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ABSTRACT

Algorithmic Recourse provides recommendations to individuals who are ad-
versely impacted by automated model decisions, on how to alter their profiles
to achieve a favorable outcome. Effective recourse methods must balance three
conflicting goals: proximity to the original profile to minimize cost, plausibil-
ity for realistic recourse, and validity to ensure the desired outcome. We show
that existing methods train for these objectives separately and then search for
recourse through a joint optimization over the recourse goals during inference,
leading to poor recourse recommendations. We introduce GenRe, a generative
recourse model designed to train the three recourse objectives jointly. Train-
ing such generative models is non-trivial due to lack of direct recourse super-
vision. We propose efficient ways to synthesize such supervision and further
show that GenRe’s training leads to a consistent estimator. Unlike most prior
methods, that employ non-robust gradient descent based search during inference,
GenRe simply performs a forward sampling over the generative model to pro-
duce minimum cost recourse, leading to superior performance across multiple
metrics. We also demonstrate GenRe provides the best trade-off between cost,
plausibility and validity, compared to state-of-art baselines. Our code is available
at: https://github.com/prateekgargx/genre.

1 INTRODUCTION

Machine learning models are increasingly used in high-stakes decision-making areas such as in fi-
nance (Josyula et al., 2024), judiciary (Elyounes, 2019), healthcare (Burger, 2020), and hiring (Schu-
mann et al., 2020), prompting the need for transparency and fairness in decision-making (Barocas
et al., 2023). This has driven the development of tools and techniques to provide recourse, redress
mechanisms for individuals adversely impacted by these model decisions, a legal requirement in
certain jurisdictions (Kaminski, 2019). For example, consider a loan applicant with profile x who
is denied loan. Recourse seeks to answer the question, ‘How should x improve their profile to an
alternative x+ to secure a loan in the future?’. A good recourse instance x+ should be (1) valid,
i.e., it achieves the desired label, (2) proximal to x to minimize the effort involved in implementing
recourse, and (3) be a plausible member of the desired class. The decision-making model is often
proprietary and is kept hidden to safeguard enterprises from strategic gaming (Hardt et al., 2016),
model theft (Reith et al., 2019), and other risks. We are given instead examples of individuals who
got the desired label (positive instances), and those who did not (negative instances). Our goal is to
learn a recourse mechanism using just these samples.
The recourse problem has been widely explored under frameworks like algorithmic recourse (Ustun
et al., 2019), counterfactual explanations (Wachter et al., 2017), and contrastive explanations (Karimi
et al., 2022). Most prior work assume direct access to the decision-making model, and search for the
recourse instance through constrained optimization during inference on objectives which encourage
low cost and validity (Karimi et al., 2022; Wachter et al., 2017; Mothilal et al., 2020; Laugel et al.,
2017). Others aim for robust recourse by searching for an x+ that remains valid under small changes
to either the model or to the proposed x+ itself (Pawelczyk et al., 2020b; Rawal et al., 2020).
The plausibility criterion is often overlooked, and some methods propose to address it by training
generative models (Joshi et al., 2019; Pawelczyk et al., 2020a; Downs et al., 2020). Most recently,
Friedbaum et al. (2024) attempts to increase the validity of x+ by including a separate verifier model
that checks whether (x,x+) belong to different classes after the optimizer generates a candidate x+.
One significant limitation of all prior methods is that none of them are trained to jointly optimize the
three conflicting recourse criteria of validity, proximity, and plausibility. Instead, during inference,
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they either ignore some recourse objectives or rely on non-robust gradient-based search on the joint
objective to balance the trade-offs between them. We show in Figure 2 that this disconnect between
training and inference leads to poor recourse outputs.
In a significant departure from the existing paradigms, we take a generative approach to recourse.
We train a novel recourse likelihood model Rθ(x

+|x), that when conditioned on any instance x
seeking recourse, outputs a distribution over likely recourse instances. Using such a model during
inference, we just forward sample recourse instances, unlike existing methods that perform gradient
descent optimization to find one x+. However, to train such a model we would need several instance
pairs {(xi,x

′
i) : i = 1 . . . N )} where x′

i is a good recourse for any xi with an unfavorable outcome.
Such direct supervision is lacking. We show how to leverage standard unpaired classification data to
sample a training set of instance pairs. We theoretically show that the sampled pairs are consistent,
and the error of the expected recourse instance converges at the rate O(1/N+) where N+ denotes
the number of instances in the positive class.
In terms of empirical validation, we first present a visual demonstration of the pros and cons of
various methods using three 2-D datasets. We then evaluate on three large real-life datasets that
are popularly used in the recourse literature and compare our results with eight existing methods.
We show that our method achieves (1) the best score combining validity, proximity and plausibility,
(2) is more robust to changes in the cost magnitude compared to SOTA likelihood-based methods,
and (3) more faithfully learns the conditional density of recourse than methods that separately learn
unconditional data density.

2 PROBLEM FORMULATION

Let X ⊆ Rd represent the input space and Y = {0, 1} the output space where the joint distribution
between them is P (X,Y ). In the recourse task, one label, say 0 is an unfavorable outcome (e.g.,
loan rejection) and the other label y+ = 1 denotes a favorable one (e.g., loan approval). We are
given a training dataset of n instances D = {(xi, yi)}ni=1 sampled i.i.d. from P (X,Y ). We use
D1 and D0 to denote the subset of D with label 1 and 0 respectively. We assume that we have a
pretrained classifier h : X 7→ [0, 1] trained on the available dataset D, serves as an approximation
for P (Y = 1|X). Given an instance x ∼ P (X), recourse is sought on instances where h(x) < 0.5.
Our objective is to design a mechanism, ψ : X 7→ X , that outputs a recourse instance x+ such that
P (y+|x+) > 0.5, while minimizing the cost of shifting x+ measured in terms of a cost function
C : X × X 7→ R+. ℓ1 distance is a popular choice for C. Additionally, the recourse instance
x+ should be representative in the desired class distribution P (X|y+), and not an outlier. In real-
life applications, weird unrepresentative profiles may not be achievable, and mislead the purpose of
recourse. For instance, in domains such as banking, ensuring high P (x+|y+) is important because
an user should not be gaming the system to get loan approval.

Classifier Training

Recourse Mechanism

Data Generating Process high

low

Figure 1: The recourse pipeline starts with any instance x that received an unfavorable label h(x) =
y−. The recourse mechanism outputs an alternative x+ such that h(x+) = y+. The user is satisfied
as long as x+ (1) is valid i.e., achieves the desired label from P (y+|x+), (2) is plausible and
actionable in real-life, and (3) is proximal to the original x to incur low cost.

Based on the above considerations an ideal recourse mechanism can be defined as follows:
ψ(x) = argmin

x+

λC(x,x+)− logP (x+|y+) s.t. P (y+|x+) > 0.5 (1)

where λ is a balance parameter which helps to trade-off cost with plausibility. Additionally, not all
features can be altered for x – for example, in loan applications, a recourse mechanism should not
suggest recourse where immutable attributes like race are different. We assume that the cost func-
tion models immutability and for any two instances x,x′ where immutable attributes are different,
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C(x,x′) → ∞. For x,x′ where immutable attributes are same, we use ℓ1 distance as cost as
suggested in Wachter et al. (2017).

