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Appendix1

1 Derivations2

1.1 Derivation of Task Arithmetic using Gradient Mismatch3

We proceed by first writing the respective stationarity conditions for the LLM θLLM, fine-tuned4

models θt, and target model θ1:T ,5

θLLM = −∇ℓ̄LLM(θLLM)

H0(θt − θLLM) = −∇ℓ̄t(θt), for all t = 1, 2, . . . , T

H0(θ1:T − θLLM) =

T∑
t=1

−αt∇ℓ̄t(θ1:T ).

Next, we multiply the second equation with αt for each t, then sum it over t = 1, 2, . . . , T , and6

finally subtract it from the third equation to get the following,7

H0(θ1:T − θLLM)−
T∑

t=1

αtH0(θt − θLLM) = −
T∑

t=1

αt

[
∇ℓ̄t(θ1:T )−∇ℓ̄t(θt)

]
. (1)

Multiplying by H−1
0 and rearranging gives us8

θ1:T = θLLM +

T∑
t=1

αt(θt − θLLM)︸ ︷︷ ︸
=θ̄TA

−
T∑

t=1

αtH
−1
0

[
∇ℓ̄t(θ1:T )−∇ℓ̄t(θt)

]︸ ︷︷ ︸
Gradient mismatch for θt on ℓ̄t

. (2)

.9

1.2 Derivation of the New Method10

By substituting Taylor’s approximation, the equation reduces to the first expression below which is11

linear in θ1:T ,12

θ1:T − θLLM ≈
T∑

t=1

αt(θt − θLLM)−
T∑

t=1

αtH
−1
0 [Ht(θ1:T − θt)] . (3)

We then add and subtract θLLM in the last term above,13

θ1:T − θLLM ≈
T∑

t=1

αt(θt − θLLM)−
T∑

t=1

αtH
−1
0 [Ht(θ1:T − θLLM)−Ht(θt − θLLM)] , (4)
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and multiply the whole expression by H0 and rearrange it to get the second expression in Eq. 3,14 (
H0 +

T∑
t=1

αtHt

)
(θ1:T − θLLM) ≈

T∑
t=1

αtH0(θt − θLLM) +

T∑
t=1

αtHt(θt − θLLM)

=

T∑
t=1

αt(H0 +Ht)(θt − θLLM).

(5)

Multiplying the equation by inverse of H̄ = H0 +
∑T

t=1 αtHt and taking θLLM to the right hand15

side gives us16

θ̂1:T = θLLM +

T∑
t=1

αt (H̄
−1

H0+t) (θt − θLLM). (6)

1.3 Derivation of Data Removal17

Our target model is the following model trained using18

θLLM = argmin
θ

ℓ̄LLM(θ) + 1
2δ∥θ∥

2, where ℓ̄LLM(θ) =
∑

i∈DLarge

ℓi(θ). (7)

but without using Dt,19

θ\t = argmin
θ

ℓ̄\t(θ) +
δ

2
∥θ∥2, where ℓ̄\t(θ) =

∑
i∈{DLarge\Dt}

ℓi(θ). (8)

The LLM objective can then be written in terms of this objective:20

θLLM = argmin
θ

ℓ̄\t(θ) + αtℓ̄t(θ) +
δ

2
∥θ∥2, (9)

where we assume that ℓ̄t is multiplied by a constant αt in the original model.21

As before, we can write the stationary conditions of θLLM, θt, and θ\t, respectively:22

δθLLM = −∇ℓ̄\t(θLLM)− αt∇ℓ̄t(θLLM),

H0(θt − θLLM) = −∇ℓ̄t(θt),

δθ\t = −∇ℓ̄\t(θ\t).

(10)

Because our goal is to analyze θ\t −αt(θLLM − θt), we multiply the second equation by αt, subtract23

it from the first equation, and then subtract the resultant from the third equation to get, the following,24

δ(θ\t−θLLM)+αtH0(θt−θLLM) = −
[
∇ℓ̄\t(θ\t)−∇ℓ̄\t(θLLM)

]
+αt

[
∇ℓ̄t(θLLM)−∇ℓ̄t(θt)

]
.

