular
value, Frobenius norm, and spectral radius, respectively. When a matrix P is negative semidefinite
(definite), we will use the notation P ⪯ (≺)0. When P is positive semidefinite (definite), we use the
notation P ⪰ (≻)0. Consider a (real) sequence u := {u0, u1, · · · } where ut ∈ Rnu for all t. This
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sequence is said to be in ℓnu
2 if

∑∞
t=0 ∥ut∥2 <∞ where ∥ut∥ denotes the standard (vector) 2-norm

of ut. In addition, the 2-norm for u ∈ ℓnu
2 is defined as ∥u∥2 :=

∑∞
t=0 ∥ut∥2.

2.2 Problem statement: H∞ state-feedback synthesis and a policy optimization formulation

We consider the following linear time-invariant (LTI) system

xt+1 = Axt +But + wt, x0 = 0 (1)

where xt ∈ Rnx is the state, ut ∈ Rnu is the control action, and wt ∈ Rnw is the disturbance. We
have A ∈ Rnx×nx , B ∈ Rnx×nu , and nw = nx. We denote x := {x0, x1, · · · }, u := {u0, u1, · · · },
and w := {w0, w1, · · · }. The initial condition is fixed as x0 = 0. The objective of H∞ control
is to choose {ut} to minimize the quadratic cost

∑∞
t=0(x

T
t Qxt + uT

t Rut) in the presence of the
worst-case ℓ2 disturbance satisfying ∥w∥ ≤ 1. In this paper, the following assumption is adopted.
Assumption 1. The matrices Q and R are positive definite. The matrix pair (A,B) is stabilizable.

In H∞ control, {wt} is considered to be the worst-case disturbance satisfying the ℓ2 norm bound
∥w∥ ≤ 1, and can be chosen in an adversarial manner. This is different from LQR which makes
stochastic assumptions on {wt}. Without loss of generality, we have chosen the ℓ2 upper bound on w
to be 1. In principle, we can formulate theH∞ control problem with any arbitrary ℓ2 upper bound
on w, and there is no technical difference. We will provide more explanations on this fact in the
supplementary material. Therefore,H∞ control can be formulated as the following minimax problem

min
u

max
w:∥w∥≤1

∞∑
t=0

(xT
t Qxt + uT

t Rut) (2)

Under Assumption 1, it is well known that the optimal solution for (2) can be achieved using a linear
state-feedback policy ut = −Kxt (see [4]). Given any K, the LTI system (1) can be rewritten as

xt+1 = (A−BK)xt + wt, x0 = 0. (3)

Now we define zt = (Q+KTRK)
1
2xt. We have ∥zt∥2 = xT

t (Q+KTRK)xt = xT
t Qxt + uT

t Rut.
We denote z := {z0, z1, · · · }. If x ∈ ℓnx

2 , then we have ∥z∥2 =
∑∞

t=0(x
T
t Qxt + uT

t Rut) < +∞.
Therefore, the closed-loop LTI system (3) can be viewed as a linear operator mapping any disturbance
sequence {wt} to another sequence {zt}. We denote this operator as GK , where the subscript
highlights the dependence of this operator on K. If K is stabilizing, i.e. ρ(A − BK) < 1, then
GK is bounded in the sense that it maps any ℓ2 sequence w to another sequence z in ℓnx

2 . For any
stabilizing K, the ℓ2 → ℓ2 induced norm of GK can be defined as:

∥GK∥2→2 := sup
0 ̸=∥w∥≤1

∥z∥
∥w∥

(4)

Since GK is a linear operator, it is straightforward to show

∥GK∥22→2 := max
w:∥w∥≤1

∞∑
t=0

xT
t (Q+KTRK)xt = max

w:∥w∥≤1

∞∑
t=0

(xT
t Qxt + uT

t Rut).

Therefore, the minimax optimization problem (2) can be rewritten as the policy optimization problem:
minK∈K∥GK∥22→2, where K is the set of all linear state-feedback stabilizing policies, i.e. K =
{K ∈ Rnu×nx : ρ(A−BK) < 1}. In the robust control literature [1–3, 28, 9, 13], it is standard to
drop the square in the cost function and just reformulate (2) as minK∈K∥GK∥2→2. This is exactly the
policy optimization formulation forH∞ state-feedback control. The main reason why this problem is
termed asH∞ state-feedback control is that in the frequency domain, GK can be viewed as a transfer
function which lives in the HardyH∞ space and has anH∞ norm being exactly equal to ∥GK∥2→2.
Applying the frequency-domain formula for theH∞ norm, we can calculate ∥GK∥2→2 as

∥GK∥2→2 = sup
ω∈[0,2π]

λ1/2
max

(
(e−jωI −A+BK)−T(Q+KTRK)(ejωI −A+BK)−1

)
, (5)

where I is the identity matrix, and λmax denotes the largest eigenvalue of a given symmetric matrix.
Therefore, eventually theH∞ state-feedback control problem can be formulated as

min
K∈K

J(K), (6)
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where J(K) is equal to the H∞ norm specified by (5). Classical H∞ control theory typically
solves (6) via introducing extra Lyapunov variables and reparameterizing the problem into a higher-
dimensional convex domain over which convex optimization algorithms can be applied [78, 19, 6].
In this paper, we revisit (6) as a benchmark for direct policy search, and discuss how to search the
optimal solution of (6) in the policy space directly. Applying direct policy search to address (6) leads
to a nonconvex nonsmooth optimization problem. A main technical challenge is that the objective
function (5) can be non-differentiable over some important feasible points [1–3, 28, 9, 13].

2.3 Direct policy search: A nonsmooth optimization perspective

Now we briefly review several key facts known for theH∞ policy optimization problem (6).

Proposition 1. The set K = {K : ρ(A−BK) < 1} is open. In general, it can be unbounded and
nonconvex. The cost function (5) is continuous and nonconvex in K.

See [21, 8] for some related proofs. We have also included more explanations in the supplementary
material. An immediate consequence is that (6) becomes a nonconvex optimization problem. Another
important fact is that the objective function (5) is also nonsmooth. As a matter of fact, (5) is subject
to two sources of nonsmoothness. Based on (5), we can see that the largest eigenvalue for a fixed
frequency ω is nonsmooth, and the optimization step over ω ∈ [0, 2π] is also nonsmooth. As a matter
of fact, theH∞ objective function (5) can be non-differentiable over important feasible points, e.g.
optimal points. Fortunately, it is well known1 that theH∞ objective function (5) has the following
desired property so it is Clarke subdifferentiable.

Proposition 2. TheH∞ objective function (5) is locally Lipschitz and subdifferentially regular over
the stabilizing feasible set K.

Recall that J : K → R is locally Lipschitz if for any bounded S ⊂ K, there exists a constant L > 0
such that |J(K)− J(K ′)| ≤ L∥K −K ′∥2 for all K,K ′ ∈ S. Based on Rademacher’s theorem, a
locally Lipschitz function is differentiable almost everywhere, and the Clarke subdifferential is well
defined for all feasible points. Formally, the Clarke subdifferential is defined as

∂CJ(K) := conv{ lim
i→∞

∇J(Ki) : Ki → K, Ki ∈ dom(∇J) ⊂ K} (7)

where conv denotes the convex hull. Then we know that the Clarke subdifferential for the H∞
objective function (5) is well defined for all K ∈ K. We say that K is a Clarke stationary point if
0 ∈ ∂CJ(K). The following fact is also well known.

Proposition 3. If K is a local min of J , then 0 ∈ ∂CJ(K) and K is a Clarke stationary point.

Under Assumption 1, it is well known that there exists K∗ ∈ K achieving the minimum of (6). Since
K is an open set, K∗ has to be an interior point of K and hence K∗ has to be a Clarke stationary point.
In Section 3, we will prove that any Clarke stationary points for (6) are actually global minimum.

Now we briefly elaborate on the subdifferentially regular property stated in Proposition 2. For any
given direction d (which has the same dimension as K), the generalized Clarke directional derivative
of J is defined as

J◦(K, d) := lim
K′→K

sup
t↘0

J(K ′ + td)− J(K ′)

t
. (8)

In contrast, the (ordinary) directional derivative is defined as follows (when existing)

J ′(K, d) := lim
t↘0

J(K + td)− J(K)

t
. (9)

1We cannot find a formal statement of Proposition 2 in the literature. However, based on our discussion
with other researchers who have worked on nonsmooth H∞ synthesis for long time, this fact is well known
and hence we do not claim any credits in deriving this result. As a matter of fact, although not explicitly stated,
the proof of Proposition 2 is hinted in the last paragraph of [2, Section III] given the facts that the H∞ norm
is a convex function over the Hardy H∞ space (which is a Banach space) and the mapping from K ∈ K
to the (infinite-dimensional) Hardy H∞ space is strictly differentiable. For completeness, a simple proof of
Proposition 2 based on Clarke’s chain rule [11] is included in the supplementary material.
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In general, the Clarke directional derivative can be different from the (ordinary) directional derivative.
Sometimes the ordinary directional derivative may not even exist. The objective function J(K) is
subdifferentially regular if for every K ∈ K, the ordinary directional derivative always exists and
coincides with the generalized one for every direction, i.e. J ′(K, d) = J◦(K, d). The most important
consequence of the subdifferentially regular property is given as follows.
Corollary 1. Suppose K† ∈ K is a Clarke stationary point for J . If J is subdifferentially regular,
then the directional derivatives J ′(K†, d) are non-negative for all d.

See [56, Theorem 10.1] for related proofs and more discussions. Notice that having non-negative
directional derivatives does not mean that the point K† is a local minimum. Nevertheless, the above
fact will be used in our main theoretical developments. Now we briefly summarize two key difficulties
in establishing a global convergence theory for direct policy search on theH∞ state-feedback control
problem (6). First, it is unclear whether the direct policy search method will get stuck at some local
minimum. Second, it is challenging to guarantee the direct policy search method to stay in the
nonconvex feasible set K during the optimization process. Since K is nonconvex, we cannot use a
projection step to maintain feasibility. Our main results will address these two issues.

2.4 Goldstein subdifferential

Generating a good descent direction for nonsmooth optimization is not trivial. Many nonsmooth
optimization algorithms are based on the concept of Goldstein subdifferential [25]. Before proceeding
to our main result, we briefly review this concept here.
Definition 1 (Goldstein subdifferential). Suppose J is locally Lipschitz. Given a point K ∈ K and a
parameter δ > 0, the Goldstein subdifferential of J at K is defined to be the following set

∂δJ(K) := conv
{
∪K′∈Bδ(K)∂CJ(K

′)
}
, (10)

where Bδ(K) denotes the δ-ball around K. The above definition implicitly requires Bδ(K) ⊂ K.

Based on the above definition, one can further define the notion of (δ, ϵ)-stationarity. A point K is
said to be (δ, ϵ)-stationary if dist(0, ∂δJ(K)) ≤ ϵ. It is well-known that the minimal norm element
of the Goldstein subdifferential generates a good descent direction. This fact is stated as follows.
Proposition 4 ([25]). Let F be the minimal norm element in ∂δJ(K). Suppose K − αF/∥F∥2 ∈ K
for any 0 ≤ α ≤ δ. Then we have

J(K − δF/∥F∥2) ≤ J(K)− δ∥F∥2. (11)

The idea of Goldstein subdifferential has been used in designing algorithms for nonsmooth H∞
control [3, 28, 9, 13]. We will show that such policy search algorithms can be guaranteed to
find the global minimum of (6). It is worth mentioning that there are other notions of enlarged
subdifferential [2] which can lead to good descent directions for nonsmoothH∞ synthesis. In this
paper, we focus on the notion of Goldstein subdifferential and related policy search algorithms.