3 RELATED WORK

We will illustrate the working of various methods using three 2D binary classification datasets as
shown in Figure 2. Training instances are shown in light red (for D0) and blue color (for D1).
Recourse is sought on instances x marked in dark red color and they are connected by an edge to the
corresponding recourse instance returned by various methods. Experimental details of these figures
appear in Section 5.

WACHTER PROBE CRUDS GenRe(Ours)

training data - class 0
training data - class 1

negative instances
recourse instances

h(x) > 0.5
h(x) < 0.5

valid recourse
invalid recourse

Figure 2: Comparison of different classes of recourse methods. Training instances are shown in light
red and blue colors. Recourse is sought on instances marked in dark red color and they are connected
by an edge to the recourse instance they were mapped to. From left to right:(1) Wachter, a cost
minimizing method maps instances to classifier boundaries away from the blue data distribution.(2)
PROBE, a robust recourse method, maps instances away from the boundary and from the blue data
distribution. (3) CRUDS, a likelihood based method suffers mode collapse and for the circles dataset
strays away from data distribution. to train (4) GenRe(our method) produces plausible recourse
instances by being on the blue cloud while also minimizing cost. Recourse instances are also diverse.

We group prior work into three categories based on how they approach the recourse problem.

Cost Minimizing Methods. This class of methods search for instances that minimize cost under
the constraint that classifier h assigns the desired label, that is, h(x) > 0.5. The search is performed
in various ways: GS (Laugel et al., 2017) uses a random search, whereas Wachter (Wachter et al.,
2017) uses gradient search on a differentiable objective based on cost and classifier h as follows:

ψ(x) = argmin
x+

C(x,x+)− γ log(h(x+)) (2)
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DICE (Mothilal et al., 2020) extends the above objective to include diversity. As noted by Fokkema
et al. (2024), such methods often push recourse instances near the boundary of h, as can be seen
in Figure 2 (first column). In particular, these methods suffer because: a.) Recourse instances that
lie on boundary of h have equal probability of being assigned either label and therefore are prone
to be invalidated. b.) Recourse instances can be away from data manifold and thus unrealistic and
unreliable since these methods do not consider data density.
Next we discuss two classes of methods which attempt to improve on these shortcomings.

Robust Recourse Methods. This class of methods trade-off cost in order to generate recourse
instances which are more robust by generating recourse instances at some ‘margin’ away from the
boundary of h. ROAR (Upadhyay et al., 2021) attempts to output recourse instances which are robust
to small changes to the classifier h by optimising for worst case model shift under the assumption
that the change in parameters of h is bounded. PROBE (Pawelczyk et al., 2023) attempts to generate
instances which are robust to small perturbations to the recourse instances. These methods also do
not consider data density and thus are prone to generate recourse instances which are unrealistic and
unreliable as shown in Figure 2 (middle column) and may land in low density regions and/or around
spurious decision boundaries. Recently, TAP (Friedbaum et al., 2024) introduces a verifier model
which checks whether two given instances belong to the same class. This verifier is used to check if
a negative-recourse instance pair belong to different class.

Plausibility Seeking Methods. Methods in this class leverage generative models to ensure that
they predict plausible recourse by staying close to the training data manifold. REVISE (Joshi
et al., 2019), CRUDS (Downs et al., 2020), and CCHVAE (Pawelczyk et al., 2020a) train variants
of VAE (Kingma & Welling, 2014) on the training data, and then during inference they either do a
gradient search on latent space, or perform rejection sampling on forward samples generated by the
VAE. Suppose Dθ : Z → X denotes a VAE decoder, their recourse objective during inference is:

ψ(x) = Dθ

(
argmin

z
− log(h(Dθ(z))) + λ · C(x, Dθ(z))

)
(3)

Gradient Search for z on the above objective fails to keep the generated recourse example within the
data distribution and suffers from mode collapse as we show in Figure 2 (Third column). Notice that
particularly for the circle dataset, the recourse instances are not at all within the data distribution,
and collapse to a single point.
We provide a more extensive overview of related work in Appendix A, and present comparisons on
real-life data in Section 5.

4 OUR APPROACH

The above discussion highlights that the main challenge in recourse is jointly optimizing three con-
flicting objectives. The cost function C(x,x+) is minimum near x where the density P (x+|y+) of
the desired positive class is low. The learned classifier h(x+) could be maximized at regions where
positive class density is low, particularly in the presence of spurious boundaries. The regions of high
positive density could be far away from x leading to high costs. Unlike all prior methods that op-
timize for these terms during inference, we train a recourse likelihood model Rθ(x

+|x) that when
conditioned on an input negative instance provide a distribution over possible recourse instances x+.
We start by rewriting the ideal recourse objective defined in Equation 1 as

ψ(x) = argmax
x+

exp (−λC(x,x+))P (x+|y+)V (x+) (4)

where V (x+) = δ(P (y+|x+) > 0.5) denotes the desired validity constraint on a recourse instance.
Using the above we define the ideal un-normalized recourse likelihood as:

R(x+|x) ∝ exp (−λC(x,x+))P (x+|y+)V (x+). (5)

Our goal during training is to learn a model Rθ to estimate this ideal recourse density R(x+|x).
The main challenge here is that we are given only individual labeled instances D = D1 ∪ D0,
whereas what we ideally want is instance-pair sampled from R(x+|x). In Section 4.1 we present
how we construct such samples from D, and then present how we use the constructed pairs to
architect and train our estimated model Rθ(x

+|x). In Section 4.2, we describe one convenient
model parameterization which allows for sampling.
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Figure 3: Overview of GenRe. We define an empirical distribution of instance pairs (x,x+) using
training dataD, classifier h, cost functionC and balance parameter λ to train the recourse modelRθ,
an encoder-decoder model. During inference, the given negative instance x is fed to the decoder,
and recourse instances sampled from the decoder auto-regressively.

4.1 CREATING TRAINING PAIRS

We define D−
h := {xi ∈ D|yi = 0, h(xi) ≤ 0.5}. These denote training instances where recourse

is desired. Similarly define D+
h := {xi ∈ D|yi = y+, h(xi) > γ} for some chosen γ ≥ 0.5. These

denote the subset of training examples from the positive class that are also predicted positive by the
classifier with confidence γ.
For each x ∈ D−

h , we define an empirical distribution as follows:

Q(x+|x) =


e−λC(x,x+)∑

x+∈D+
h

e−λC(x,x+)
if x+ ∈ D+

h

0 otherwise
(6)

where λ denotes the balance parameter as described in 1. We show in Section 4.4 that Q(x+|x)
is a consistent estimator of R(x+|x), and the difference in the expected value of the recourse in-
stance ∥EQ[x

+|x]− ER[x
+|x]∥ reduces at the rate of 1

N+
, where N+ = |D+

h | denotes the number
of positive instances, when h(x) is the actual conditional distribution P (Y |X). We note that as
λ → ∞, Q will always return the nearest neighbor of x in D+

h . In section 5.4, we compare our
method GenRe with nearest neighbor search from D+

h .