(11)

We can now use Taylor’s approximation to reduce gradient matching,25

∇ℓ̄\t(θ\t) ≈ ∇ℓ̄\t(θLLM) +∇2ℓ̄\t(θLLM)(θ\t − θLLM).

For the second gradient term, we do not need to use the Taylor’s approximation because it does not26

depend on θ\t, but our goal is to improve over task arithmetic, so we do it to derive a preconditioner,27

∇ℓ̄t(θLLM) ≈ ∇ℓ̄t(θt) +Ht(θLLM − θt). (12)

Note that it is also possible to do the Taylor’s approximation not around θt but θLLM. Plugging these28

in Eq. 11, we can write,29

δ(θ\t − θLLM) + αtH0(θt − θLLM) = −∇2ℓ̄\t(θLLM)(θ\t − θLLM) + αt [Ht(θLLM − θt)]

=⇒
[
δI+∇2ℓ̄\t(θLLM)

]
(θ\t − θLLM) = −αt (H0 +Ht) (θt − θLLM)

=⇒ θ\t = θLLM − αt

[
δI+∇2ℓ̄\t(θLLM)

]−1
(H0 +Ht) (θt − θLLM)

which gives us the desired update of30

θ̂\t = θLLM − αtH̄
−1
\t H0+t(θt − θLLM), (13)
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1.4 Proof that our update for data-removal is exact for linear regression31

The task removal update derived above is closely related to previous works on data removal. For32

instance, for linear model, our update recovers the popular influence function. We will now show this.33

Consider a large linear model (coincidentally also abbreviated as LLM) with full data D = (X,y)34

where y is a vector of outputs and X is a matrix containing each feature vector as a row. The loss is35

ℓ̄LLM(θ) = 1
2∥y−Xθ∥2. Now, suppose we want to remove Dt = (Xt,yt) from it. Then, we have a36

closed form solution for the full model and the model with removed data,37

θLLM = H̄
−1

X⊤y, θ\t = H̄
−1
\t X

⊤y,

where H̄ = ∇2
[
1
2∥y −Xθ∥2 + 1

2∥θ∥
2
]
= X⊤X+ δI, and similarly H̄\t = X⊤

\tX\t + δI. A well38

known result in the influence function literature Cook (1977) is that the two quantities are related as39

θ\t − θLLM = H̄
−1
\t X

⊤
t (XtθLLM − yt). (14)

We will now show that our previously proposed update reduces to this for linear models.40

We start with an expression for θt trained using41

θt = argmin
θ

ℓ̄t(θ) +
1
2∥θ − θLLM∥2H0

, (15)

but with the loss ℓ̄t(θ) = 1
2∥yt −Xtθ∥2. Using the second equation in the optimality condition of42

Eq. 10, we can write:43

H0(θt − θLLM) = X⊤
t (yt −Xtθt) =⇒ (H0 +Ht)θt = H0θLLM +X⊤

t yt

where we use the fact that for linear models Ht = X⊤
t Xt. We now simplify our update of Eq. 1344

with αt = 1 where we use the above relationship in the third line below,45

θ̂\t = θLLM − H̄
−1
\t (H0 +Ht) (θt − θLLM)

= θLLM − H̄
−1
\t [(H0 +Ht)θt − (H0 +Ht)θLLM]

= θLLM − H̄
−1
\t

(
H0θLLM +X⊤

t yt − (H0 +Ht)θLLM

)
= θLLM − H̄

−1
\t

(
X⊤

t yt −HtθLLM

)
= θLLM − H̄

−1
\t

(
X⊤

t yt −X⊤
t XtθLLM

)
= θLLM + H̄

−1
\t X

⊤
t (XtθLLM − yt) .