3 Optimization Landscape forH∞ State-Feedback Control

In this section, we investigate the optimization landscape of the H∞ state-feedback policy search
problem, and show that any Clarke stationary points of (6) are also global minimum. We start by
showing the coerciveness of theH∞ objective function (5).
Lemma 1. TheH∞ objective function J(K) defined by (5) is coercive over the setK in the sense that
for any sequence {Kl}∞l=1 ⊂ K we have J(Kl)→ +∞, if either ∥Kl∥2 → +∞, or Kl converges
to an element in the boundary ∂K.

Proof. We will only provide a proof sketch here. A detailed proof is presented in the supplementary
material. Suppose we have a sequence {Kl} satisfying ∥Kl∥2 → +∞. We can choose w =
{w0, 0, 0, · · · } with ∥w0∥ = 1 and show J(Kl) ≥ wT

0 (Q + (Kl)TRKl)w0 ≥ λmin(R)∥Klw0∥2.
Clearly, we have used the positive definiteness of R in the above derivation. Then by carefully
choosing w0, we can ensure J(Kl) → +∞ as ∥Kl∥2 → +∞. Next, we assume Kl → K ∈ ∂K.
We have ρ(A−BK) = 1, and hence there exists some ω0 such that (ejω0I − A+BK) becomes
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singular. Then we can use the positive definiteness of Q to show J(Kl) ≥ λ
1/2
min(Q)(∥(ejω0I −

A+ BKl)−1∥ · ∥(e−jω0I − A+ BKl)−1∥) 1
2 . Notice σmin(e

±jω0I − A+ BKl)→ 0 as l →∞,
which implies ∥(e±jω0I −A+BKl)−1∥ → +∞ as l→∞. Therefore, we have J(Kl)→ +∞ as
Kl → K ∈ ∂K. More details for the proof can be found in the supplementary material.

We want to emphasize that the positive definiteness of (Q,R) are crucial for proving the coerciveness
of the cost function (5). Built upon Lemma 1, we can obtain the following nice properties of the
sublevel sets of (6).

Lemma 2. Consider theH∞ state-feedback policy search problem (6) with the objective function
J(K) defined in (5). Under Assumption 1, the sublevel set defined as Kγ := {K ∈ K : J(K) ≤ γ}
is compact and path-connected for every γ ≥ J(K∗) where K∗ is the global minimum of (6).

Proof. The compactness of Kγ directly follows from the continuity and coerciveness of J(K), and
is actually a consequence of [5, Proposition 11.12]. The path-connectedness of the strict sublevel sets
for the continuous-time H∞ control problem has been proved in [30]. We can slightly modify the
proof in [30] to show that the strict sublevel set {K ∈ K : J(K) < γ} is path-connected. Based on
the fact that every non-strict sublevel sets are compact, now we can apply [42, Theorem 5.2] to show
Kγ is also path-connected. An independent proof based on the non-strict version of the bounded real
lemma is also provided in the supplementary material.

The path-connectedness of Kγ for every γ actually implies the uniqueness of the minimizing set in a
certain strong sense [42, Sections 2&3]. Due to the space limit, we will defer the discussion on the
uniqueness of the minimizing set to the supplementary material. Here, we present a stronger result
which is one of the main contributions of our paper.

Theorem 1. Consider theH∞ state-feedback policy search problem (6). Under Assumption 1, any
Clarke stationary point of J(K) is a global minimum.

A detailed proof is presented in the supplementary material. Here we provide a proof sketch. Since Q
and R are positive definite, the non-strict version of the bounded real lemma2 states that J(K) ≤ γ if
and only if there exists a positive definite matrix P such that the following matrix inequality holds[

(A−BK)TP (A−BK)− P (A−BK)TP
P (A−BK) P

]
+

[
Q+KTRK 0

0 −γ2I

]
⪯ 0. (12)

The above matrix inequality is linear in P but not linear in K. A standard trick from the control theory
can be combined with the Schur complement lemma to convert the above matrix inequality condition
to another condition which is linear in all the decision variables [6]. Specifically, there exists a matrix
function LMI(Y,L, γ) which is linear in (Y, L, γ) such that LMI(Y, L, γ) ⪯ 0 and Y ≻ 0 if and only
if (12) is feasible with K = LY −1 and P = γY −1 ≻ 0. The matrix function LMI(Y,L, γ) involves
a larger matrix. Hence we present the analytical formula of LMI(Y,L, γ) in the supplementary
material and skip it here. Since LMI(Y,L, γ) is linear in (Y,L, γ), we know LMI(Y, L, γ) ⪯ 0 is
just a convex semidefinite programming condition. Based on this convex necessary and sufficient
condition for J(K) ≤ γ, we can prove the following important lemma.

Lemma 3. For any K ∈ K satisfying J(K) > J∗, there exists a matrix direction d ̸= 0 such that
J ′(K, d) ≤ J∗ − J(K) < 0, where J∗ = J(K∗) and K∗ is the global minimum of (6).

Proof. Suppose we have K = LY −1 where (Y,L, J(K)) is a feasible point for the convex regime
LMI(Y,L, J(K)) ⪯ 0. In addition, we have K∗ = L∗(Y ∗)−1 where (Y ∗, L∗, J(K∗)) is a point
satisfying LMI(Y ∗, L∗, J(K∗)) ⪯ 0. Since the LMI condition is convex, the line segment between
(Y, L, J(K)) and (Y ∗, Q∗, J(K∗)) is also in this convex set. For any t > 0, we know (Y + t∆Y,L+
t∆L, J(K) + t(J(K∗) − J(K))) also satisfies LMI(Y + t∆Y, L + t∆L, J(K) + t(J(K∗) −
J(K))) ⪯ 0, where ∆L = L∗ − L, and ∆Y = Y ∗ − Y . Therefore, based on the bounded

2The difference between the strict and non-strict versions of the bounded real lemma is quite subtle [6,
Section 2.7.3]. For completeness, we will provide more explanations for the non-strict version of the bounded
real lemma in the supplementary material.
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real lemma, we know J((L + t∆L)(Y + t∆Y )−1) ≤ J(K) + t(J(K∗) − J(K)). Let’s choose
d = ∆LY −1 − LY −1∆Y Y −1. Then we have

J ′(K, d) ≤ lim
t↘0

(
J((L+ t∆L)(Y + t∆Y )−1)− J(K)

t
+ o(t)

)
≤ J∗ − J(K) < 0.

A detailed verification of the above inequality is provided in the supplementary material. Notice
d ̸= 0. If ∆LY −1 − LY −1∆Y Y −1 = 0, the above argument still works and we reach to the
conclusion J ′(K, 0) < 0. But this is impossible since we always have J ′(K, 0) = 0. Hence we have
d ̸= 0. This completes the proof for this lemma.

Now we are ready to provide the proof for Theorem 1. Based on Lemma 3 and the fact that J(·) is
subdifferentially regular, the proof can be done by contradiction. Suppose K∗ is the global minimum,
and K† is a Clarke stationary point. If K† is not a global minimum. Then by Lemma 3, there exists
d ̸= 0 such that J ′(K†, d) < 0, this contradicts the fact that J ′(K†, d) ≥ 0 for all d by Corollary 1.
Therefore, K† has to be the global minimum of (6).

The above proof relies on Lemma 3 and the fact that J is subdifferentially regular. Without using the
subdifferentially regular property, Lemma 3 itself is not sufficient for proving Theorem 1. It is also
worth mentioning that Lemma 3 can be viewed as a modification of the convex parameterization/lifting
results in [64, 68] for non-differentiable points.

4 Global Convergence of Direct Policy Search onH∞ State-Feedback Control

In this section, we first show that Goldstein’s subgradient method [25] can be guaranteed to stay in
the nonconvex feasible regime K during the optimization process and eventually converge to the
global minimum of (6). The complexity of finding (δ, ϵ)-stationary points of (6) is also presented.
Then we further discuss the convergence guarantees for various implementable forms of Goldstein’s
subgradient method.

4.1 Global convergence and complexity of Goldstein’s subgradient Method

We will investigate the global convergence of Goldstein’s subgradient method for direct policy search
of the optimalH∞ state-feedback policy. Goldstein’s subgradient method iterates as follows

Kn+1 = Kn − δnFn/∥Fn∥2, (13)

where Fn is the minimum norm element of the Goldstein subdifferential ∂δnJ(Kn). We assume
that an initial stabilizing policy is available, i.e. K0 ∈ K. The same initial policy assumption
has also been made in the global convergence theory for direct policy search on LQR [21]. More
recently, some provable guarantees have been obtained for finding such stabilizing policies via direct
policy search [52, 51]. Hence such an assumption on the initial policy K0 is reasonable. Our global
convergence result relies on the fact that there is a strict separation between any sublevel set of (6)
and the boundary of K. This fact is formalized as follows.
Lemma 4. Consider theH∞ state-feedback policy search problem (6) with the cost function J(K)
defined in (5). Denote the complement of the feasible set K as Kc. Suppose Assumption 1 holds and
γ ≥ J∗. Then there is a strict separation between the sublevel set Kγ and Kc. In other words, we
have dist(Kγ ,Kc) > 0.

Proof. Obviously, the set Kγ ∩ Kc is empty (since we know Kγ ⊂ K). Based on Lemma 2, we
know Kγ is compact. Since K is open, we know Kc is closed. Therefore, there is a strict separation
between Kγ and Kc, and we have dist(Kγ ,Kc) > 0.

Now we are ready to present our main convergence result.
Theorem 2. Consider theH∞ state-feedback policy search problem (6) with the cost function J(K)
defined in (5). Suppose Assumption 1 holds, and an initial stabilizing policy is given, i.e. K0 ∈ K.
Denote ∆0 := dist(KJ(K0),Kc) > 0. Choose δn = c∆0

n+1 for all n with c being a fixed number in
(0, 1). Then Goldstein’s subgradient method (13) is guaranteed to stay in K for all n. In addition, we
have J(Kn)→ J∗ as n→∞.
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Proof. We have δn ≤ c∆0 < ∆0 for all n. Now we use an induction proof to show Kn ∈ KJ(K0)

for all n. For n = 0, we know K0 − c∆0F
0/∥F 0∥2 has to be within the ∆0 ball around K0 since

we know the norm of F 0/∥F 0∥2 is exactly equal to 1. Since ∆0 := dist(KJ(K0),Kc) > 0, we know
K0 − δ0F 0/∥F 0∥2 ∈ K. As a matter of fact, we know Bδ0(K

0) has to be a subset of K. Hence we
can apply (11) to show that K1 exists and is also in KJ(K0). Similarly, we can repeat this argument
to show Kn ∈ KJ(K0) for all n. Next, we can apply (11) to every step and then sum the inequalities
over all n. Then the following inequality holds for all N :

N∑
n=0

δn∥Fn∥2 ≤ J(K0)− J∗ (14)

Since we have
∑∞

n=0 δ
n = +∞, we know lim infn→∞∥Fn∥2 = 0. There exists one subsequence

{in} such that ∥F in∥2 → 0. For this subsequence, the resultant policy sequence {Kin} is also
bounded (notice that the policy parameter sequence stays in the compact set KJ(K0) for all n) and
has a convergent subsequence. We can show that the limit of this subsequence is a Clarke stationary
point. Hence the function value associated with this subsequence converges to J∗. Notice that J(Kn)
is monotonically decreasing for the entire sequence {n}. Hence we have J(Kn)→ J∗.