4.2 ARCHITECTURE AND TRAINING OF THE GENERATIVE MODEL

We choose Rθ to be an auto-regressive generative model so that during inference we only need
to perform a forward sampling on the model to obtain recourse instances. We next describe the
architecture ofRθ. We use a transformer-based encoder-decoder architecture. The negative instance
x is input to the encoder with learned position embeddings. The decoder defines the output recourse
distribution auto-regressively as Rθ(x

+|x) =
∏d

j=1Rθ(x
+
j |x, x

+
1 , . . . x

+
j−1). The decoder also

uses learned position embeddings and performs cross attention on the encoder states and causal self-
attention on decoder states. The output conditional distribution for each attribute x+j is modeled as
a kernel density:

Rθ(x
+
j |x, x

+
1 , . . . x

+
j−1) =

nj∑
k=1

pθj,k · K((x+j − µj,k)/wj,k)

Here, pθj,k ≥ 0, such that
∑

k p
θ
j,k = 1, represents the kernel weights output by the transformer, and

is implemented as a Softmax layer. The means µj,k and width wj,k of the kth component are fixed
by binning the jth attribute in D+

h into nj partitions, with µj,k as the bin center and wj,k as the bin
width. We use the RBF Kernel. The loss for a paired sample (x+,x) ∼ Q is computed as,

L(x+|x; θ) = −
d∑

j=1

log

(
nj∑
k=1

pθj,k · K((x+j − µj,k)/wj,k)

)
(7)

≤ −
d∑

j=1

nj∑
k=1

(
K((x+j − µj,k)/wj,k)∑nj

l=1K((x
+
l − µl,k)/wl,k)

)
· log pθj,k + C (8)
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Here we have used Jensen’s inequality to express the loss as a simple cross entropy loss on the pθj
vector output by the last softmax layer with the kernel ratios serving as soft-labels.
The overall training process of the model is shown in Figure 3 and outlined in Algorithm 1. We
emphasize that this is one particular choice of parameterisation, with a note that other models can
also be considered. In appendix 5.6, we show results on pre-trained diffusion models with guidance
to sample from distribution described in 5.

4.3 INFERENCE

Once the auto-regressive encoder-decoder is trained, finding recourse on any input negative instance
x during test time, entails just a simple forward sampling step on Rθ. We input x to the encoder,
and sample the recourse instance auto-regressively feature-by-feature. The full inference method
appears in Algorithm 2. Another advantage of our approach is that a user can sample multiple
recourse instances and choose which recourse action to implement.

4.4 THEORETICAL ANALYSIS

Theorem 4.1. Let f(x+,x) be any function of (x+,x). For Q(x+|x) defined in Equation 6 and
R(x+|x) defined in Equation 4, let µ = ER[f ] and µ̂ = EQ[f ]. Then µ̂ is a consistent estimate of
µ when h(x) > 0.5 and P (y+|x) > 0.5 agree.

Proof. Let D1 denote the subset of D where yi = y+. Substituting the definition of Q, it is easy to
see that

EQ[f(•|x)] =
∑

(x+,1)∈D1

f(x+,x)
e−λC(x,x+)V (x+)∑

x+∈D+
h
e−λC(x,x+)V (x+)

(9)

if V (x+) = δ(P (y+|x) > 0.5) = δ(h(x) > 0.5). The above can be seen as a normalized
importance weighted estimator for µ = ER[f ] when we treat P (x+|y+) as a proposal distribu-
tion for R(x+|x) distribution. The proposal distribution is sound since P (x+|y+) > 0 when-
ever R(x+|x) > 0 because R includes P (x+|y+) as one of its terms. The training data D1 is a
representative sample from P (X|y+). The unnormalized weight of the importance sampling step

w̃(x+) = e−λC(x,x+)V (x+)P (x+|y+)
P (X|y+) = e−λC(x,x+)V (x+). Substituting these in Eq 9 we see that

EQ[f ] is a self-normalized importance weighted estimate, which is well-known to be a consistent
estimator when proposal is non-zero at support point of target.

Theorem 4.2. The difference in the expected value of the counterfactual ∥EQ[x
+|x]− ER[x

+|x]∥
reduces at the rate of 1

N+
when h(x) is the actual conditional distribution P (Y |X).

Proof. Using f(x+,x) = x+, the proof of Theorem 4.1 showed that EQ[x
+|x] is a self-normalized

importance sampling estimate of ER[x
+|x]. The variance of this estimate for a given x is ap-

proximately 1
|D1|VarR(X|x)[f(X,x)](1 + VarP (X|y+)[e

−λC(x,X)V (X)]) which reduces at the rate
1

|D1| (Koller & Friedman (2009), Chapter 12).

5 EXPERIMENTAL RESULTS

We next present empirical comparisons of our generative recourse model with several prior recourse
methods. We already presented a visual comparison on synthetic datasets in Figure 2. In this section
we focus on real datasets.

5.1 EXPERIMENTAL SETUP

Datasets: We experimented with benchmark datasets commonly used to evaluate recourse al-
gorithms: Adult Income (Becker & Kohavi, 1996), FICO HELOC (FICO, 2018), and COM-
PAS (Angwin et al., 2016). These datasets contain a mix of continuous and categorical features. All
continuous attributes are normalized to the range of [0, 1], while categorical attributes are one-hot
encoded. We defer detailed descriptions of these datasets to Appendix C.1 and present a summary
in Table 1. For each dataset, we train a Random Forest (RF) classifier to mimic the latent decision-
making model, which assigns the gold labels. No method has access to this classifier during training;
instead, they have access to training data D sampled from it. This classifier is used to evaluate the
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validity of recourse output by various methods. We ensure that the RF classifier is calibrated by
using the CalibratedClassifierCV API from sklearn (Pedregosa et al., 2011).
Baselines: We compare our method with eight prior recourse methods covering each of the three cat-
egory of prior methods already described in Section 3: Wachter (Wachter et al., 2017), GS (Laugel
et al., 2017), DICE (Mothilal et al., 2020), ROAR (Upadhyay et al., 2021), PROBE (Pawelczyk et al.,
2023), REVISE (Joshi et al., 2019), CRUDS (Downs et al., 2020), and CCHVAE (Pawelczyk et al.,
2020a). TAP (Friedbaum et al., 2024). For standardized comparison, we used their public imple-
mentation from CARLA recourse library1 (Pawelczyk et al., 2021).
Implementation Details. For the labeled dataset D, we adopt the features from the real data as is
and assign labels sampled from the RF classifier. The classifier h(x) is an Artificial Neural Network
(ANN) – a ReLU-based model with three hidden layers of size 10 each, trained with a learning rate
of 0.001 for 100 epochs using a batch size of 64. The accuracy of h(x) is reported in Table 1.

