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A APPENDIX

In the supplementary document, we introduce more implementation details (Sec. A), comparison
with RGB-D surface reconstruction on ScanNet.(Sec. B.1, Sec. B.2 and Sec. B.3), single-view
novel view synthesis (Sec. B.4) and qualitative results (Sec. B.5 and Sec. B.6). We specifically
discussed the importance sampling methods w.r.t the two-stage generalizable prior training, which
plays an important role in the surface representation, as described in Sec. 3.2 in the main paper. We
provide additional experiments including (i) quantitative results of neural scene prior, i.e., without per-
scene optimization, (ii) quantitative comparisons with state-of-the-art RGB-D surface reconstruction
approaches, (iii) quantitative comparisons to the MVS based approaches, (iv) single-view novel view
synthesis, and (v) qualitative results on ScanNet and self-collected data. Videos of full-size room
reconstruction are included and recommended to watch.

A IMPLEMENTATION DETAILS

A.1 GENERALIZABLE NEURAL SCENE PRIOR

The generalizable neural scene prior is trained on the training split of ScanNet Dai et al. (2017). We
discuss some details of every component including geometry encoder, texture encoder, generalizable
geometric prior module and generalizable geometric prior in this section.

Geometry and Texture Encoder. For the geometry encoder, we first sample 512 keypoints from
all the points projected from 2D pixels, via Farthest Point Sampling (FPS) for each frame. For each
surface point, we apply the K-Nearest-Neighbor algorithm to select 16 adjacent points. Then, we
adopt two PointConv Wu et al. (2019) layers, to extract the geometry feature whose output channels
are set to 64. To extract the RGB feature we use a U-Net Ronneberger et al. (2015) with ResNet34 He
et al. (2016) as the backbone network. We further use an additional convolutional layer to output
a per-point feature with the dimension as 32. All the encoder modules are jointly trained with the
whole pipeline.

Generalizable Geometric Prior. Given an RGB-D image and its corresponding camera pose, we
first randomly sample 256 rays from regions where depth values are valid, e.g., non-zero. Then for
each ray, we define a small truncation region near the ground-truth depth where 32 points are sampled
uniformly. We then use two MLPs to map the geometry features to SDF values. The hyperparameters
Adepths Asaf and Aei are set to 1.0, 1.0 and 0.5, respectively.

Generalizable Texture Prior. Initialized with the geometric prior, we learn the texture prior via the
volumetric rendering loss Wang et al. (2021); Yariv et al. (2021). Different from the sampling strategy
used in geometric prior learning, we restrict the importance sampling to the samples concentrated
on the surface as described in Sec.3.4 of our main paper. In particular, we first sample 2048 rays
from each RGB-D image where we uniformly sample 64 points in the predefined near-far region.
Following Wang et al. (2021), then, we sample 32 points that are close to predicted surface. For rays
with non-zero depth values, we further sample 16 points within the truncation region around the ray’s
depth. Therefore, 128 points are sampled along each ray. For each point, we utilize 2 MLPs in the
texture decoder to estimate its RGB value. The hyperparamters Agepth, Asdf» Aeik and Aggp, are set to
1.0,1.0,0.5 and 10.0, respectively.
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Scene prior extraction and fusion. To leverage multiple views of RGB-D frames, with the scene
prior networks, we can directly aggregate the keypoints along with their geometry and texture feature
from these frames in the volumetric space. Then, the colored surface reconstruction can be decoded
from the fused representation following the same procedure in Sec.3.1 and 3.2. No further learnable
modules are required, in contrast, to Chen et al. (2021); Zhang et al. (2022); Li et al. (2022).

Prior-guided pruning and sampling. To optimize a single scene, we discard the encoders and
treat the volume feature representation as learnable to be optimized together with the decoders. To
further speed up the optimization, we accelerate the feature query process of sampled points, i.e.,
instead of optimizing the unstructured keypoints, from which the feature extraction can be inefficient,
we introduce the prior-guided voxel pruning to leverage the advantage of voxel-grid sampling and
surface representation. Specifically, we initialize uniform grids in the volumetric space and then query
each grid feature. Instead of optimizing a large number of uniform grids, we remove the redundant
grids adaptively based on the geometric prior using the Algo. 1 described below. To concentrate the
sampled ray points near the surface, we apply an importance sampling strategy, similar to that used in
training the genralizable texture prior, to mask out those far away from the surface. Starting from a
large threshold at the early training stage, we decrease it gradually with more training iterations to
prune more unnecessary grids. A similar procedure is also applied to the coarsely sampled points to
remove some useless points and help more points concentrate around the surface region. Notably,
compared to the voxel-based approach Wang et al. (2022) having more than 4, 000, 000 uniform grids
to be optimized, the number of learnable keypoints in our case is around 40, 000 — a 100x reduction
in computational complexity.