We have tried to be brief in giving the above proof. We will present a more detailed proof in the
supplementary material. We believe that this is the first result showing that direct policy search can
be guaranteed to converge to the global optimal solution of theH∞ state-feedback control problem.
The above result only provides an asymptotic convergence guarantee to ensure J(Kn)→ J∗. One
can use a similar argument to establish a finite-time complexity bound for finding the (δ, ϵ)-stationary
points of (6). Such a result is given as follows.

Theorem 3. Consider theH∞ problem (6) with the cost function (5). Suppose Assumption 1 holds,
and K0 ∈ K. Denote ∆0 := dist(KJ(K0),Kc) > 0. For any δ < ∆0, we can choose δn = δ for all
n to ensure that Goldstein’s subgradient method (13) stays in K and satisfies the following finite-time
complexity bound:

min
n:0≤n≤N

∥Fn∥2 ≤
J(K0)− J∗

(N + 1)δ
(15)

In other words, we have min0≤n≤N∥Fn∥2 ≤ ϵ after N = O
(
∆
δϵ

)
where ∆ := J(K0) − J∗. For

any δ < ∆0 and ϵ > 0, the complexity of finding a (δ, ϵ)-stationary point is O
(
∆
δϵ

)
.

Proof. The above result can be proved using a similar argument from Theorem 2. We can use the
same induction argument to show Kn ∈ KJ(K0) for all n, and (14) holds with δn = δ. Then the
desired conclusion directly follows.

The complexity for nonsmooth optimization of Lipschitz functions is quite subtle. While the above
result gives a reasonable characterization of the finite-time performance of Goldstein’s subgradient
method on theH∞ state-feedback control problem, it does not quantify how fast J(Kn) converges
to J∗. Recall that (δ, ϵ)-stationarity means dist(0, ∂δJ(K)) ≤ ϵ, while ϵ-stationarity means
dist(0, ∂CJ(K)) ≤ ϵ. As commented in [61, 71, 14], (δ, ϵ)-stationarity does not imply being
δ-close to an ϵ-stationary point of J . Importantly, the function value of a (δ, ϵ)-stationary point can
be far from J∗ even for small δ and ϵ. Theorem 5 in [71] shows that there is no finite time algorithm
that can find ϵ-stationary points provably for all Lipschitz functions. It is still possible that one can
develop some finite time bounds for (J(Kn)− J∗) via exploiting other advanced properties of the
H∞ cost function (5). This is an important future task.

4.2 Implementable variants and related convergence results

In practice, it can be difficult to evaluate the minimum norm element of the Goldstein subdifferential.
Now we discuss implementable variants of Goldstein’s subgradient method and related guarantees.

Gradient sampling [9, 10, 37]. The gradient sampling (GS) method is the main optimization
algorithm used in the robust control package HIFOO [3, 28]. Suppose we can access a first-order
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oracle which can evaluate∇J for any differentiable points in the feasible set3. Based on Rademacher’s
theorem, a locally Lipschitz function is differentiable almost everywhere. Therefore, for any Kn ∈ K,
we can randomly sample policy parameters over Bδn(K

n) and obtain differentiable points with
probability one. For all these sampled differentiable points, the Clarke subdifferential at each point is
just the gradient. Then the convex hull of these sampled gradients can be used as an approximation
for the Goldstein subdifferential ∂δnKn. The minimum norm element from the convex hull of
the sampled gradients can be solved via a simple convex quadratic program, and is sufficient for
generating a reasonably good descent direction for updating Kn+1 as long as we sample at least
(nxnu + 1) differentiable points for each n [9]. In the unconstrained setup, the cluster points of the
GS algorithm can be guaranteed to be Clarke stationary [37, 9]. Such a result can be combined with
Theorem 1 and Lemma 4 to show the global convergence of the GS method on theH∞ state-feedback
synthesis problem. The following theorem will be treated formally in the supplementary material.

Theorem 4 (Informal statement). Consider the policy optimization problem (6) with theH∞ cost
function defined in (5). Suppose Assumption 1 holds, and K0 ∈ K. The iterations generated
from the trust-region version of the GS method (described in [37, Section 4.2] and restated in the
supplementary material) can be guaranteed to stay in K for all iterations and achieve J(Kn)→ J∗

with probability one.

Non-derivative sampling (NS) [38]. The NS method can be viewed as the derivative-free version of
the GS algorithm. Suppose we only have the zeroth-order oracle which can evaluate the function
value J(K) for K ∈ K. The main difference between NS and GS is that the NS algorithm relies on
estimating the gradient from function values via Gupal’s estimation method. In the unconstrained
setting, the cluster points of the NS method can be guaranteed to be Clarke stationary with probability
one [38, Theorem 3.8]. We can combine [38, Theorem 3.8] with our results (Theorem 1 and
Lemma 4) to prove the global convergence of NS in our setting. A detailed discussion is given in the
supplementary material.

Model-free implementation of NS. When the system model is unknown, there are various methods
available for estimating the H∞-norm from data [45, 46, 57, 54, 69, 50, 67, 66]. Based on our
own experiences/tests, the multi-input multi-output (MIMO) power iteration method [49] works
quite well as a stochastic zeroth-order oracle for the purpose of implementing NS in the model-free
setting. While the sample complexity for model-free NS is unknown, we will provide some numerical
justifications to show that such a model-free implementation closely tracks the convergence behaviors
of its model-based counterpart.

Interpolated normalized gradient descent (INGD) with finite-time complexity. No finite-time
guarantees for finding (δ, ϵ)-stationary points have been reported for the GS/NS methods. In [71, 14],
the INGD method has been developed as another implementable variant of Goldstein’s subgradient
method, and is proved to satisfy high-probability finite-time complexity bounds for finding (δ, ϵ)-
stationary points of Lipschitz functions. INGD uses an iterative sampling strategy to generate
a descent direction which serves a role similar to the minimal norm element of the Goldstein
subdifferential. A first-order oracle for differentiable points is needed for implementing the version
of INGD in [14]. It has been show [71, 14] that for unconstrained nonsmooth optimization of
L-Lipschitz functions4, the INGD algorithm can be guaranteed to find the (δ, ϵ)-stationary point with
the high-probability iteration complexity O

(
∆L2

ϵ3δ log( ∆
pδϵ )

)
, where ∆ := J(K0)− J∗ is the initial

function value gap, and p is the failure probability (i.e. the optimization succeeds with the probability
(1− p)). We can combine the proofs for [14, Theorem 2.6] and Theorem 3 to obtain the following
complexity result for ourH∞ setting. A formal treatment is given in the supplementary material.

Theorem 5 (Informal statement). Consider the policy optimization problem (6) with theH∞ cost
function defined in (5). Suppose Assumption 1 holds, and the initial policy is stabilizing, i.e. K0 ∈ K.
Denote ∆0 := dist(KJ(K0),Kc) > 0, and let L0 be the Lipschitz constant of J(K) over the set
KJ(K0). For any δ < ∆0, we can choose δn = δ for all n to ensure that the iterations of the INGD
algorithm stay inK almost surely, and find a (δ, ϵ)-stationary point with the high-probability iteration

complexity O
(

∆L2
0

ϵ3δ log( ∆
pδϵ )

)
, where p is the failure probability.

3When (A,B) is known, one can calculate the H∞ gradient at differential points using the chain rule in [2].
More explanations can be found in the supplementary material.

4We slightly abuse our notation by denoting the Lipschitz constant as L. Previously, we have used L to
denote a particular matrix used in the LMI formulation for H∞ state-feedback synthesis.
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Figure 1: Simulation results. Left: The trajectory of relative error of GS, NS, INGD, and Model-free
NS methods on (16). Middle: The trajectory of relative optimality gap of 8 randomly generated cases
for NS method. Right: The trajectory of Model-free NS method with more noisy oracle on (16).

5 Numerical Simulations

To support our theory, we provide some numerical simulations in this section. The left plot in Figure 1
shows that GS, NS, INGD, and model-free NS work well for the following example:

A =

[
1 0 −5
−1 1 0
0 0 1

]
, B =

[
1
0
−1

]
, Q =

[
2 −1 0
−1 2 −1
0 −1 2

]
, R = 1. (16)

For this example, we have J∗ = 7.3475. We initialize from K0 = [0.4931 −0.1368 −2.2654],
which satisfies ρ(A − BK0) = 0.5756 < 1. The hyperparameter choices are detailed in the
supplementary material. We can see that model-free NS closely tracks the trajectory of NS and works
well. In the middle plot of Figure 1, we test the NS method on randomly generated cases. We set
A ∈ R3×3 to be I + ξ, where each element of ξ ∈ R3×3 is sampled uniformly from [0, 1]. For
B ∈ R3×1, each element is uniformly sampled from [0, 1]. We have Q = I + ζI ∈ R3×3 with ζ
uniformly sampled from [0, 0.1], and R ∈ R uniformly sampled from [1, 1.5]. For each experiment,
the initial condition K0 ∈ R1×3 is also randomly sampled such that ρ(A − BK0) < 1. The NS
method converges globally for all the cases. In the right plot, we focus on the model-free setting for
(16). We decrease the number of samples used in theH∞ estimation and show how this increases the
noise in the zeroth-orderH∞ oracle and worsens the convergence behaviors of the model-free NS
method. Nevertheless, the model-free NS method tracks its model-based counterpart with enough
samples. More numerical results can be found in the supplementary material.

6 Conclusions and Future Work

In this paper, we developed the global convergence theory for direct policy search on theH∞ state-
feedback synthesis problem. Although the resultant policy optimization formulation is nonconvex
and nonsmooth, we managed to show that any Clarke stationary points for this problem are actually
global minimum, and the concept of Golstein subdifferential can be used to build direct policy
search algorithms which are guaranteed to converge to the global optimal solutions. The finite-time
guarantees in this paper are developed only for finding (δ, ϵ)-stationary points. An important future
task is to investigate the finite-time bounds for the optimality gap (i.e. J(Kn)− J∗) as well as the
sample complexity of direct policy search on model-freeH∞ control. It is also of great interests to
investigate the convergence properties of direct policy search in nonlinear/output-feedback settings5.
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Supplementary Material

A More Details on Problem Formulation and Background

A.1 Difference betweenH∞ control and mixedH2/H∞ design

In this paper, we are interested inH∞ control whose objective is to design a state-feedback policy
K that stabilizes the closed-loop system and minimizes the closed-loopH∞ norm (or equivalently
the ℓ2 → ℓ2 induced norm) of GK at the same time. As discussed in the main paper, H∞ control
can be formulated as minK∈K∥GK∥2→2. We have mentioned that such a formulation corresponds
to a worst-case assumption on the disturbance w. Since ∥GK∥2→2 is a nonsmooth function in K,
theH∞ control leads to a nonsmooth optimization problem. The global optimalH∞ norm for this
problem is denoted as γ∗.