Dataset #Feat. #Cat. #Immut. #Pos #Neg #Train #Test ANN accuracy

Adult Income 13 7 2 8,742 27,877 36624 12208 77.33
COMPAS 7 4 2 3,764 865 4629 1543 69.60
HELOC 21 0 0 3,548 3,855 7403 2468 74.23

Table 1: Data Statistics along with accuracy of ANN classifier

For training Rθ, we use a Transformer (Vaswani et al., 2017) from PyTorch (Paszke et al., 2019)
with learned position embedding, embedding size 32, and 16 layers in each of encoder and decoder,
and 8 heads. The number of bins in the last layer is 50. We choose the value of λ = 5.0 when
sampling training pairs. During inference (Algorithm 2), we set the temperature for bin selection
τ = 10.00 and σ = 0.00, generate 10 samples and choose the sample which gets highest probability
from the classifier h(x). In Appendix D.2, we provide results over other values of τ and σ. We
describe other relevant hyperparameters in Appendix C.2.
Performance Metrics. We evaluate the performance of a recourse method on a test set {xi}mi=1
consisting of m negative instances using the following metrics:
1. Cost: We define cost as the ℓ1 distance between the negative instance x and its corresponding

recourse instance x+.
2. Val: Validity measures if the recourse was successful, that is, the RF classifier assigns y+.
3. LOF: LOF(Breunig et al., 2000) assesses how plausible or representative the recourse instance is.

We report the fraction of recourse instances which were assigned as inliers by this module.
4. Score: To evaluate all methods using a single metric, we define Score as Score = Val + LOF -

Cost
d , where d is the number of features in the dataset. Note that the maximum possible value of

Score is 2.

Dataset Adult Income COMPAS HELOC
Method Cost ↓ Val ↑ LOF ↑ Score ↑ Cost ↓ Val ↑ LOF ↑ Score ↑ Cost ↓ Val ↑ LOF ↑ Score ↑
Wachter 0.31 0.51 0.76 1.24 0.20 0.59 0.23 0.79 0.79 0.35 0.97 1.28
GS 1.82 0.40 0.49 0.75 1.20 0.66 0.48 0.97 0.58 0.32 0.94 1.23
DICE 0.22 0.62 0.73 1.33 0.19 0.57 0.44 0.99 0.49 0.34 0.97 1.29

ROAR 10.17 0.96 0.01 0.19 4.01 0.87 0.01 0.30 9.64 0.47 0.17 0.19
PROBE 33.91 1.00 0.00 -1.61 5.77 0.82 0.00 -0.00 5.37 0.69 0.07 0.49
TAP 1.10 0.99 0.67 1.57 1.46 0.88 0.70 1.37 0.71 0.36 0.53 0.86

CCHVAE 2.11 0.00 1.00 0.84 3.03 1.00 0.07 0.64 3.58 0.04 0.14 0.02
CRUDS 3.17 1.00 0.96 1.72 1.10 0.98 1.00 1.83 4.30 1.00 0.57 1.37

GenRe 0.69 1.00 0.98 1.93 0.51 0.99 0.97 1.89 2.01 1.00 1.00 1.90

Table 2: Comparing different recourse mechanisms on three real-life datasets. For each mechanism,
we report cost, validity, LOF, and a combined Score=Val+LOF-Cost/d. GenRe provides the best
score across all datasets, and is close to 2, the maximum achievable score.

1github.com/carla-recourse/CARLA
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5.2 OVERALL COMPARISON WITH BASELINES

Table 2 presents a comparison of our method GenRe with several other baselines on the cost, va-
lidity, and LOF metrics, and an overall combined score. From this table we can make a number of
important observations: (1) First, observe that our method GenRe consistently provides competent
performance across all metrics on all three datasets. GenRe’s average score across the three datasets
is the highest. (2) If we compare on cost alone, the first three methods (Wachter, GS and DICE)
that ignore plausibility, achieve lower cost than GenRe but they provide poor validity (close to 0.5).
This is possibly because they optimize for validity on the learned h(x) which may differ from the
gold classifier. (3) The next two methods (ROAR and PROBE) choose more robust instances with
a margin, and thus they achieve much higher validity. However, they struggle with choosing good
margins, and the recourse instances they return are very far from x as seen by the abnormally high
costs. Also, these methods mostly yield outliers for recourse as seen in the low LOF scores. TAP,
which trains an auxiliary verifier model to select highly valid recourse instances during inference,
outperforms ROAR and PROBE, achieving good validity scores in Adult and COMPAS. However, it
falls short in other recourse metrics, resulting in a consistent subpar overall score. (4) The next two
methods CCHVAE and CRUDS incorporate plausibility with a VAE, and of these CRUDS provides
competitive LOF and validity values but it generally incurs higher cost than our method.

5.3 GENERATING RECOURSE FROM A RECOURSE LIKELIHOOD MODEL VS OPTIMIZING
JOINTLY DURING INFERENCE.

We present a more in-depth comparison of GenRe, our training-based recourse method, with
CRUDS that emerged as the second best in the comparisons above. CRUDS includes all three
objectives of validity, proximity, and plausibility like in GenRe but combines them during infer-
ence. In the CRUDS implementation2, inference entails solving an objective like in Equation 3 but
with some set of z fixed. Thus, λ in this method also allows control of the magnitude of cost like in
GenRe’s objective (Equation 4). No matter what the λ, an actionable recourse method should always
generate plausible instances from the data manifold in order to be taken seriously in real-life. The λ
can be used to tradeoff expense Vs guarantee of achieving the target label. From this perspective we
compare how CRUDS and GenRe respond to changing cost magnitude λ. We perform experiments
with λ ∈ {0.5, 1.0, 2.5, 5.0, 10.0}. In the Figure below we plot the value of −cost(x,x+)/d on the
X-axis against validity in the first row and against LOF in the second row. Each point denotes a
specific λ. From these graphs we can make the following interesting observations:
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Figure 4: Comparing GenRe with CRUDS for different values of balance parameter λ ∈
{0.5, 1.0, 2.5, 5.0, 10.0}. Note that x-axis is on exponential scale. Top: Comparing soft validity.
Bottom: Comparing fraction of recourse instances that were inliers. GenRe provides better trade-
offs than CRUDSwith changing cost: GenRe always returns plausible instances and tradesoff validity
gradually with cost. CRUDS shows huge swings in validity and plausibility with changing λ.

(1) On all datasets we observe that GenRe consistently provides plausible recourse instances as seen
by the high LOF scores across all λ values, even while cost increases. In contrast, except for the

2The inference method described in the CRUDS paper differs from their implementation in the CARLA
library
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HELOC dataset, the LOF scores of CRUDS swings significantly with changing λ even though the
cost stays the same. (2) The validity values change gradually with changing λ whereas in CRUDS
on two of the datasets COMPAS and HELOC, we observe much greater swings.

5.4 ABLATION: ROLE OF CONDITIONAL LIKELIHOOD

Apart from the joint training of recourse likelihood, another explanation for the superior perfor-
mance of GenRe is that our approach involves training the conditional likelihood of recourse in-
stances R(x+|x). The conditioning on input negative instances results in a density that is more
tractable to learn than the unconditional data density of P (X|y+) that needs to capture the entire
data manifold of positive instances. We show this visually on two synthetic datasets from Figure 2.
For each dataset, we train two density models: Rθ(x

+|x) and P (X|y+). Both these densities are
learned using transformer models. Since P (X|y+) does not need an encoder, its transformer uses
twice the number of layers as the conditional one. We show the contours of these two conditional
densities in Figure 5. The large red dot in the plot represents the negative instance x on which the
density is conditioned.