(16)

Therefore, our update reduces to Eq. 14.46

A generalization of Eq. 14 to neural network is considered in Koh & Liang (2017) for the case of47

one-example removal. Their approach when applied to remove multiple examples at once redues to48

θ̂\t = θLLM + H̄
−1
\t gt,

where gt = ∇ℓ̄t(θLLM). Our approach also recovers this result if we do not use the second Taylor’s49

approximation for the second gradient matching term in Eq. 11. Essentially, this removes the50

contribution of the fine-tuned model and the steps are completely based on θLLM. It is not clear which51

approach is better but in practice it may depend on the fine-tune process which by doing multiple52

gradient steps may be able to get more information than a single gradient step gt. We hope to explore53

this point in a future study.54

1.5 Gradient Mismatch Reduction as Uncertainty Estimation55

Both the gradient-mismatch connection and the new method are closely related to uncertainty56

estimation via approximate Bayesian methods. We show that57

θ1:T = θLLM +

T∑
t=1

αt(θt − θLLM)︸ ︷︷ ︸
=θ̄TA

−
T∑

t=1

αtH
−1
0

[
∇ℓ̄t(θ1:T )−∇ℓ̄t(θt)

]︸ ︷︷ ︸
Gradient mismatch for θt on ℓ̄t

. (17)
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is equivalent to a maximum-a-posteriori (MAP) estimate of the posterior over all data D1:T while58

θ̂1:T = θLLM +

T∑
t=1

αt (H̄
−1

H0+t) (θt − θLLM), (18)

is the same but for a posterior approximation obtained with Laplace’s method (Laplace, 1774; Tierney59

& Kadane, 1986; MacKay, 1992). Based on these, we discuss some possible future directions for60

improvements.61

We start by defining the posteriors. Assuming p(θ) = N (θ|θLLM,H−1
0 ) to be the Gaussian prior and62

p(Dt|θ) ∝ e−ℓ̄t(θ) to be a valid likelihood function, we can define a weighted-posterior pα(θ|D1:T )63

over all datasets, shown below, along with an approximation obtained by Laplace’s method,64

pα(θ|D1:T ) ∝ p(θ)

T∏
t=1

e−αtℓ̄t(θ) ≈ p(θ)

T∏
t=1

e−
1
2αt∥θ−θt∥2

Ht ∝ qα(θ|D1:T ). (19)

Here, we use a second-order approximation at θt to get ℓ̄t(θ) ≈ ℓ̄t(θt) +
1
2∥θ − θt∥2Ht

. The term65

ℓ̄t(θt) is an irrelevant constant and we get the approximation qα(θ|D1:T ). The result below shows66

that the merged model is the MAP estimate corresponding to the approximate posterior.67

Theorem 1 The gradient mismatch equation in Eq. 2 is the stationarity condition of a MAP problem68

written in terms of posterior p(Dt|θ) (the equation on the left), while the merged model θ̂1:T in69

Eq. 18 is the MAP estimate of the Laplace approximation (equation on the right).70

θ1:T = argmax
θ

p(θ)

D∏
t=1

[
p(θ|Dt)

p(θ)

]αt

, θ̂1:T = argmax
θ

qα(θ|D1:T ). (20)

A detailed proof is given in Sec. 1.6. The result relates the gradient-mismatch approach to the71

posterior distribution and its approximation. The first equation expresses model merging as merging72

of posteriors p(θ|Dt) that are computed on different datasets. With a Bayesian approach, an exact73

solution can be recovered even when training on separate datasets. This is an instance of the Bayesian74

committee machine (Tresp, 2000) or Bayesian data fusion (Mutambara, 1998; Durrant-Whyte, 2001;75

Wu et al., 2022) which are extensively used for Gaussian processes (Deisenroth & Ng, 2015) and76

which should also be useful when using Neural Tangent Kernel for model merging (Ortiz-Jimenez77

et al., 2023). The second equation connects existing methods to a Gaussian approximation obtained78

using Laplace’s method.79

The gradient mismatch term in Eq. 2 arises due to the ratio p(θ|Dt)/p(θ). To understand this,80

consider the simple case of linear regression. Suppose we learn two separate linear models with81

loss function ℓ̄t(θ) =
1
2∥yt −Xtθ∥2. The gradient and Hessian are ∇ℓ̄t(θ) = X⊤

t (Xtθ − yt) and82

Ht = XtX
⊤
t respectively. Therefore, the gradient mismatch term can be written as,83

∇ℓ̄t(θ1:T )−∇ℓ̄t(θt) = X⊤
t (Xtθ1:T −Xtθt) = Ht(θ1:T − θt) = ∇ log

p(θ|Dt)

p(θ)

∣∣∣∣
θ=θ1:T

.