In contrast, the design objective of the mixedH2/H∞ control is to synthesize a a linear state-feedback
policy which minimizes an upper bound on theH2 cost and satisfies an additionalH∞-robustness
requirement in the form of ∥GK∥2→2 < γ with some pre-specified value of γ. Recall that we
denote the non-strict γ-admissible sublevel set of the H∞ objective function as Kγ = {K ∈ K :
∥GK∥2→2 ≤ γ}. Similarly, we definie the strict γ-admissible sublevel set of the H∞ objective
function as K̃γ = {K ∈ K : ∥GK∥2→2 < γ}. Then for any γ > γ∗, the H2/H∞ mixed design
problem can be formulated as

min
K∈K̃γ

tr(PK)

where PK is the minimal positive definite solution to the following Riccati equation
(A−BK)T(PK + PK(γ2I − PK)−1PK)(A−BK) +Q+KTRK − PK = 0.

Notice that as γ → ∞, the above mixed design problem reduces to the LQR problem. For finite
γ, tr(PK) provides an upper bound for the LQR cost. For the mixedH2/H∞ control problem, the
closed-loop H∞ norm ∥GK∥2→2 only appears in the constraint. One can show that cost function
tr(PK) is still differentiable in the policy space for any K ∈ K̃. The main result in [73] states that
given an initial policy K0 ∈ K̃γ for γ > γ∗, then the natural policy gradient method with well-chosen
stepsize is guaranteed to stay in K̃γ and fine the optimal policy minimizes tr(PK). This means that
the natural policy gradient method applied to this mixed design problem can improve the average
performance (via minimizing tr(PK)) while maintaining the robustness level γ. A missing step is
how to use direct policy search to obtain such an initial policy satisfying ∥GK0∥2→2 < γ in the first
place. One by-product of the results in this paper is a direct policy search method for obtaining such
initial policy provably.

It is worth mentioning that it is also possible to to tackle theH∞ state-feedback synthesis via solving
a sequence of mixedH2/H∞ design problems, and the approximate central path algorithm in [35] is
developed based on such an idea. However, there is no global convergence theory reported for such
successive minimization approaches [35].

A.2 FormulatingH∞ control with arbitrary ℓ2 bound on the disturbance

To address the worst-case disturbance w, one may be interested in the following problem formulation

min
u

max
w:∥w∥≤Λ

∞∑
t=0

(xT
t Qxt + uT

t Rut) (A.1)

where Λ is an arbitrary positive number. An interesting fact is that (A.1) still leads to the same policy
optimization problem minK∈K∥GK∥2→2 regardless of the value of Λ. Now we briefly explain this
fact. Again, it is well-know that it suffices to consider linear state-feedback policies for solving (A.1).
Notice that GK is a linear operator for any fixed K. Therefore, it is straightforward to verify

max
w:∥w∥≤Λ

∞∑
t=0

(xT
t Qxt + uT

t Rut) = Λ2∥GK∥22→2

Consequently, (A.1) can be equivalently formulated as minK∈K Λ2∥G∥22→2. The constant Λ2 can be
removed without changing the optimization problem. Therefore, no matter what positive value we
use for Λ, (A.1) is always equivalent to minK∈K∥G∥2→2.
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A.3 More explanations for Proposition 1

Now we provide some explanations for Proposition 1 which states several facts observed in the
existing literature. The continuity of the cost function (5) can be seen from its analytic form. The
openness of K can be seen from the fact that the spectral radius ρ(A−BK) is a continuous function
of K. The unboundedness of K has been proved in [8]. To see that K can be nonconvex, we provide
a simple example here. Suppose A = B = I , and we choose two policies as follows

K =

[
1 0
−1 1

]
, K ′ =

[
1 −5
0 1

]
.

Then one can easily check that K,K ′ ∈ K, while their convex combination 1
2 (K1 +K2) /∈ K.

Finally, we provide an example to show J(K) is nonconvex in K. Suppose A = B = Q = R = I
and choose two policies as follows:

K =

[
0.7 −3.4
0.2 1

]
, K ′ =

[
0 −1.3
0.6 1.2

]
.

Let K ′′ = 1
2 (K + K ′), then we have J(K ′′) = 35.99 and 1

2 (J(K) + J(K ′)) = 13.3. Hence
J(K ′′) > 0.5J(K) + 0.5J(K ′), which shows J(K) is nonconvex in K.

A.4 Proof of Proposition 2

Proposition 2 is a consequence of the chain rule stated in [11, Theorem 2.3.10]. As mentioned
previously, Proposition 2 should be considered as a well-known fact, and we do not claim any
credits in proving it. Although not explicitly stated, the proof of Proposition 2 has been hinted in the
discussion of [2, Section III]. We only present the proof for completeness.

To apply [11, Theorem 2.3.10], we can rewrite the closed-loopH∞ norm ∥GK∥2→2 as a composition
g2 ◦ g1(K) where g1 maps the policy parameter K to a stable transfer function (Q+KTRK)

1
2 (zI−

A+BK)−1 which lives in the infinite-dimensionalH∞ Hardy space, and g2 maps any stable transfer
function in that Hardy space to its H∞ norm. It is well known that the infinite-dimensional H∞
Hardy space consisting of all stable LTI systems is a Banach space [78]. We also know that g2 is
convex on the Hardy space (by triangle inequality of theH∞ norm). The convexity of g2 implies that
g2 is also subdifferentially regular. One can also show that g1 is a strictly differentiable mapping from
K to the Hardy space given ρ(A−BK) < 1 and Q being positive definite. Now we can immediately
apply [11, Theorem 2.3.10] to obtain the desired conclusion in Proposition 2.

Remark 1. For readability, we also provide some brief explanations for the fact that the mapping g1
is strictly differentiable. For each K ∈ K, g1 maps K to an infinite-dimensional bounded operator
which maps from ℓnw

2 to ℓnx
2 and has a Toeplitz structure. The Toeplitz structure can be combined

with Fubini’s theorem to show simple upper bounds for the operator norm of g1. One such upper
bound is provided by ∥(Q+KTRK)

1
2 ∥

∑∞
k=0∥(A−BK)k∥, which is obviously finite for K ∈ K.

Such a bound allows us to study the operator g1 via treating it as an infinite-dimensional Toeplitz
matrix whose properties are completely determined by its first block column. By definition, g1 admits
a strict derivative at K if the following operator norm convergence result holds for any V :

lim
K′→K, t↓0

∥(g1(K ′ + tV )− g1(K
′))/t− ⟨Dsg1(K), V ⟩∥ = 0, (A.2)

where ∥·∥ denotes the operator norm, and Dsg1 is the candidate for the strict derivative defined via
taking derivatives of the infinite-dimensional matrix g1 in a block-by-block manner. Since we know
ρ(A−BK) < 1, the Toeplitz structure of g1 can be combined with Fubini’s theorem again to prove
the existence of Dsg1 and provide simple upper bounds for the operator norm on the left side of
(A.2), leading to the desired operator norm convergence result in (A.2).

A.5 A non-strict version of the Bounded Real Lemma

The bounded real lemma (also referred to as the Kalman–Yakubovich–Popov (KYP) lemma) is an
important tool for characterizing the sublevel sets of the closed-loop H∞ norm. There is some
subtlety in the assumptions needed for different versions of the bounded real lemma. We briefly
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clarify this subtlety here. Consider the following closed-loop linear system:

xt+1 = Aclxt +Bclwt

zt = Cclxt,
(A.3)

where ρ(Acl) < 1. Recall that the closed-loopH∞ norm of the above system (from {wt} to {zt}) is
defined as

Hcl = sup
ω∈[0,2π]

λ1/2
max

(
BT

cl(e
−jωI −Acl)

−TCT
clCcl(e

jωI −Acl)
−1Bcl

)
.

The strict version of the bounded real lemma [78, Theorem 21.12] states that Hcl < γ if and only if
there exists a positive definite matrix P such that[

AT
clPAcl − P AT

clPBcl

BT
clPAcl BT

clPBcl

]
+

[
CT

clCcl 0
0 −γ2I

]
≺ 0.

The above strict-version version of the bounded real lemma does not require any assumptions on
(Acl, Bcl, Ccl). There is also a non-strict version of the bounded real lemma which requires the extra
assumption that (Acl, Bcl, Ccl) is minimal (i.e. (Acl, Bcl) is controllable and (Acl, Ccl) is observable).
Consider (A.3) with (Acl, Bcl, Ccl) being a minimal realization. Then the non-strict version of the
bounded real lemma6 states that Hcl ≤ γ if and only if there exists a positive definite matrix P such
that [

AT
clPAcl − P AT

clPBcl

BT
clPAcl BT

clPBcl

]
+

[
CT

clCcl 0
0 −γ2I

]
⪯ 0.

For the main result in this paper, the proof require the above non-strict version of the bounded real
lemma. Specifically, in our setting, we have ∥GK∥2→2 = Hcl if we choose Acl = A−BK, Bcl = I ,
and Ccl = (Q +KTRK)

1
2 . Since Q is positive definite, such choice of (Acl, Bcl, Ccl) leads to a

minimal realization, and hence it is valid to apply the non-strict version of the bounded real lemma to
characterize the non-strict sublevel sets of ∥GK∥2→2.

B Detailed Proofs of Our Main Results in Sections 3 & 4

In the main paper, we have only provided the proof sketches for Lemma 1, Lemma 2, Theorem 1,
Lemma 3, and Theorem 2. In this section, we provide detailed proofs for these results.

B.1 Proof for Lemma 1

Suppose we have a sequence {Kl} satisfying ∥Kl∥2 → +∞. We can choose w = {w0, 0, 0, · · · }
with ∥w0∥ = 1. Then we have:

J(Kl) = max
w:∥w∥≤1

∞∑
t=0

xT
t (Q+ (Kl)TRKl)xt

≥ wT
0 (Q+ (Kl)TRKl)w0

= wT
0Qw0 + (Klw0)

TR(Klw0)

≥ λmin(R)∥Klw0∥2,

where the first inequality holds since we plugged into a specific w over the max operation and the
matrix Q+ (Kl)TRKl is positive definite. The second inequality uses the fact that R ≥ λmin(R)I .
Then by carefully choosing w0, we can ensure J(Kl)→ +∞ as ∥Kl∥ → +∞.

Next, we assume Kl → K where K is on the boundary ∂K. Clearly we have ρ(A−BK) = 1. We
will use a frequency-domain argument to prove J(Kl)→ +∞. Since ρ(A−BK) = 1, there exists
some ω0 such that the matrix (ejω0I −A+BK) becomes singular. Obviously, for the same ω0, the

6See [6, Section 2.7.3] for the continuous-time counterpart.
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matrix (e−jω0I −A+BK) is also singular. Therefore, we have:

J(Kl) = sup
ω∈[0,2π]

λ1/2
max

(
(e−jωI −A+BKl)−T(Q+ (Kl)TRKl)(ejωI −A+BKl)−1

)
= sup

ω∈[0,2π]

∥(e−jωI −A+BKl)−T(Q+ (Kl)TRKl)(ejωI −A+BKl)−1∥1/2

≥ λ
1/2
min(Q) sup

ω∈[0,2π]

(∥(e−jωI −A+BKl)−1∥ · ∥(ejωI −A+BKl)−1∥)1/2

≥ λ
1/2
min(Q)(∥(e−jω0I −A+BKl)−1∥ · ∥(ejω0I −A+BKl)−1∥)1/2.