Conditional(moons) Unconditional(moons) Conditional(circles) Unconditional(circles)
Negative Training Instances Positive Training Instances Conditioning instance

Figure 5: Visual Comparison between contours of density learned by conditional model (odd posi-
tions) and unconditional model (even positions)

We can see vividly that the conditional density of Rθ(x
+|x) is concentrated around an optimal re-

gion on the data manifold that meets all three recourse goals. In contrast, the unconditional density
of the blue training points from the positive class is subpar. Such density models when combined
with cost and validity objectives during inference are less likely to yield recourse on the data mani-
fold.

5.5 COMPARISON WITH NEAREST NEIGHBOR SEARCH

As λ → ∞, Q (as defined in Eq. 6) will always return the nearest neighbor of x in D+
h as defined

in Section 4.1. In this section we establish the advantages of GenRe over nearest neighbor search.
We consider three variants: (a) NNR (Nearest Neighbor Recourse) that selects the closest neighbor
which has the desired class label. (b) NNR (γ > 0.7) that selects recourse instances which are
assigned a confidence of more than 0.7 from classifier h, and finally, (c) NNR (D+

h ) that returns
nearest recourse instance which in addition to having a confidence of γ > 0.7 by the classifier h,
also enforces that observed label in the training data is y = 1. We present the results in table 3

Dataset Adult Income COMPAS HELOC
Method Cost ↓ Val ↑ LOF ↑ Score ↑ Cost ↓ Val ↑ LOF ↑ Score ↑ Cost ↓ Val ↑ LOF ↑ Score ↑
NNR 0.36 0.48 0.89 1.34 0.17 0.86 0.88 1.71 1.22 0.58 1.00 1.53
NNR (γ = 0.7) 0.46 0.72 0.84 1.53 0.43 0.99 0.97 1.90 1.52 0.69 1.00 1.62
NNR (D+

h ) 0.47 0.85 0.89 1.71 0.45 0.99 0.97 1.90 1.57 0.96 0.99 1.88

GenRe 0.69 1.00 0.98 1.93 0.51 0.99 0.97 1.89 2.01 1.00 1.00 1.90

Table 3: Comparison of Nearest Neighbor Search with GenRe. GenRe performs much better in
term of LOF across all the datasets.

We make the following observations: (1) Among the NNR methods, a consistent trend emerges:
NNR (γ > 0.7) consistently outperforms standard NNR, while NNR (D+

h ) outperforms NNR
(γ > 0.7) across all recourse metrics, except cost. This underscores the value of incorporating both
constraints when providing recourse and further justifies the pairing approach adopted by GenRe.
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(2) On the Adult Income and HELOC datasets, GenRe outperforms all variations of NNR in terms
of the overall score, while achieving comparable performance on the COMPAS dataset. Note that
NNR completely ignores the plausibility of instances and therefore succumbs to outliers, as reflected
in their low LOF scores. GenRe, on the contrary, trades-off cost to provide instances which are more
plausible. In Table 12, we also compare GenRe across a range of balance parameter λ.

5.6 COMPARISON WITH PRE-TRAINED DIFFUSION MODELS

Recent work on guidance in diffusion models allows for sampling from distribution of the form
5 using pre-trained models. To investigate if GenRe which trains with pairs has any advantage
over such methods, we experiment with the current best performing diffusion model for tabular
data, TabSyn (Zhang et al., 2024) and constrained it with a state-of-the-art derivative-free guidance
method SVDD (Li et al., 2024). To ensure a fair comparison, we train the diffusion model only on
D+

h as described in section 4.1. We compare with two methods: (1) TabSyn+Q: We implement a
semi-ideal, brute-force method in which we sample a dataset D+

syn, which is of the same size as
original dataset. For a given negative instance x−, define Q on D+

syn as described in Eq. 6. This
experiments sets a skyline for guidance methods. (2) TabSyn+SVDD: SVDD requires specifying
a downstream ‘reward’ function for conditional generation but does not require this function to be
differentiable. If we let the reward function to be negative of cost, we recover the distribution in
Eq. 5.

Dataset Adult Income COMPAS HELOC
Method Cost ↓ Val ↑ LOF ↑ Score ↑ Cost ↓ Val ↑ LOF ↑ Score ↑ Cost ↓ Val ↑ LOF ↑ Score ↑
TabSyn+Q 0.86 1.00 0.79 1.72 0.78 0.99 0.81 1.69 2.41 0.99 0.99 1.87
TabSyn+SVDD(λ = 5.0) 3.11 0.99 0.83 1.58 2.18 1.00 0.69 1.37 3.14 0.98 0.97 1.8
TabSyn+SVDD(λ = 10.0) 3.10 1.00 0.87 1.63 2.20 1.00 0.79 1.48 2.85 0.99 0.99 1.84

GenRe(λ = 5.0) 0.69 1.00 0.98 1.93 0.51 0.99 0.97 1.89 2.01 1.00 1.00 1.90

Table 4: GenRe outperforms pre-trained Diffusion models with guidance

While TabSyn+Q performs similarly to GenRe on the HELOC dataset, it performs worse on the
Adult Income and COMPAS datasets, particularly struggling with the LOF metric. TabSyn+SVDD
performs significantly worse on both datasets in terms of cost as well as the LOF metric. Addition-
ally, we observed that in many instances, TabSyn+SVDD failed to generate recourse instances that
satisfy the immutability constraints.

6 CONCLUSION

In this work, we proposed a model GenRe to maximize likelihood of recourse over instances that
meet the three recourse goals of validity, proximity, and plausibility. We demonstrated that methods
that are not trained jointly with the three recourse goals fail to achieve all of them during inference.
We confirmed this empirically on toy 2D datasets and three standard recourse benchmarks across
eight state-of-the-art recourse baselines. Another interesting property of GenRe is that it generates
recourse just via forward sampling from the trained recourse model, unlike most existing methods
that perform expensive and non-robust gradient descent search during inference. The main chal-
lenge we addressed in developing GenRe was training the generator given lack of direct recourse
supervision. We addressed this by designing a pairing strategy that pairs each negative instance
instance seeking recourse with plausible positive recourse instances in the training data. We proved
these pairs are consistent, and hence GenRe’s method of training on them is consistent with the ideal
recourse objective. Our experiments and sensitivity analysis further demonstrate GenRe’s ability to
optimally balance the three recourse criteria, while remaining robust across a wide range of hyper-
parameters.
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A DETAILED RELATED WORK