Algorithm 1: Prior-guided voxel pruning

Input: Grid feature {f;}i—1.n;

Grid position {x; }i=1.n;

Positional encoding ~y(+);

Geometry decoder s(-);

Number of grids [V;

Number of iterations T’

Output: Grid feature after prune { f; }i=1.m
Initialization : 7p = 0.16

forr=1:Tdo
7 = max(0.005, 0.8°7 - 75)
fori=1:Ndo

si < s(fi, v(x:));
if |s;| > 7 then
| Prune i-th grid
end
end

end

B ADDITIONAL EXPERIMENTS

B.1 COMPARISON WITH RGB-D SURFACE RECONSTRUCTION ON SCANNET

Clarification of Table 2 in main paper. Table 2 of the main paper presents the comparison of our
method with ManhanttanSDF (Guo et al., 2022) and MonoSDF (Yu et al., 2022) with the depth
supervision. For the fairness, we keep every components of each method by involving an additional
depth loss. Unlike some RGB-D surface reconstruction methods, we did not optimize the camera pose
while during training. In the course of these modifications, both ManhattanSDF and MonoSDF were
observed to have an architecture quite similar to NeuralRGBD Azinovic et al. (2022). Given these
circumstances, we are confident that comparing our approach with ManhattanSDF and MonoSDF on
ScanNet is indeed fair and effective.

Comparison with Go-surf (Wang et al., 2022) and NeuralRGBD (Azinovic et al., 2022). We
compare our method with Go-surf and Neural RGB-D in Table 1. To have a fair comparison, instead
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Method # frames opt. time |Prect Recallf F-score?
Neural-RGBD Azinovic¢ et al. (2022)| 400 240 10932 0918 0.925
Go-surf Wang et al. (2022) 400 35 0.946 0.956 0.950
Ours 400 15 0.947 0962 0.954
Neural-RGBD Azinovic et al. (2022)| 40 240 [0.837 0.855 0.846
Go-surf Wang et al. (2022) 40 35 0.842 0.861 0.851
Ours 40 15 0.858 0.866 0.862

Table 1: Quantitative comparisons for mesh reconstruction on ScanNet.

Method pes;)sﬁcrfl:qne (?npi;) Accl Comp] Prect Recallf F-scoref
Manhattan SDF (Guo et al., 2022) v 640 |0.072 0.068 0.621 0.586  0.602
MonoSDF (Yu et al., 2022) v 720 |0.039 0.044 0.775 0.722  0.747
Ours-prior X <5 /0.084 0.057 0.695 0.764 0.737

Table 2: Quantitative comparisons of neural scene prior on ScanNet. Both Manhanttan SDF and MonoSDF
require to optimize on a specific scene for several hours, while the proposed neural scene prior can achieve
comparable performance without any optimizatin.

of optimizing camera poses and neural scene representation jointly, we fix the original camera poses
as provided by ScanNet Dai et al. (2017). Follow the same setting in the main paper, we report the
performance of different models training with dense and sparse training views. As shown in Table 1,
our approach achieves better performance over all metrics. More importantly, although Go-surf
achieves similar performance within relative similar time, it cannot produce any reasonable results
without optimization as demonstrated by our appraoch.

B.2 MODEL EFFICIENCY

We take Go-surf Wang et al. (2022), which is so far one of the most efficient offline scene recon-
struction approach, as the reference. Compared to it achieving an average run-time of 35 mins per
scene, our Neural Scene Prior network takes only 5 mins (note that the Neural Scene Prior is a feed
forward network). The full pipeline leveraging the per-scene optimization stage takes an average
run-time of 15 mins, which is still obviously more efficient. More importantly, our model takes a
surface representation that facilitate scaling up to larger scenes, compared to architectures in Go-surf
that based on dense voxel. Comprehensive comparison of run-times can be found in the Table 1 of
the main paper.

B.3 COMPARISON WITH MV S-BASED METHODS

We show quantitative comparisons of our method with the state of the art approaches on surface
reconstruction in Table 3. Different from what the Table 1 reported in the main paper, we mainly
compare with the MVS-based methods here. For a fair comparison, we follow the evaluation script
used in Zou et al. (2022) for computing 3D metrics on the ScanNet testing set. The top part of Table 3
includes offline methods while the middle one contains online methods with the fusion strategy. The
bottom part of the table shows the methods that are finetined on individual scenes. Compared to most
MVS-based works that use a fusion strategy, our method achieves much better results in terms of
F-score and normal consistency. Moreover, our method outperforms MonoNeuralFusion Zou et al.
(2022), which also performs finetuning for individual scenes, by a large margin.

B.4 NOVEL VIEW SYNTHESIS

Novel View Synthesis. We show more qualitative results on novel view synthesis on ScanNet Dai
et al. (2017) in Fig. 1 following the same setting described in the main paper. Both NerfingMVS (Wei
et al., 2021) and Go-surf (Wang et al., 2022) fail on scenes with complex geometry and large camera
motion (bottom two rows). The generalized representation enables the volumetric rendering to focus
on more informative regions during optimization and improves its performance for rendering RGB
images of novel views.