Clearly, the above argument relies on the fact that Q is positive definite. Notice that we have
ρ(A−BKl) < 1 for each l , and hence we have σmin(e

±jω0I − A+BKl) > 0, i.e. the smallest
singular values of (e±jω0I − A + BKl) are strictly positive for all l. As l → ∞, one can show
that the matrices (e±jω0I −A+BKl) converge to the singular matrices (e±jω0I −A+BK) with
K = liml→∞ Kl ∈ ∂K. Hence we have σmin(e

±jω0I −A+BKl)→ 0 as l→∞, which implies
∥(e±jω0I−A+BKl)−1∥ → +∞ as l→∞. Therefore, we have J(Kl)→ +∞ as Kl → K ∈ ∂K.
This completes the proof.

B.2 Proof for Lemma 2

We first show the compactness of Kγ . Since J is continuous, we know Kγ = {K ∈ K : J(K) ≤ γ}
is a closed set. It remains to show Kγ is bounded. Suppose there exist γ > 0 such that Kγ is
unbounded. Then there exists a sequence {Kl}∞l=1 ⊂ Kγ such that ∥Kl∥2 → +∞ as l→∞. But by
coerciveness of J(K), we must have J(Kl)→ +∞ as well, which contradicts that J(Kl) ≤ γ for
all l. Hence Kγ is bounded. Therefore, Kγ is compact. The path-connectedness of the strict sublevel
sets for the continuous-timeH∞ control problem has been proved in [30]. We can slightly modify
the proof in [30] to show that the strict sublevel set {K ∈ K : J(K) < γ} is path-connected. Based
on the fact that every non-strict sublevel sets are compact, we can apply [42, Theorem 5.2] to show
Kγ is also path-connected.

We can also prove the path-connectedness of Kγ by using the non-strict version of the bounded real
lemma reviewed in Section A.5. This proof is more self-contained, and hence also included here.
Since Q and R are positive definite, the non-strict version of the bounded real lemma [6, Section
2.7.3] states that J(K) ≤ γ if and only if there exists a positive definite matrix P such that the
following non-strict matrix inequality holds[

(A−BK)TP (A−BK)− P (A−BK)TP
P (A−BK) P

]
+

[
Q+KTRK 0

0 −γ2I

]
⪯ 0. (B.1)

The above matrix inequality is linear in P but not linear in K. A standard trick from the control
theory can be combined with the Schur complement lemma to convert the above matrix inequality
condition to another condition which is linear in all the decision variable [6]. Specifically, there exists
a matrix function LMI(Y,L, γ) which is linear in (Y,L, γ) such that Y ≻ 0 and LMI(Y,L, γ) ⪯ 0
if and only if (B.1) is feasible with K = LY −1, and P = γY −1. For completeness, we provide the
detailed derivation of LMI(Y,L, γ) as follows.

Step 1: Let P̃ = 1
γP , dividing both sides of (B.1) by γ. Then by Schur complement lemma, (B.1)

can be rewritten as:(A−BK)TP̃ (A−BK)− P̃ + 1
γK

TRK (A−BK)TP̃ I

P̃ (A−BK) P̃ − γI 0
I 0 −γQ−1

 ⪯ 0, (B.2)

To see this, noticing that −γQ−1 is negative definite and (B.1) can be rewritten as:[
(A−BK)TP̃ (A−BK)− P̃ + 1

γK
TRK (A−BK)TP̃

P̃ (A−BK) P̃ − γI

]
−
[
I
0

]
(− 1

γ
Q) [I 0] ⪯ 0. (B.3)
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Step 2: Now we can apply Schur complement lemma to (B.2) again to show its equivalence to:
−P̃ + 1

γK
TRK 0 I (A−BK)TP̃

0 −γI 0 P̃
I 0 −γQ−1 0

P̃ (A−BK) P̃ 0 −P̃

 ⪯ 0. (B.4)

To see this, noticing that −P̃ is negative definite and the LHS of (B.2) can be rewritten as:−P̃ + 1
γK

TRK 0 I
0 −γI 0
I 0 −γQ−1

−
(A−BK)TP̃

P̃
0

 (−P̃−1)
[
P̃ (A−BK) P̃ 0

]
.

(B.5)

Step 3: Then we left and right multiply diag(
[
P̃−1 I I P̃−1

]
) on both sides of (B.4), this will

not change the definiteness of (B.4) and leads the LHS of (B.4) to:
P̃−1 0 0 0
0 I 0 0
0 0 I 0
0 0 0 P̃−1



−P̃ + 1

γK
TRK 0 I (A−BK)TP̃

0 −γI 0 P̃
I 0 −γQ−1 0

P̃ (A−BK) P̃ 0 −P̃



P̃−1 0 0 0
0 I 0 0
0 0 I 0
0 0 0 P̃−1


(B.6)

=


−P̃−1 + 1

γ P̃
−1KTRKP̃−1 0 P̃−1 P̃−1(A−BK)T

0 −γI 0 I
P̃−1 0 −γQ−1 0

(A−BK)P̃−1 I 0 −P̃−1

 (B.7)

Step 4: Substituting Y = P̃−1 and KY = L into the above matrix leads (B.4) to:
−Y + 1

γL
TRL 0 Y (AY −BL)T

0 −γI 0 I
Y 0 −γQ−1 0

AY −BL I 0 −Y

 ⪯ 0 (B.8)

Step 5: Furthermore, (B.8) is equivalent to: −Y 0 Y (AY −BL)T

0 −γI 0 I
Y 0 −γQ−1 0

AY −BL I 0 −Y

−
L

T

0
0
0

 (− 1

γ
R) [L 0 0 0] ⪯ 0 (B.9)

Applying Schur complement lemma to (B.9) again leads to:

LMI(Y,L, γ) :=


−Y 0 Y (AY −BL)T LT

0 −γI 0 I 0
Y 0 −γQ−1 0 0

AY −BL I 0 −Y 0
L 0 0 0 −γR−1

 ⪯ 0. (B.10)

This proves the equivalence between (B.10) and (B.1). Therefore, we have:

{K ∈ K : J(K) ≤ γ}
⇐⇒{K : (B.1) is feasible, P ≻ 0}
⇐⇒{K = LY −1 : (B.10) is feasible, Y ≻ 0}.

(B.11)

Noticing that the set of (Y, L) satisfying (B.10) and Y ≻ 0 is convex and hence path-connected.
In addition, the map K = LY −1 is continuous for positive definite Y . We can conclude that
Kγ = {K ∈ K : J(K) ≤ γ} is path-connected. Such a proof is actually quite similar to the proof
presented in [30]. The main difference is that the assumptions in this paper allow us to directly use
the non-strict version of the bounded real lemma.
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B.3 Proof for Lemma 3

The proof of this lemma depends on the above convex parameterization (Y,L). Since LMI(Y, L, γ)
is linear in (Y,L, γ), the condition (B.10) is convex. Suppose we have K = LY −1 where
(Y, L, J(K)) is a feasible point for the convex regime LMI(Y, L, J(K)) ⪯ 0 and Y ≻ 0. In
addition, by the non-strict version of the bounded real lemma, we know there exists a pair (Y ∗, L∗)
such that K∗ = L∗(Y ∗)−1, LMI(Y ∗, L∗, J(K∗)) ⪯ 0 and Y ∗ ≻ 0. By convexity of the LMI
condition LMI(Y, L, γ) ⪯ 0 and Y ≻ 0, we know that the line segment between (Y, L, J(K))
and (Y ∗, L∗, J(K∗)) is also in this convex set. Therefore, for any 0 ≤ t ≤ 1, we know the point
(Y + t∆Y,L+ t∆L, J(K) + t(J(K∗)− J(K))) also satisfies

LMI(Y + t∆Y,L+ t∆L, J(K) + t(J(K∗)− J(K))) ⪯ 0, Y + t∆Y ≻ 0

where ∆L = L∗ − L, and ∆Y = Y ∗ − Y . Since Y ≻ 0 and Y ∗ ≻ 0, we automatically have
Y + t∆Y ≻ 0. Based on (B.11), we can construct a policy (L+ t∆L)(Y + t∆Y )−1 and the resultant
closed-loop H∞ norm must be smaller than or equal to J(K) + t(J(K∗)− J(K)). Formally, we
have

J((L+ t∆L)(Y + t∆Y )−1) ≤ J(K) + t(J(K∗)− J(K)).

Based on the fact J(K∗) < J(K), we can use the above inequality to construct a direction d such
that J ′(K, d) < 0. Specifically, let’s choose d = ∆LY −1 − LY −1∆Y Y −1. Then we have

J ′(K, d) = lim
t↘0

J(K + t(∆LY −1 − LY −1∆Y Y −1))− J(K)

t

= lim
t↘0

J(LY −1 + t(∆LY −1 − LY −1∆Y Y −1))− J(K)

t

=(a) lim
t↘0

J((L+ t∆L)(Y + t∆Y )−1)− J(K)

t

+ lim
t↘0

J((L+ t∆L)(Y + t∆Y )−1 +O(t2))− J((L+ t∆L)(Y + t∆Y )−1)

t

≤(b) lim
t↘0

(
J((L+ t∆L)(Y + t∆Y )−1)− J(K)

t
+O(t)

)
≤ lim

t↘0

(
J(K) + t(J(K∗)− J(K))− J(K)

t
+O(t)

)
= J(K∗)− J(K) < 0,

where the step (a) relies on the fact that (Y + t∆Y )−1 = Y −1 − tY −1∆Y Y −1 + O(t2) and the
step (b) uses the fact that J(·) is locally Lipschitz (Proposition 2). Finally, the last inequality holds
since we know J(K) > J(K∗). Notice d ̸= 0. Otherwise the above argument still works and we
have J ′(K, 0) < 0. This is impossible since we know J ′(K, 0) = 0. This leads to a contradiction,
and we must have d ̸= 0. This completes the proof for this lemma.

B.4 Proof for Theorem 2

We first show that Kn ∈ KJ(K0) for all n by induction. By choice, we have δn = c∆0

n+1 ≤ c∆0

for all n with some c ∈ (0, 1). For n = 1, we have K1 = K0 − c∆0F
0/∥F 0∥2. Since the norm

of F 0/∥F 0∥2 is equal to one and δ0 = c∆0 > 0, we have K1 ∈ Bδ0(K
0), where Bδ0(K

0) is the
δ0-ball centered at K0. Based on the definition of ∆0, we know Bδ0(K

0) ⊆ K, and hence K1 ∈ K.
In addition, (13) implies J(K1) ≤ J(K0) − δ0∥F 0∥2. Hence we have KJ(K1) ⊆ KJ(K0), which
implies K1 ∈ KJ(K0). Similarly, we can repeat this argument to show Kn ∈ KJ(K0) for all n.