Cost minimizing Methods. Laugel et al. (2017) suggests a random search algorithm, which gen-
erates samples around the factual input point until a point with a corresponding counterfactual class
label was found. The random samples are generated around x using growing hyper spheres. Ustun
et al. (2019) formulates a discrete optimization problem on user-specified constraints and uses in-
teger programming solvers such as CPLEX or CBC. Karimi et al. (2020a) translates the problem as
satisfiability problem which can be solved using off the shelve SMT-solvers. Wachter et al. (2017)
formulates a differentiable objective using cost and classifier and generates counterfactual explana-
tions by minimizing the objective function using gradient descent Mothilal et al. (2020) extends the
differentiable objective with a diversity constraint to the objective uses gradient descent to find a
solution that trades-off cost and diversity
Robust Methods. Several recent methods acknowledge that deployed models in practice often
change with time Rawal et al. (2020), and as a consequence recourse generated using the classifier
used during training can be invalidated by the deployed model. This calls for a need to robust re-
course. Upadhyay et al. (2021) finds counterfactual in worst case model shifts under the assumption
of bounded change in parameter space. Hamman et al. (2023) challenges this assumption and in-
stead defines “natural” model shifts where model prediction do not change drastically in-distribution
of training data.
Another line of work considers robustness in the case with respect to small perturbations to the
input. As noted by Fokkema et al. (2024) most recourse algorithms map instances to close to the
boundary of classifiers . If user implementation of recourse is noisy, the recourse can get invali-
dated. Pawelczyk et al. (2023) address the problem by optimising for expected label after recourse
under normal noise. Recourse can also be noisy due to underlying causal model. Karimi et al.
(2020b). Dominguez-Olmedo et al. (2022) suggest a minmax objective which reduces to outputting
a point some ‘margin’ away from the boundary in the case of linear classifiers. Recent work Fried-
baum et al. (2024) trains auxiliary verifier models to ensure robustness in recourse validity. Black
et al. (2021) also considers recourse validity in case of a model shift and ensures that the generated
counterfactuals are in smooth regions of classifier
Likely Recourse Methods. Joshi et al. (2019) use a VAE(Kingma & Welling (2014)) to ensure
that the generated recourse instances are close to the data-manifold and perform gradient descent
in latent space to optimise the recourse instance. Pawelczyk et al. (2020a) perform random search
in latent space and filter out the instances which correctly flip the predictions. Downs et al. (2020)
extends the method to include a class conditional VAE which can be incorporated in CCHVAE and
REVISE.
Schut et al. (2021) asserts that the recourse instances should belong to the region where classification
model has high certainty. They estimate the uncertainty using an ensemble of models and include
that in their objective. Antorán et al. (2020) considers the case of Bayesian Neural Networks and
estimate the uncertainty by sampling multiple models from the model distribution.

Others. More recent work includes Kanamori et al. (2024) which attempts to learn decision tree
classifiers which facilitate more desirable recourse, as opposed to us where we assume that the
classifiers are given to us. Gao & Lakkaraju (2024) attempts to generate recourse which is invariant
across multiple subgroups. Bewley et al. (2024) attempts to generate human readable rules from a
suggested recourse instances.
We note that quite a few methods (Upadhyay et al., 2021; Pawelczyk et al., 2023; Ustun et al., 2019;
Dominguez-Olmedo et al., 2022) are originally developed for linear models but are extended to
non-linear models like neural networks by using local linear approximation using LIME coefficients
Ribeiro et al. (2016)

B ALGORITHMS

In this section, we specify the training and inference algorithm for the autoregressive model used in
the paper.
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Algorithm 1 Training Recourse modelRθ

Require: Training dataD, lrn rate η, batch size b, epochs e, sampling parameter K, cost coefficient
λ, pair validity γ, classifier h

Ensure: Trained modelRθ with parameters θ
1: D−

h ← {xi ∈ D|yi = 0, h(xi) ≤ 0.5}; D+
h ← {xi ∈ D|yi = y+, h(xi) > γ}

2: Rθ ← Initialize {Rencoder
θ ,Rdecoder

θ }
3: Qtrunc(•|x) = TopK

(
Q
(
•|x,D+

h

)
,K
)

▷ Truncate Q (Eq. 6) to Top K entries for x ∈ D−
h

4: for epoch ∈ [e] do
5: for each minibatch B of size b from D−

h do
6: Sample x′

i ∼ Qtrunc(xi) for each xi ∈ B,
7: L(θ) = Sum of loss on (xi,x

′
i) using Eq. 8; θ ← GradDescStep(L, η)

8: end for
9: end for

Algorithm 2 Forward Sampling one Recourse Instance

Require: negative instance x−, categorical indices mc, recourse model Rθ = {Renc
θ ,Rdec

θ }, tem-
perature τ , bin means {µj,k}, bin width {σj,k}

Ensure: predicted recourse x′

1: x−
enc ← Renc

θ (x−) ▷ Encode the input neg. instance
2: x′ ← [0, 0, . . . 0] ▷ Init. x′ with d zeros
3: for j ∈ [d] do
4: pj = SoftMax

(
τ · Rdec

θ

(
x−

enc,x
′
1:j−1

))
▷Rdec

θ

(
x−

enc,x
′
1:j−1

)
is the logits over nj bins

5: Sample ϵ ∼ N (0, 1), k ∼ pj
6: x′j ← µj,k + σj,k · ϵ
7: end for
8: x′ ← projectCategoricals(x′,mc) ▷ project mc indices in x′ to categorical space.

C EXPERIMENTAL DETAILS

C.1 DATASETS

We use the preprocessed datasets from CARLA library where all categorical features from original
datasets have been converted to binary categorical features, for example, place of native country has
been converted to US, Non-US, race into white and non-white etc
The Adult data set Becker & Kohavi (1996) originates from the 1994 Census database, consisting
of 13 attributes and 48,832 instances. The classification consists of deciding whether an individual
has an income greater than 50,000 USD/year. The train split has 36624 examples and test split has
12208 examples. The features sex and race are set as immutable. Categorical features in this dataset
are workclass, marital-status, occupation, relationship, race, sex, native-country.
The HELOC dataset (FICO, 2018) contains anonymized information about the Home Equity Line
of Credit applications by homeowners in the US, with a binary response indicating whether or not
the applicant has even been more than 90 days delinquent for a payment. The dataset consists of
9871 rows and 21 features. The train split has 7403 examples and test split has 2468 examples. All
features in this dataset are continuous and mutable.
The COMPAS data set (Angwin et al., 2016) contains data for criminal defendants in Florida, USA.
It is used by the jurisdiction to score defendant’s likelihood of reoffending. The classification task
consists of classifying an instance into high risk of recidivism (score). The dataset consists of 6172
rows and 7 features. The train split has 4629 examples and test split has 1543 examples. Immutable
features for COMPAS are sex and race. Categorical features are two year recid, c charge degree,
race and sex.
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Dataset #Features #Categoricals #Immutables #Positives #Negatives

Adult Income 13 7 2 8,742 27,877
COMPAS 7 4 2 3,764 865
HELOC 21 0 0 3,548 3,855

Table 5: Training Data Statistics

We normalise each feature in every dataset to range [0, 1].

C.2 HYPERPARAMETERS

C.2.1 TRUE CLASSIFIERS

We train a RandomForestClassifier calibrated with CalibratedClassifierCV using isotonic calibra-
tion. We generate binary labels by sampling from the predictive probabilities for each input. We
also provide sample weights to the .fit function. The data is split into train and test after getting
true classifiers and below we report various metrics on this test split. This input and its corresponding
generated label will be utilized as training data for the ANN classifiers.