Single-view Novel View Synthesis. We demonstrate NFP enables high-quality novel view synthesis
from single-view input (Fig. 2, mid), which has been rarely explored especially at on the scene-level,
and potentially enable interesting applications, e.g., on mobile devices.
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Ground-truth NerfingMVS

Figure 1: Qualitative comparison for novel view synthesis on ScanNet.

Source view Novel View Ground-truth

R

Figure 2: Qualitative results for single-view novel view synthesis. The left column shows the training source
view, and the appearance reconstruction of the novel view are reported in the second column. The ground-truth
images are listed at the last column as reference. Better viewed when zoomed in.
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Acc] Compl  Chamfer|  Precision?  Recallt  F-scoret NC7T

FastMVSNet Yu & Gao (2020) 0.052 0.103 0.077 0.652 0.538 0.588 0.701
PointMVSNet Chen et al. (2019) 0.048 0.115 0.082 0.677 0.536 0.595 0.695
Atlas Murez et al. (2020) 0.072 0.078 0.075 0.675 0.609 0.638 0.819
GPMVS Hou et al. (2019) 0.058 0.078 0.068 0.621 0.543 0.578 0.715
DeepVideoMVS Duzceker et al. (2021) 0.066 0.082 0.074 0.590 0.535 0.560 0.765

TransformerFusion Azinovi¢ et al. (2022) 0.055 0.083 0.069 0.728 0.600 0.655 -
NeuralRecon Sun et al. (2021) 0.038 0.123 0.080 0.769 0.506 0.608 0.816
MonoNeuralFusion Zou et al. (2022) 0.039 0.094 0.067 0.775 0.604 0.677 0.842
Ours 0.086 0.068 0.077 0.917 0.889 0.875 0.878

Table 3: Quantitative comparisons of mesh reconstruction on ScanNet.

B.5 QUALITATIVE RESULTS OF MESH RECONSTRUCTION

We show qualitative comparisons of our method with other baselines in Fig. 3. It demonstrates that
the reconstructed mesh results of our approach are consistently more coherent and detailed than
others. In addition, we show the qualitative results of textured mesh for different scenes that obtained
via neural scene prior in Fig. 4. More video demos of texture mesh reconstruction can be found
in the supplementary video.

B.6 MESH RECONSTRUCTION ON THE LARGE-SCALE SCENE

Our results demonstrate that the neural scene prior we propose can generalize well to large-scale
scenes, as shown in Fig 5. In contrast to the previous four scenes, we selected a larger room from
ScanNet Dai et al. (2017) and applied our pre-trained model directly. The left figure in Fig 5 displays
the mesh reconstruction obtained from the neural scene prior. Remarkably, our approach successfully
recovers the geometry structure of the entire room with very sparse views (60 frames), without
requiring any optimization process. Furthermore, by optimizing the prior on this scene for only 20
minutes on a single NVIDIA V100 GPU, we were able to achieve high-quality mesh reconstruction.

B.7 MESH RECONSTRUCTION ON THE SELF-CAPTURED SCENE

To further demonstrate the robustness of the neural scene prior, we evaluate the pretrained model
on a self-captured living room and the reconstructed mesh w./w.o texture are shown in Fig. 6.
Impressively, even without per-scene optimization, the proposed neural scene prior is capable of
feasibly reconstructing a textured mesh.

C LIMITATION

The proposed neural scene prior could extract the geometric and texture prior for arbitrary scenes,
but it does require the sparse RGB-D images as the input. To adapt this neural scene prior for RGB
images, one possibility would be to initially create a sparse point cloud using Structure from Motion
(SfM) on RGB images. However, as of our submission time, we haven’t yet experimented with this
particular setup. Exploring this pathway in future research could certainly yield intriguing findings.

D REPRODUCIBILITY STATEMENT

All experiments in this paper are reproducible. We are committed to releasing the source codes once
accepted.

E USE OF EXISTING ASSETS.

As mentioned in the NeurIPS 2023 checklist, we describe the existing assets we used in our paper
and the corresponding license of these assets.
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Manhattan SDF* MonoSDF* Ours GT

Figure 3: Qualitative comparisons of mesh reconstruction on ScanNet. Selected local regions are
highlighted by the orange bounding box. Better viewed when zoomed in.

Datasets Most of experiments are conducted on ScanNet dataset and 10 synthetic scenes collected
by Dai et al. (2017) and Azinovic et al. (2022) which are released on their official website and public
to everyone for non-commercial use.

Code. Our code is built upon the Pytorch Paszke et al. (2019). And we leverages the code from the
released codes by nerfstudio Tancik et al. (2023) under the Apache License.
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Figure 4: Qualitative results of Neural Scene Prior on ScanNet.

Scene Prior Per-scene Optimization

Figure 6: Mesh reconstruction results on the self-collected scene without any optimization.
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F PERSONAL DATA AND HUMAN SUBJECTS

The dataset does not include the facial or other identifiable information of humans.

G ETHICAL CONCERNS.

The datasets used are standard benchmark proposed in previous works. Despite applying supervised
learning, there may still be potential bias in our model trained with these datasets.
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