Next, we can apply (11) to every step and then sum the inequalities over all n. Then the following
inequality holds for all N :

N∑
n=0

δn∥Fn∥2 ≤ J(K0)− J(KN+1) ≤ J(K0)− J∗, (B.12)

where the second inequality holds since J(KN+1) ≥ J∗. Since we have
∑∞

n=0 δ
n =

c∆0

∑∞
n=1

1
n = +∞, we know lim infn→∞∥Fn∥2 = 0. Therefore, there exists one subsequence
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{ni} such that ∥Fni∥2 → 0. For this subsequence, the policy parameter sequence {Kni} stays in
the compact set KJ(K0). Hence we know that the resultant policy sequence {Kni} is also bounded
and has a convergent subsequence {Kni(l)}, which converges to some limit point K∞ ∈ KJ(K0). In
addition, we have ∥Fni(l)∥2 → 0 as well.

When δ > 0 is sufficiently small, we know Bδ(K
∞) ⊂ K. Then there exists Nδ such that

Bδ
ni(l) (Kni(l)) ⊂ Bδ(K

∞) for all ni(l) ≥ Nδ. Hence we have Fni(l) ∈ ∂δni(l)J(Kni(l)) ⊂
∂δJ(K

∞) for all ni(l) ≥ Nδ . Noticing that Fni(l) → 0 and ∂·J(·) is closed, we have 0 ∈ ∂δJ(K
∞)

for any δ > 0. It is also well-know that one has
⋂

ni(l)
∂δni(l)J(K∞) = ∂CJ(K

∞) (see Remark 2
for extra explanations). Hence we have 0 ∈ ∂C(K

∞), and K∞ has to be a Clarke stationary point.
Based on Theorem 1, we have J(K∞) = J∗, and hence the function-value subsequence {J(Kni(l))}
converges to J∗. Notice that {J(Kn)} is monotonically decreasing for the entire sequence {n}.
Hence the sequence {J(Kn)} has a limit, and this limit has to be J(K∞) = J∗. This completes the
proof.
Remark 2. For completeness, we also explain the well-known fact regarding

⋂
n ∂δnJ(K) =

∂CJ(K) as δn → 0. Here {δn} is allowed to be any monotonically-decreasing sequence satisfying
∂δ0J(K) ⊂ K. By definition, we have ∂CJ(K) ⊂ ∂δnJ(K) for all n. Since {δn} is monotonically
decreasing, we also have ∂δn+1J(K) ⊂ ∂δnJ(K) for all n. Therefore, we have

∂CJ(K) ⊆ lim
δn↘0

∂δnJ(K) =
⋂
n

∂δnJ(K).

To show
⋂

n ∂δnJ(K) ⊂ ∂CJ(K), we can use the following contradiction argument, which is
standard (e.g. see [27, Remark 3.7]). Let us assume that there exists V ∈

⋂
n ∂δnJ(K) \ ∂CJ(K).

Denote Sn := {∪K′∈Bδn (K)∂CJ(K
′)}. Obviously, Sn depends on K and δn. In [25], Sn has been

shown to be compact and nested. By [25, Lemma 2.6], we have

V ∈
⋂
n

∂δnJ(K) = conv
⋂
n

Sn.

Therefore, we can express V as V =
∑

j tjVj with Vj ∈
⋂

n Sn, tj ≥ 0, and
∑

j tj = 1. Notice
Vj ∈ Sn for all n. Based on the definition of Clarke subdifferential, we know that for each n, there
exists a sequence of differentiable points {Kn,r

j } such that Kn,r
j → Kn

j ,∇J(Kn,r
j )→ Vj as r →∞,

and ∥Kn
j −K∥ ≤ δn. Then there exists a large enough r(n, j) such that ∥Vj−∇J(Kn,r(n,j)

j )∥ ≤ δn,

and ∥Kn,r(n,j)
j −K∥ ≤ 2δn. Since δn → 0 as n→∞, we have found a sequence {Kn,r(n,j)

j }∞n=1,

such that Kn,r(n,j)
j → K and ∇J(Kn,r(n,j)

j )→ Vj as n→∞. Therefore, we have Vj ∈ ∂CJ(K).
By convexity of ∂CJ(K) [25, Proposition 2.3], we know V =

∑
j tjVj ∈ ∂CJ(K). This contradicts

the assumption that V is not in ∂CJ(K). Therefore, we must have
⋂

n ∂δnJ(K) ⊂ ∂CJ(K).
Consequently, we know

⋂
n ∂δnJ(K) = ∂CJ(K).

C Discussions on Implementable Variants and Related Convergence Results

In this section, we give more detailed discussions on implementable variants of Goldstein’s
subgradient method and related convergence guarantees. Formal treatments to the informal theorems
presented in Section 4.2 are also presented.

C.1 Gradient sampling

The gradient sampling (GS) method can be viewed as an approximated version of Goldstein’s
subgradient method. The idea of GS has been explained in Section 4.2. In the unconstrained
optimization setting, it has been shown that every cluster point of GS can be guaranteed to be
Clarke stationary (with probability one) [9, 10, 37]. For our problem, we need to ensure that the
iterates do not travel outside the feasible set K, and hence we use the trust-region version of GS,
which was originally developed in [37, Section 4.2]. For clarity, the trust-region version of GS in
[37, Section 4.2] is restated as Algorithm 1. For our purpose, we need to ensure δ0 < ∆0

2 . See
[37, Section 4.2] for more discussions on the convergence theory for Algorithm 1. As explained
in [37, Section 4.2], Theorem 3.3 in [37] also holds for the trust-region version of GS, and hence
we know that every cluster point of Algorithm 1 is Clarke stationary (with probability one). From
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Algorithm 1: Gradient Sampling (GS)

Require: K0 ∈ K at which J is continuously differentiable, initial sampling radius δ0 ∈ (0, ∆0

2 ),
initial stationarity target ϵ0 ∈ [0,∞), reduction factors µδ, µϵ ∈ (0, 1], sample size
m ≥ nxnu + 1, line search parameters (β, θ) ∈ (0, 1)× (0, 1)

for n = 0, 1, 2, · · · do
Independently sample {Kn,1, · · ·Kn,m} uniformly from Bδn(K

n)
Compute Fn as the solution of the following convex quadratic program:

min
1

2
∥F∥22

subject to F ∈ Fn = conv{∇J(Kn),∇J(Kn,1), · · · ,∇J(Kn,m)}

if ∥Fn∥2 ≤ ϵn, set δn+1 ← µδδ
n, ϵn+1 ← µϵϵ

n, tn ← 0, Kn+1 ← Kn, and move to the
next round

else set δn+1 ← δn, ϵn+1 ← ϵn, define:

F̂n = δnFn/∥Fn∥2, (C.1)

and compute tn such that

tn ← max{t ∈ {1, θ, θ2, · · · } : J(Kn − tF̂n) < J(Kn)− βtδn∥Fn∥2} (C.2)

if J is continuously differentiable at Kn − tnF̂n

then set Kn+1 ← Kn − tnF̂n

else set Kn+1 randomly as any point where J is continuously differentiable such that

J(Kn+1) < J(Kn)− βtnδn∥Fn∥2 (C.3)

∥Kn − tnF̂n −Kn+1∥2 ≤ min{tn, δn}∥F̂n∥2 (C.4)

end for

the discussion in [37, Section 4.2], we also know that the trust-region version of GS can guarantee
∥Kn+1 −Kn∥ ≤ 2tnδn ≤ 2δ0 < ∆0 for any Kn ∈ K. Recall that ∆0 is the distance between
KJ(K0) and Kc. Therefore, by induction, we can show that the iterations generated by Algorithm 1
will be guaranteed to stay in the sublevel set KJ(K0) with probability one. Then it is straightforward
to combine the above facts and Theorem 1 to show the global convergence of Algorithm 1 for the
H∞ state-feedback synthesis problem. We formalize Theorem 4 as the following global convergence
result.

Theorem C.1. Consider the policy optimization problem (6) with theH∞ cost function defined in
(5). Suppose Assumption 1 holds, and K0 ∈ K. Let {Kn} be a sequence generated by Algorithm 1
with µδ, µϵ < 1. With probability one, we have Kn ∈ K for all n, and the algorithm does not stop
such that δn ↓ 0 and ϵn ↓ 0. In addition, the function-value sequence {J(Kn)} is monotonically
decreasing almost surely, and we have J(Kn)→ J∗ as n→∞ with probability one.

Proof. As commented previously, we can use an induction argument to show that the iterates {Kn}
generated by Algorithm 1 stay inside the feasible set K almost surely for all n. Now we present some
details for this argument. For n = 0, we know Bδ0(K

0) ⊂ K, and hence {K0,1, · · · ,K0,m} ⊂ K.
With probability one, J is differentiable on K0,j for all j ∈ {1, 2, · · · ,m}. Therefore, F 0 is well
defined with probability one. There are two possibilities. If ∥F 0∥2 ≤ ϵ0, then we set K1 = K0

and shrink (ϵ0, δ0). Obviously, we still have K1 ∈ KJ(K0). If ∥F 0∥2 > ϵ0, the algorithm is
guaranteed to find a good descent condition satisfying (C.2). Notice that we have K0 − tF̂ 0 ∈ K
for any t ∈ {1, θ, θ2, · · · }. If J is continuously differentiable at K0 − t0F̂ 0, then we have K1 =

K0 − t0F̂ 0 ∈ Bδ0(K
0) ⊆ K as ∥F̂ 0∥2 = δ0 and t0 ≤ 1. If J is not continuously differentiable at

K0 − t0F̂ 0, then K1 is randomly generated in a way that (C.3) and (C.4) hold. From (C.4), we can
combine δ0 ∈ (0,∆0/2) and t0 ≤ 1 to show ∥K1 −K0∥ ≤ 2t0δ0 < ∆0. Then we have K1 ∈ K
as well. Since the line search guarantees J(K1) ≤ J(K0), we further have K1 ∈ KJ(K0). To
summarize, no matter whether ∥F 0∥2 is larger than ϵ0 or not, we always have K1 ∈ KJ(K0) ⊂ K.
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Then we can repeat this argument to show Kn ∈ KJ(K0) ⊂ K for all n (with probability one). From
[37, Section 4.2] (and Theorem 1), every cluster point of {Kn} has to be a Clark stationary point (and
hence a global optimal point) of J in the almost sure sense7. From Lemma 2, KJ(K0) is compact.
Then with probability one, {Kn} stays in the compact set KJ(K0) for all n, and there must exist a
subsequence of {Kn} which converge to one of its cluster points. Therefore, this subsequence must
converge to the global optimal point of J , and the function-value sequence associated with this policy
subsequence has to converge to J∗ almost surely. Notice that {J(Kn)} is monotonically decreasing
for the entire sequence {n} almost surely. Therefore, we have J(Kn)→ J∗ almost surely.

The implementation of (C.3) and (C.4) can be done via sampling as discussed in [37, Section 2]. In
addition, ∆0 is typically unknown in practice, and one just needs to tune the parameter δ0 until it
is sufficiently small. If the cost function is not continuously differentiable on the initial stabilizing
policy, one can just randomly sample around that stabilizing policy with a sufficiently small sampling
radius to obtain another stabilizing policy meeting the initialization requirement in Algorithm 1.