Dataset Accuracy ROC AUC Precision Recall F1-Score Briar Score

Adult Income 94.36 0.9996 0.90 0.96 0.93 0.05
COMPAS 85.74 0.9886 0.78 0.91 0.81 0.10
HELOC 100.00 1.0000 1.00 1.00 1.00 0.02

Table 6: Performance Metrics for the trained classifiers. Precision, Recall and F1-score are macro
averaged. Briar Score determines the quality of calibration – lower the better.

C.2.2 PREDICTIVE MODELS

We use train fully connected ReLU models with 10,10,10 layers using learning rate=0.001 and
number of epochs =100, batch size = 64

Dataset Accuracy ROC AUC Precision Recall F1-Score

Adult Income 77.33 0.86 0.76 0.78 0.76
COMPAS 69.60 0.75 0.68 0.69 0.68
HELOC 74.23 0.80 0.74 0.74 0.74

Table 7: Performance Metrics for the trained classifiers. Precision, Recall and F1-score are macro
averaged
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C.2.3 BASELINES

Method Hyperparameters Other Params

Wachter
loss type: “BCE”
binary cat features: True -

GS - -

DiCE
loss type: “BCE”
binary cat features: True -

ROAR delta: 0.01 -

PROBE
loss type: “BCE”
invalidation target: 0.05
noise variance: 0.01

-

TAP
n iter: 1000
step size: 0.01

Verifier Params:
layers: [50,50,50,50]
epochs: 2000
lr: 0.0001
batch size: 128

CCHVAE
n search samples: 100
step: 0.1
max iter: 1000

VAE Params:
layers: [512, 256, 8]
lambda reg: 0.000001
epochs: 100
lr: 0.001
batch size: 32

CRUDS

lambda param: 0.001
optimizer: “RMSprop”
lr: 0.008
max iter: 2000

VAE Params:
layers: [512, 256, 8]
train: True
epochs: 100
lr: 0.001
batch size: 32

Table 8: Hyperparameters used for baseline methods

C.2.4 GENRE

For each feature in the input we have a learnable position embedding which we then pass into the
transformer model. We use the same architecture across all the datasets, below we describe the
various parameters.

Parameter Value

Number of Bins 50
Number of layers in Encoder 16
Number of layers in Decoder 16
Embedding Size 32
Feed Forward Dim 32

Table 9: Architecture specifications for the Transformer Layer used.

All datasets uses learning rate = 1e-4 and batch size 16384 for Adult Income dataset else 2048.

C.3 EVALUATION

We use entire dataset train+test, with predicted label assigned by the true classifiers and train a class
conditional LocalOutlierFactor from sklearn. We use n_neighbours=5, novelty = True.
Results shown in 2 are averaged over 200 instances from test split.
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D ADDITIONAL EXPERIMENTS

D.1 COMPARISON WITH BASELINES ALONG WITH STANDARD DEVIATION

Dataset Adult Income COMPAS HELOC

Metric Cost Val LOF Score Cost Val LOF Score Cost Val LOF Score

Wachter 0.31±0.16 0.51±0.50 0.76±0.43 1.24 0.20±0.17 0.59±0.49 0.23±0.42 0.79 0.79±0.47 0.35±0.48 0.97±0.17 1.28
GS 1.82±1.07 0.40±0.49 0.49±0.50 0.75 1.20±0.73 0.66±0.47 0.48±0.50 0.97 0.58±0.38 0.32±0.47 0.94±0.25 1.23
DICE 0.22±0.10 0.62±0.49 0.73±0.45 1.33 0.19±0.16 0.57±0.49 0.44±0.50 0.99 0.49±0.31 0.34±0.47 0.97±0.16 1.29

ROAR 10.17±2.62 0.96±0.18 0.01±0.07 0.19 4.01±2.01 0.87±0.34 0.01±0.07 0.30 9.64±6.89 0.47±0.50 0.17±0.38 0.19
TAP 1.10±0.93 0.99±0.10 0.67±0.47 1.57 1.46±0.59 0.88±0.32 0.70±0.46 1.37 0.71±0.26 0.36±0.48 0.53±0.50 0.86
PROBE 33.91±14.70 1.00±0.00 0.00±0.00 -1.61 5.77±4.63 0.82±0.38 0.00±0.00 -0.00 5.37±5.12 0.69±0.46 0.07±0.25 0.49
CCHVAE 2.11±1.07 0.00±0.00 1.00±0.00 0.84 3.03±0.87 1.00±0.00 0.07±0.26 0.64 3.58±0.63 0.04±0.21 0.14±0.35 0.02
CRUDS 3.17±1.11 1.00±0.00 0.96±0.18 1.72 1.10±0.82 0.98±0.12 1.00±0.00 1.83 4.30±2.23 1.00±0.00 0.57±0.50 1.37
GenRe 0.69±0.30 1.00±0.00 0.98±0.12 1.93 0.51±0.18 0.99±0.10 0.97±0.17 1.89 2.01±0.59 1.00±0.00 1.00±0.00 1.90

Table 10: Comparison with baselines along with standard deviation

D.2 PERFORMANCE ACROSS DIFFERENT TEMPERATURE τ AND σ SETTINGS

Dataset Adult Income COMPAS HELOC

τ , σ Cost Val LOF Score Cost Val LOF Score Cost Val LOF Score

5.0, 2e-07 0.73±0.32 0.99±0.10 0.94±0.25 1.87 0.54±0.21 0.99±0.10 0.86±0.34 1.78 2.12±0.62 1.00±0.00 1.00±0.00 1.9
10.0, 2e-07 0.70±0.32 0.99±0.07 0.97±0.16 1.92 0.50±0.18 1.00±0.00 0.96±0.20 1.89 2.00±0.57 1.00±0.00 1.00±0.00 1.9
15.0, 2e-07 0.68±0.30 0.99±0.07 0.99±0.10 1.93 0.50±0.18 1.00±0.00 0.96±0.20 1.89 1.95±0.57 1.00±0.00 1.00±0.00 1.91

5.0, 2e-06 0.72±0.30 0.97±0.16 0.96±0.20 1.88 0.54±0.19 0.99±0.10 0.88±0.32 1.79 2.08±0.58 1.00±0.00 1.00±0.00 1.9
10.0, 2e-06 0.69±0.30 0.99±0.07 0.99±0.10 1.93 0.51±0.18 0.99±0.07 0.97±0.16 1.9 2.00±0.58 1.00±0.00 1.00±0.00 1.9
15.0, 2e-06 0.68±0.29 0.99±0.10 0.98±0.14 1.92 0.50±0.18 1.00±0.00 0.96±0.18 1.89 1.96±0.57 1.00±0.00 1.00±0.00 1.91

5.0, 2e-05 0.73±0.33 0.99±0.10 0.97±0.17 1.9 0.53±0.20 0.99±0.07 0.89±0.31 1.81 2.08±0.61 1.00±0.00 1.00±0.00 1.9
10.0, 2e-05 0.69±0.30 0.98±0.12 0.97±0.16 1.91 0.51±0.18 0.99±0.07 0.96±0.20 1.88 2.00±0.60 1.00±0.00 1.00±0.00 1.9
15.0, 2e-05 0.68±0.30 0.99±0.10 0.98±0.14 1.92 0.50±0.18 1.00±0.00 0.97±0.17 1.9 1.95±0.56 1.00±0.00 1.00±0.00 1.91