For linear models, pα(θ|Dt) = qα(θ|Dt) and therefore Taylor’s approximation84

∇ℓ̄t(θ) ≈ ∇ℓ̄t(θt) +Ht(θ − θt) (21)

is exact. The equation matches Jin et al. (2023, Eq. 1) who use this objective to merge linear parts of85

a transformer. Our approach extends such efforts to nonlinear problems.86

The Bayesian connection also gives direct ways to improve model merging and also reduce the87

computational burden. For example, one way to improve would be to take a few optimization steps88

aiming for the MAP estimate of the exact posterior, and then use the current iterate for the Taylor’s89

approximation in Eq. 2. Solutions obtained this way will provably get better as the number of90

steps are increased. This is in contrast with other approaches, for example, by Ortiz-Jimenez et al.91

(2023) who propose to train in the linearized tangent space which may not always converge to the92

right solution. Another way to improve is to use better posterior approximation, for example, using93

variational inference (Graves, 2011; Blundell et al., 2015; Osawa et al., 2019) which is known to94

yield a more global approximation (Opper & Archambeau, 2009). Nevertheless, in this work we95
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focus on improving merging without retraining and with computationally cheap estimates and leave96

the iterative optimization as future work.97

The Bayesian view also connects to similar efforts in continual learning to avoid catastrophic98

forgetting (Kirkpatrick et al., 2017) where a Bayesian motivation is used to justify the choice of99

Fisher-based regularizer (Huszár, 2018). Our contribution essentially gives an extension of such100

ideas to model merging. Our approach is also connected to Knowledge-Adaptation priors (Khan101

& Swaroop, 2021) where a variety of adaptation tasks are solved by gradient reconstruction. The102

connection also justifies the choice of diagonal Fisher in place of the Hessian, which essentially103

forms a Generalized Gauss-Newton approximation (Schraudolph, 2002; Pascanu & Bengio, 2013;104

Martens, 2020) of it. In our experiments, we use a Monte-Carlo estimator
∑

i [∇θℓi(θ)]
2 of the105

diagonal Fisher where i is summed over all examples in the data. Such estimates can also be obtained106

during training with Adam (Kingma & Ba, 2015) and provide a good estimate of the Hessian for107

small minibatch sizes (Khan et al., 2018, Thm. 1). The estimate can be normalized or unnormalized,108

and it is also possible to use another Fisher estimate. However, our derivation suggests to estimate it109

on the training data and not a held-out set as mentioned in Yadav et al. (2023).110

1.6 Derivation of Model Merging as MAP of Bayes’ Posterior111

We will now connect our approach to Bayes’ rule for linear regression. In this case, Eq. 2 can be112

rearranged to write as follows, where in the second term we have added and subtracted θ1:T ,113

0 = −H0(θ1:T − θLLM) +

T∑
t=1

αtH0(θt − θ1:T + θ1:T − θLLM)−
T∑

t=1

αtHt(θ1:T − θt).

This equation is a stationarity condition of the following optimization problem,114

θ1:T = argmin
θ

(
1−

T∑
t=1

αt

) [
− 1

2∥θ − θLLM∥2H0

]︸ ︷︷ ︸
=log p(θ)

+

T∑
t=1

αt

(
− 1

2∥θ − θt∥2H0+Ht

)︸ ︷︷ ︸
=log p(θ|Dt)

.

where we identify the prior to be p(θ) = N (θ|θLLM,H−1
0 ), and the posterior on Dt to be p(θ|Dt) =115

N (θ|θt, (H0 + Ht)
−1). We can therefore show that the stationarity condition corresponds to a116

maximum-a-posterior estimate of p(θ|D1:T ) as follows,117

p(θ|D1:T ) ∝ p(θ)

D∏
t=1

p(Dt|θ)αt = p(θ)

D∏
t=1

[
p(θ|Dt)

p(θ)

]αt

= p(θ)1−
∑T

t=1 αt

T∏
t=1

p(θ|Dt)
αt ,

where log of the last term is equivalent to the objective function.118
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