C.2 Non-derivative sampling

The non-derivative sampling (NS) method was originally developed in [38], and can be viewed as
the derivative-free version of GS. For the NS method, the gradient oracle in the GS algorithm is
replaced by the zeroth-order oracle which is only required to return the function value J(K) for given
K, and similar convergence guarantees can still be obtained. To avoid the gradient evaluation, the
Gupal estimation is used in the NS method to approximate the derivatives from function values. For
completeness, we restate the NS method from [38] as follows. The mapping χ used in the algorithm
description is given below by (C.5), and Z denotes the uniform distribution over the nu × nx unit
cube, i.e. [−1/2, 1/2]nu×nx . Any z ∈ Z will be an nu × nx matrix.

Algorithm 2: Non-derivative Sampling (NS)

Require: initial stabilizing policy K0 ∈ K, initial sampling radius δ0 ∈ (0,∆0/2), initial
stationarity target ϵ0 ∈ [0,∞), reduction factors µδ, µϵ ∈ (0, 1], sample size m ≥ nxnu + 1,
line search parameters (β, t, κ) in (0, 1), and a sequence of positive mollifier parameters defined
as αn = α0/(n+ 1) with α0 < min{∆0/

√
nxnu, 1}.

for n = 0, 1, 2, · · · do
Independently sample {Kn,1, · · ·Kn,m} uniformly from Bδn(K

n)
Independently sample {zn,1, · · · zn,m} uniformly from Z
Compute Fn as the solution of

min
1

2
∥F∥22

subject to F ∈ Fn = conv{χ(Kn,1, αn, zn,1), · · · , χ(Kn,m, αn, zn,m)}

if ∥Fn∥ ≤ ϵn, set ϵn+1 ← µϵϵ
n, δn+1 ← µδδ

n, tn ← 0, Kn+1 ← Kn, and move to the
next round

else set δn+1 ← δn, ϵn+1 ← ϵn, F̂n ← Fn/∥Fn∥2, and Kn+1 ← Kn − tnF̂n, where tn

is determined using the following line search strategy:
(i) Choose an initial step size t = tnini = δn ≥ tnmin := min{t, κδn/3}
(ii) If J(Kn − tF̂n) ≤ J(Kn)− βt∥Fn∥, return tn := t
(iii) If κt < tnmin, return tn := 0
(iv) Set t := κt, and go to (ii).

end for

For any z ∈ Z , we denote the (i, j)-entry of z as z(i, j). For every K ∈ K and z ∈ Z , we formally
define χ(K,α, z) to be a nu × nx matrix8 whose (i, j)-th entry is calculated as

χij(K,α, z) =
1

α

(
J(K + αz + V +

ij )− J(K + αz + V −
ij )

)
, (C.5)

7As pointed out in [9], the convergence theory for GS requires the cost function to be continuously
differentiable over a set of full measure. Based on the specific form of the H∞ cost (5) and the chain rule in [2],
one can see that this is not an issue for the H∞ state-feedback synthesis problem.

8Obvious, the dimensions of χ(K,α,Z) and K are the same.
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where V +
ij ∈ Rnu×nx is a matrix whose (i, j)-th entry is equal to α

2 − αz(i, j) and all other entries
are 0, and V −

ij ∈ Rnu×nx is a matrix whose (i, j)-entry is equal to−α
2 −αz(i, j) and all other entries

are 0. For our constrained optimization setup, the above definition assumes K+αz+V ±
ij ∈ K for all

(i, j), and hence implicitly requires that α is small enough such that K + [−α/2, α/2]nu×nx ⊂ K.
Notice that χ(K,α, z) is exactly the Gupal estimate for the gradient of some smoothed version (or
formally the Steklov average) of J(K). See [38, Section 2] for more detailed discussions. Based on
the definition of χ(K,α, z), the NS method can be implemented as described in Algorithm 2.

For Algorithm 2, we choose δ0 ∈ (0,∆0/2) and α0 < min{∆0/
√
nxnu, 1} to ensure Fn is well

defined and Kn ∈ K almost surely for all n. With the help of [38, Theorem 3.8] and Theorem 1, we
can establish the following global convergence result.

Theorem C.2. Consider the policy optimization problem (6) with theH∞ cost function defined in
(5). Suppose Assumption 1 holds, and K0 ∈ K. Let {Kn} be a sequence generated by Algorithm 2
with µδ, µϵ < 1. For every step, Fn is well defined. With probability one, Kn ∈ K for all n, and
the algorithm does not stop such that δn ↓ 0 and ϵn ↓ 0. In addition, the function-value sequence
{J(Kn)} is monotonically decreasing almost surely, and we have J(Kn) → J∗ as n → ∞ with
probability one.

Proof. We can use an induction argument to show that Fn is well defined, and Kn ∈ K almost surely.
For n = 0, we know Bδ0(K

0) ⊂ K, and hence {K0,1, · · · ,K0,m} ⊂ K. To ensure F 0 being well
defined, we need χ(K0,l, α0, z0,l) to be well defined for all l ∈ {1, 2, · · · ,m}. As discussed above,
this can be guaranteed via ensuring K0,l + [−α0/2, α0/2]

nu×nx ⊂ K for all l. Since we have chosen
α0 < ∆0/

√
nxnu and δ0 < ∆0/2, we must have K0,l + [−α0/2, α0/2]

nu×nx ⊂ B∆0/2(K0,l) ⊂
Bδ0+∆0/2(K

0) ⊂ K. Therefore, F 0 is well defined. If ∥F 0∥2 ≤ ϵ0, then we set K1 = K0 and
shrink (ϵ0, δ0). Obviously, we have K1 ∈ KJ(K0). If ∥F 0∥2 > ϵ0, we need to compute the step size
t0 as described in Algorithm 2. There are two possibilities: if t0 = 0, then we still have K1 = K0

and hence K1 ∈ KJ(K0). If t0 ̸= 0, then the algorithm has found a good descent condition such
that J(K0 − t0F̂ 0) ≤ J(K0)− βt0∥F 0∥ holds. In this case, we set K1 = K0 − t0F̂ 0. Notice that
we must have K0 − t0F̂ 0 ∈ K as t0 ≤ δ0 and ∥F̂ 0∥2 = 1. Since the descent condition guarantees
J(K1) ≤ J(K0), we further have K1 ∈ KJ(K0). To summarize, no matter whether ∥F 0∥2 is larger
than ϵ0 or not, we always have K1 ∈ KJ(K0) ⊂ K. Then we can repeat this argument to show
Fn is well defined, and Kn ∈ KJ(K0) ⊂ K almost surely for all n. From [38, Theorem 3.8] (and
Theorem 1), every cluster point of {Kn} has to be a Clark stationary point (and hence a global
optimal point) of J in the almost sure sense. From Lemma 2, KJ(K0) is compact, and {Kn} must
admit a subsequence which converge to one of its cluster points. Therefore, with probability one,
this subsequence must converge to the global optimal point of J , and the function-value sequence
associated with this policy subsequence has to converge to J∗. Notice that {J(Kn)} is bounded and
monotonically decreasing for the entire sequence {n} in an almost sure sense. Therefore, we have
J(Kn)→ J∗ with probability one.

Notice that ∆0 is typically unknown when implementing Algorithm 2. Hence one just tunes the
values of δ0 and α0 until they are sufficiently small.

C.3 Model-free NS

When the model is unknown, one can estimate the value of J(K) from sampled trajectories of the
closed-loop system, and implement a model-free version of NS via using the resultant stochastic
zeroth-order oracle. As a matter of fact, there are many different methods available for estimating
the H∞-norm from data [45, 46, 57, 54, 69, 50, 67, 66]. For the model-free NS method, the
exact function-value oracle for the H∞ cost (5) is replaced by a stochastic oracle which relies on
noisy estimates of the cost value. Based on our experience, the multi-input multi-output (MIMO)
power iteration method [49] works quite well as a stochastic zeroth-order oracle for the purpose of
implementing the model-free NS method. The main idea of the MIMO power iteration method is
that the H∞ norm of an LTI MIMO system can be estimated from the largest singular value of its
finite-time approximated representation (which can be thought as a matrix), and a specialized time
reversal trick can be used to make the computation efficient. Given a black-box simulator for a stable
system GK , the MIMO power iteration method provides a reasonably good oracle for estimating
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the H∞ norm of GK from sampled trajectories. It is worth mentioning that the estimation quality
depends on the length of the time window over which GK is approximated. We denote this window
length as N . The larger N is, the better theH∞-norm estimation is. We refer the readers to [49] for
implementation details of the MIMO power iteration method.

The sample complexity for model-free NS is still unknown. However, our numerical results show that
such a model-free method tracks the convergence of its model-based counterpart given reasonable
amount of data9.

C.4 Interpolated Normalized Gradient Descent (INGD) with finite-time complexity

Both GS and NS methods do not have finite-time complexity guarantees for finding (δ, ϵ)-stationary
points. The INGD method was originally proposed in [71], and provide an alternative implementable
approximation for Goldstein’s subgradient method. The main advantage of INGD is that it yields
finite-time iteration complexity for finding (δ, ϵ)-stationary points. The original version of INGD
developed in [71] requires a special generalized gradient oracle (see [71, Assumption 1] for details).
To relax this requirement, [14] proposed a variant of INGD which only requires standard gradient
oracle for any differentiable points. Specially, at an iterate Kn, the INGD method in [14] relies on
Algorithm 3 to compute the update direction Fn. Again, we slightly abuse our notation by using
L to denote the Lipschitz constant appearing in Algorithm 3 (previously, we used L to denote a
particular matrix in the LMI formulation for H∞ state-feedback synthesis). In the unconstrained
setup, it has been shown that Algorithm 3 terminates and generates a good descent direction with
high probability [14, Corollary 2.5]. Then one can combine Algorithm 3 and (13) to formulate the
INGD method, which is formally given as Algorithm 4. In the unconstrained optimization setting,
finite-time iteration complexity for finding (δ, ϵ)-stationary points have been obtained for Algorithm
4 [14, Theorem 2.6].

Algorithm 3: MinNorm
Input: K, δ > 0, ϵ > 0, and the Lipschitz constant L
Set F = ∇J(Ξ) where Ξ is sampled uniformly from Bδ(K)
while ∥F∥2 > ϵ and δ

4∥F∥2 ≥ J(K)− J(K − δF/∥F∥2) do

Choose any r satisfying 0 < r < ∥F∥2
√
1− (1− ∥F∥2

2

128L2 )2

Sample Υ uniformly from Br(F )
Sample Ξ uniformly from [K,K − δ Υ

∥Υ∥2
]

F ← argminΦ∈[F,∇J(Ξ)] ∥Φ∥2
end while
Return F

Algorithm 4: Interpolated Normalized Gradient Descent (INGD)

Initial: K0, T
Input: δ, ϵ, and the Lipschitz constant L
for n = 0, 1, · · · , T do

Fn = MinNorm(Kn, δ, ϵ, L)
Kn+1 = Kn − δFn/∥Fn∥2

end
Return KT

Now we discuss how to modify the finite-time analysis in [14] for ourH∞ control problem. It has
been shown in [14, Theorem 2.6] that for unconstrained nonsmooth optimization of L-Lipschitz
functions, the above INGD algorithm can be guaranteed to find one (δ, ϵ)-stationary point with the
high-probability iteration complexity O

(
∆L2

ϵ3δ log( ∆
pδϵ )

)
, where ∆ is the initial function value gap,

and p is the failure probability (i.e. the optimization succeeds with the probability (1 − p)). We
can choose δ < ∆0 to ensure that the iterates from Algorithm 4 are well defined and stay in the

9Specifically, N should be chosen properly and cannot be too small.
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Table 1: Algorithm parameters for GS and NS

Parameter (nx, nu,m) δ0 ϵ0 µδ µϵ δopt ϵopt β θ αn

GS (3, 1, 4) 0.01 100 0.5 0.5 0 0 0.5 0.9 N/A
NS (3, 1, 4) 0.01 100 0.5 0.5 0 0 0.5 0.9 0.1/(n+ 1)

feasible set K almost surely, and this immediately leads to the desired conclusion that the above
INGD algorithm can find the (δ, ϵ)-stationary point for the H∞ state-feedback synthesis problem
with the same high-probability iteration complexity O

(
∆L2

ϵ3δ log( ∆
pδϵ )

)
. Now we formalize Theorem

5 as follows.
Theorem C.3. Consider the H∞ state-feedback control problem (6) with the objective function
J(K) defined in (5). Suppose Assumption 1 holds, and the initial policy is stabilizing, i.e. K0 ∈ K.
Denote ∆0 := dist(KJ(K0),Kc). Let ∆ = J(K0) − J∗. Denote the Lipschitz constant of J(K)
over the sublevel set KJ(K0) as L0. For any δ < ∆0, the iterations generated by the INGD algorithm
will stay in K almost surely. In addition, the INGD method finds a (δ, ϵ)-stationary point with a

high-probability iteration complexity O
(

∆L2
0

ϵ3δ log( ∆
pδϵ )

)
, where p is the failure probability.