5.0, 2e-4 0.73±0.34 0.99±0.07 0.94±0.24 1.88 0.53±0.19 0.99±0.10 0.88±0.33 1.79 2.10±0.60 1.00±0.00 1.00±0.00 1.9
10.0, 2e-4 0.70±0.32 0.99±0.07 0.97±0.16 1.92 0.51±0.18 1.00±0.00 0.96±0.20 1.89 2.00±0.58 1.00±0.00 1.00±0.00 1.9
15.0, 2e-4 0.68±0.29 1.00±0.00 0.98±0.14 1.93 0.50±0.18 1.00±0.00 0.97±0.16 1.9 1.94±0.55 1.00±0.00 1.00±0.00 1.91

5.0, 2e-3 0.74±0.37 0.97±0.17 0.93±0.26 1.84 0.54±0.20 0.99±0.07 0.84±0.36 1.76 2.12±0.60 1.00±0.00 1.00±0.00 1.9
10.0, 2e-3 0.69±0.30 1.00±0.00 0.99±0.10 1.94 0.51±0.18 1.00±0.00 0.95±0.21 1.88 1.99±0.56 1.00±0.00 1.00±0.00 1.91
15.0, 2e-3 0.69±0.32 0.99±0.10 0.98±0.14 1.92 0.50±0.18 1.00±0.00 0.95±0.21 1.88 1.94±0.56 1.00±0.00 1.00±0.00 1.91

5.0, 2e-2 0.75±0.32 0.97±0.16 0.92±0.28 1.83 0.56±0.19 0.98±0.12 0.77±0.42 1.67 2.26±0.62 0.98±0.12 1.00±0.00 1.88
10.0, 2e-2 0.72±0.29 0.94±0.23 0.93±0.26 1.82 0.55±0.18 0.98±0.12 0.79±0.41 1.69 2.22±0.59 0.98±0.14 1.00±0.00 1.87
15.0, 2e-2 0.73±0.30 0.94±0.23 0.92±0.28 1.8 0.55±0.18 0.99±0.07 0.78±0.41 1.7 2.18±0.60 0.98±0.14 1.00±0.00 1.88

Table 11: Performance of GenRe across τ{5.0, 10.0, 15.0} and σ{2e− 7, 2e− 6, . . . , 2e− 2}

D.3 COMPARISON WITH NEAREST NEIGHBOR SEARCH ALONG WITH STANDARD DEVIATION

Dataset Adult Income COMPAS HELOC

Metric Cost VaL LOF Score Cost VaL LOF Score Cost VaL LOF Score

NNR 0.36±0.20 0.48±0.50 0.89±0.32 1.34 0.17±0.16 0.86±0.35 0.88±0.33 1.71 1.22±0.41 0.58±0.49 1.00±0.00 1.53
NNR(γ = 0.7) 0.46±0.24 0.72±0.45 0.84±0.36 1.53 0.43±0.19 0.99±0.10 0.97±0.16 1.9 1.52±0.50 0.69±0.46 1.00±0.00 1.62
NNR(γ = 0.7, y = 1) 0.47±0.24 0.85±0.35 0.89±0.31 1.71 0.45±0.21 0.99±0.10 0.97±0.16 1.9 1.57±0.53 0.96±0.20 0.99±0.07 1.88

GenRe(λ = 0.5) 2.28±0.86 0.99±0.10 0.99±0.10 1.8 1.95±0.69 1.00±0.00 0.92±0.27 1.64 2.64±0.71 1.00±0.00 1.00±0.00 1.87
GenRe(λ = 1.0) 1.66±0.91 0.92±0.28 0.99±0.10 1.78 1.34±0.58 1.00±0.00 0.95±0.21 1.76 2.60±0.68 1.00±0.00 1.00±0.00 1.88
GenRe(λ = 2.5) 0.81±0.39 0.89±0.31 1.00±0.00 1.83 1.02±0.58 0.98±0.12 0.98±0.12 1.82 2.43±0.68 1.00±0.00 1.00±0.00 1.88
GenRe(λ = 5.0) 0.69±0.30 1.00±0.00 0.98±0.12 1.93 0.51±0.18 0.99±0.10 0.97±0.17 1.89 2.01±0.59 1.00±0.00 1.00±0.00 1.9
GenRe(λ = 10.0) 0.66±0.28 0.98±0.14 0.99±0.07 1.92 0.48±0.19 0.95±0.21 0.86±0.35 1.75 1.84±0.55 1.00±0.00 1.00±0.00 1.91

Table 12: Best is highlighted in bold and second best is highlighted bold blue

D.4 DETAILS ON EXPERIMENT WITH TABSYN AND SVDD

SVDD requires a reward function to guide diffusion model such as TabSyn towards a required
distribution. For a given diffusion model which can sample from P (x), SVDD allows us to sample
from a distribution P ′(x) such that,

P ′(x) ∝ P (x) exp (λ · r(x)) (10)
where r(x) is a reward function which models how desirable a generated example is. To sample
from 5, we first train a diffusion model on the data which satisfies our constraints and then for each
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x we define the reward function as,

r(x′) = −ℓ2(x′,x)− 100 · 1[x′
i ̸= xi]

xi refers to the subset of features which are immutable. We add a penalty of 100 to the usual cost
whenever immutability constraints are violated.

Dataset Adult Income COMPAS HELOC

Metric Cost Val LOF Score Cost Val LOF Score Cost Val LOF Score

TabSyn+SVDD(λ = 5.0) 3.11±1.44 0.99±0.10 0.83±0.38 1.58 2.18±0.77 1.00±0.00 0.69±0.46 1.37 3.14±0.84 0.98±0.14 0.97±0.17 1.80
TabSyn+SVDD(λ = 10.0) 3.10±1.39 1.00±0.00 0.87±0.34 1.63 2.20±0.82 1.00±0.00 0.79±0.41 1.48 2.85±0.78 0.99±0.10 0.99±0.10 1.84
TabSyn+Q 0.86±0.39 1.00±0.00 0.79±0.41 1.72 0.78±0.44 0.99±0.07 0.81±0.39 1.69 2.41±0.65 0.99±0.10 0.99±0.07 1.87

GenRe 0.69±0.30 1.00±0.00 0.98±0.12 1.93 0.51±0.18 0.99±0.10 0.97±0.17 1.89 2.01±0.59 1.00±0.00 1.00±0.00 1.90

D.5 PERFORMANCE OF GENRE WITH THE AMOUNT OF DATA

To assess scalability we conducted an experiment in which we train the model on various subsets of
data, below we report the results on Adults Income dataset – largest dataset used in this paper.

Fraction of Data Time Cost Val LOF Score

0.1 798.94 1.09±0.66 0.92±0.27 0.85±0.35 1.69
0.2 1454.15 1.23±0.63 1.00±0.00 0.99±0.07 1.90
0.4 2768.06 0.94±0.51 0.97±0.17 0.92±0.27 1.82
0.8 5219.66 0.67±0.28 0.92±0.27 0.98±0.14 1.85
1.0 8464.71 0.69±0.30 1.00±0.00 0.98±0.12 1.93

Table 13: Performance metrics for different fractions of data.
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