Proof. We first use an induction argument to show that the iterates of INGD are well defined and stay
inside the feasible set K (almost surely) when δ < ∆0. For n = 0, notice that the variable Ξ (used in
Algorithm 3) has to be in K almost surely and well defined. The reason is that we sample Ξ uniformly
from [K,K − δ0 Υ

∥Υ∥2
] and δ0 < ∆0. Next, the update direction F 0 satisfies either ∥F 0∥2 ≤ ϵ or

J(K0−δ0F 0/∥F 0∥2) ≤ J(K0)− δ0

4 ∥F
0∥2. If ∥F 0∥ ≤ ϵ, the INGD algorithm will terminate as we

have found a (δ, ϵ)-stationary point. If ∥F 0∥ > ϵ, we have K1 = K0 − δ0F 0/∥F 0∥2. We must have
K1 ∈ K as well since δ0 < ∆0. In addition, since J(K1) ≤ J(K0), we have K1 ∈ KJ(K0) ⊂ K.
Then we can repeat this argument to show Kn ∈ KJ(K0) for all n almost surely, and the high
probability complexity bound becomes just a direct consequence of [14, Theorem 2.6].

D Numerical Experiments

In this section, we provide simulation results to support our theory. The simulations are executed on
a desktop computer with a 3.3 GHz Intel Xeon W-1350 processor, and the implementation is done
using MATLAB R2021b. We tested GS, NS, model-free NS, and INGD on several examples, and the
details are given below.

D.1 More details on the simulation results in Figure 1

Implementation of INGD, GS, NS, and model-free NS methods: For the problem matrices given
in (16), we have J∗ = 7.3475. Now we discuss how we obtain the left plot in Figure 1. In order to
obtain the Clark stationary point by using INGD method, we need to run the INGD algorithm with δ
decreasing to 0. To this end, we start with ϵ = 1× 10−5 and δ = 0.01. Whenever the INGD method
successfully finds a (δ, ϵ)-stationary point, we reduce δ by a constant factor 0.7. As δ decreases to 0,
one should expect that the INGD algorithm approaches a Clark stationary point. In addition, we also
implement the GS and NS methods, where the algorithm parameters are set as in Table 1. Finally, to
implement the model-free NS method for the given problem matrices (16), we choose the sample
size in the H∞-norm estimation oracle as N = 100 (this just means that we approximate the LTI
system over a 100-step time window).

Implementation of randomly generated cases: The middle plot of Figure 1 demonstrates the
performance of the NS algorithm on some randomly generated cases. In particular, we set A ∈ R3×3

to be I + ξ, where each element of ξ ∈ R3×3 is sampled uniformly from [0, 1]. We set B ∈ R3×1

with each element uniformly sampled from [0, 1]. We set Q = I + ζI ∈ R3×3 with ζ uniformly
sampled from [0, 0.1]. We set R ∈ R uniformly sampled from [1, 1.5]. For each experiment, the
initial condition K0 ∈ R1×3 is also randomly sampled such that ρ(A−BK0) < 1.

Implementation of Model-free NS: The right plot of Figure 1 provides the simulation results of
the model-free NS method with different choices of sample size N used in theH∞-norm estimation

27



5 10 15 20 25 30 35 40
7

7.5

8

8.5

9
Finite difference oracle
Gradient formula oracle

20 40 60 80 100
7

7.5

8

8.5

9
Finite difference oracle
Gradient formula oracle

Figure 2: Simulation result for finite-difference oracle and gradient formula oracle. Left: INGD
method. Right: GS method.

oracle. The hyperparameters of the model-free NS method are set to be the same as the ones used in
NS. The only new issue is that we need to specify a sample size in the MIMO power iteration method
for evaluating J(K) from sampled trajectories. Specifically, we choose N = [100 50 20 10]. As we
can see from the right plot in Figure 1, as we decrease the sample size, theH∞-norm oracle become
more noisy, and the algorithm performance has been degraded with more oscillations.

Gradient oracle for differentiable points. To implement INGD and GS, we need an oracle which is
capable of computing the gradient of J(K) for any differentiable points. We provide two options for
implementing such gradient oracle. For the first option, we can just use a finite-difference scheme
to estimate the gradient at any differentiable points. Specifically, for any differentiable point K,
we can estimate ∇J(K) as a matrix whose (i, j)-th entry is computed as J(K+hVij)−J(K−hVij)

2h ,
where Vij ∈ Rnu×nx is a matrix whose (i, j)-th entry is 1 and all other entries are 0, and h is a
small positive parameter (e.g. h = 0.0001). For the second option, we can compute the gradient at
differentiable points using some explicit analytic formula based on singular value decomposition.
Specifically, we can use a special case of the subgradient analytical formula provided in [2]. To this
end, let us rewrite J(K) as follows:

J(K) = sup
ω∈[0,2π]

σmax(H(K,ω)), (D.1)

where H(K,ω) = (Q+KTRK)
1
2 (ejωI −A+BK)−1 and σmax denotes the maximum singular

value. Notice that J(K) is differentiable at K if the H∞ norm of H(K,ω) is achieved at one
frequency ω0 and the largest singular value of H(K,ω0) has multiplicity one [63]. Then we
can perform the singular value decomposition of H(K,ω0) and take u1 (which is the unit left-
singular vector) and v1 (which is the unit right-singular vector) corresponding to the largest
singular value. Denote H1(K) = (Q +KTRK)

1
2 , H2(K) = (ejω0I − A + BK)−1, and define

Γ =
∫∞
0

e−τH1(K)H2(K)v1u
∗
1e

−τH1(K)dτ . Then the gradient of J(K) at differentiable point K
can be calculated as ∇J(K) = Re(RK(Γ + ΓT)− (H2(K)v1u

∗
1H(K,ω0)B)T). The derivation of

the above formula uses the chain rule of the total derivative, and can be viewed as a special case of
the general subgradient formula given in [2]. The two options lead to similar performances, as shown
in Figure 2. We tested both options for implementing INGD and GS with the problem matrices given
in (16). From Figure 2, we can see that both options work well and generate similar trajectories.

D.2 Numerical results for INGD with constant choices of (δ, ϵ)

The simulation results for INGD with constant choices of (δ, ϵ) are shown in Figure 3, where we set
δ = 0.01 and ϵ = 1 × 10−8. From the left figure of Figure 3, it can be seen that it takes 10 steps
for INGD to find a (δ, ϵ)-stationary point. At step 10, we have ∥F∥2 < ϵ. However, J(K) does
not converge to the optimal value as shown in the right plot of Figure 3. This result confirms that
(δ, ϵ)-stationarity does not imply being δ-close to an ϵ-stationary point of J as commented in [71, 14].
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Figure 3: Simulation result for one-time INGD methods with δ = 0.01 and ϵ = 1× 10−8. Left: the
trajectory of the ∥F∥2. Right: the trajectory of function value J(K).
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Figure 4: Simulation results for higher dimensional cases. Left: The trajectory of relative error of NS
with problem matrices (D.2). Middle: The trajectory of relative error of 8 randomly generated cases
for NS method. Right: The trajectory of relative error of 8 randomly generated cases for GS method.

D.3 More examples

We further tested the NS and GS methods on some slightly larger examples. In particular, we first
consider the following set of problem matrices:

A =

1.7865 0.3912 0.8758 0.5996
0.2756 1.3175 0.7692 0.4848
0.4764 0.9786 1.0618 0.7591
0.4489 0.7918 0.6014 1.7520

 , B =

0.1303 0.0312
0.1309 0.0528
0.7452 0.6727
0.2460 0.0743

 , (D.2)

Q = 1.0613I4, R = 1.1315I2.

For the above example, we have J∗ = 43.26 and we select the initialization K0 to be:

K0 =

[
2.4364 2.2337 2.4867 1.5551
12.1213 −4.6823 2.1718 −2.5906

]
,

which satisfies ρ(A−BK0) = 0.9567 < 1. The results are reported in the left plot of Figure 4.

In addition, we also perform the NS and GS algorithm on some randomly generated cases. Similarly,
we set A ∈ R4×4 to be I + ξ, where each element of ξ ∈ R4×4 is sampled uniformly from [0, 1]. We
set B ∈ R4×2 with each element uniformly sampled from [0, 1]. We set Q = I + ζI ∈ R4×4 with ζ
uniformly sampled from [0, 0.1], and R = I + υI ∈ R2×2 with υ uniformly sampled from [0, 0.5].
For each experiment, the initial condition K0 ∈ R2×4 is also chosen such that ρ(A−BK0) < 1.

Figure 4 shows the simulation results on these examples. The left plot demonstrates the convergence
of NS and GS methods with the problem matrices in (D.2). The middle and right plots demonstrate
the performance of NS and GS on the randomly generated examples, respectively. It can be seen that
both GS and NS work quite well on these examples.
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E Further Discussions

E.1 Uniqueness of the minimizing set

Our theory does not answer whether the global minimum for the H∞ state-feedback synthesis
problem is unique or not. As commented in Section 3, the path-connectedness of Kγ for every γ can
be used to show that there exists a unique global minimizing set in a certain sense [42, Sections 2&3].
However, we are not able to rule out the possibility that the uniuqe global minimizing set actually
consists of multiple points. Whether the global minimum of theH∞ state-feedback control problem
is unique or not is an interesting open question.

E.2 Possible generalizations for nonlinear systems

For nonlinear systems, it is possible to generalize Theorems 3 and 5. The proofs for the finite-time
complexity of finding (δ, ϵ)-stationary points can be generalized to the constrained policy optimization
setting, as long as the cost function J is coercive over the nonconvex feasible set K. In contrast, the
convergence to global minimum may be too much to ask for general nonlinear robust control problems.
If the cost function J is not coercive, one may just add regularization to induce coerciveness such
that one can still find some approximated (δ, ϵ)-stationary points provably. Such developments are
worth more investigations in the future.
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