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A ADDITIONAL EXPERIMENTAL DETAILS

A.1 PRE-PROCESSING

Camera System Unification. In our experiments, due to the utilization of diverse camera systems
across different datasets, we initially unify the camera coordinate systems of all datasets into a
common reference frame, the RUB coordinate system.

Standardization of Camera Distribution. Since the camera positions obtained by COLMAP
(Schönberger & Frahm, 2016) lack scale information and the datasets used in training stage en-
compass both synthetic object datasets and real-world scene datasets, significant variations in cam-
era position scales exist across different datasets and scenes. To mitigate the scale discrepancies
among different scenes, we first employ a fixed intrinsic camera matrix. Although this approach
may introduce certain perspective issues, it does not impact the final results of camera positions and
orientations.

Subsequently, we computed the variance of camera positions across different scenes and scaled the
camera positions of scenes within the same dataset by a common factor β such that the variance
of camera positions in the dataset is standardized to 1. We present the β corresponding to different
datasets in the table 1. This standardization process compacts the relative camera positions within
the training set, facilitating the modeling of the overall camera distribution of the dataset.

Finally, as our cameras are randomly sampled, cases where two distant cameras capture images with
little to no overlap are prevalent. To address this, during the training of the camera tokenizer and
auto-regressive model, we filter out such instances by setting a distance threshold δ = 5 to restrict
excessive distances between two cameras.

Table 1: Dataset scaling factor.

Dataset Scaling Factor β

Objaverse 1.0
CO3Dv2 0.1
MVImgNet 0.5
RealEstate10K 10.0

A.2 DATASET SELECTION

Objaverse (Deitke et al., 2023). We incorporated a multi-view subset of Objaverse rendered by
Zero-1-to-3 (Liu et al., 2023) as part of our training set. However, this dataset significantly out-
weighed the remaining real-world image dataset. To enable the model to better comprehend the
spatial distribution of real-world scenes, we opted to utilize only a subset of Objaverse. Upon in-
vestigation, we observed substantial variance in the rendering quality of different objects within
Zero-1-to-3. Thus, we selected a subset of higher quality renderings from Tang et al. (2024) to
enhance the efficiency and efficacy of the training process.
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CO3Dv2 (Reizenstein et al., 2021). We selected a subset of categories from CO3Dv2 as our train-
ing categories (seen categories), while another subset was designated as unseen categories. The
categorization of classes was guided by Ray Diffusion (Zhang et al., 2024), as shown in the table 2.

MVImgNet (Yu et al., 2023) and RealEstate10K (Zhou et al., 2018). Both datasets consist of
real-world scene data, encompassing object-centric scenes and authentic indoor environments. We
integrated the complete data from these two datasets into our training process.

Table 2: Partition of CO3Dv2 (Reizenstein et al., 2021) .

Seen Categories Unseen Categories
apple backpack banana baseballbat baseballglove bench ball book
bicycle bottle bowl broccoli cake car couch frisbee
carrot cellphone chair cup donut hairdryer hotdog kite
handbag hydrant keyboard laptop microwave motorcycle remote sandwich
mouse orange parkingmeter pizza plant stopsign skateboard suitcase
teddybear toaster toilet toybus toyplane toytrain
toytruck tv umbrella vase wineglass

A.3 AUTO-REGRESSIVE MODEL TRAINING

Task Tokens. In this study, we focus solely on two tasks: novel view synthesis and camera pose
estimation. Therefore, our task tokens are limited to these two, placed at the end of the codebook
for easier future expansion with additional tasks.

Training Process. At the initial phase, we evenly allocate training resources among four conditional
distributions. Subsequently, we observe that reducing the occurrences of p(i|o) and p(c|o) during
training gradually enhances the numerical outcomes. However, this approach also entails a trade-off
by compromising a portion of training stability.

Attention Mechanisms. In our training stage, we tokenize the initial observed image o along with
the image i and camera c corresponding to random sampled viewpoints, resulting in three token
sequences of equal length. These sequences are concatenated to form a fixed-length token sequence
denoted as s. The concatenation order of the three tokens plays a crucial role in how the model
interprets and integrates the information. Two concatenation orders, were employed, as illustrated
in Figure 1, denoted as (to, ti, tc) and (to, tc, ti).

Novel View Synthesis

Camera Pose Estimation

observation 
 token o

image token i  
or  

camera token c 

the other  
modality token 

task token 

(a) Token sequence 

Novel View Synthesis

(b) Single task attention mask (c) Our attention mask

Figure 1: The comparison of Attention Mechanisms. (a) We standardize the token sequences s
of two tasks to the same length. (b) In the conventional alternating training scheme, target modality
tokens can attend to all preceding conditional tokens. (c) We propose to model the joint distribution
such that, in (a), the token sequences for the two tasks have visibility only to the currently observa-
tion tokens o.

The attention mask in figure 1 illustrates the distinction between our training approach and alternat-
ing training of two targets.
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Training Resources. Our camera tokenizer was trained for approximately 2 days on 4 NVIDIA
A100 GPUs, while our autoregressive model was trained for about 3 weeks on 16 NVIDIA A100
GPUs.

B VISUALIZATION RESULTS

B.1 NOVEL VIEW SYNTHESIS

We selected a number of representative images, including those from the training dataset, virtu-
ally synthesized images, real-world images, and stylistic images, as initial observations. Due to the
uncertainty regarding the scale of the scenes, we first employed GST sampling to determine reason-
able camera positions. These positions were then used as conditions in conjunction with the initial
observations to generate new perspective images, as illustrated in the figure 2.

B.2 RELATIVE CAMERA POSE ESTIMATION

We selected several highly challenging examples to test the spatial localization capabilities of GST.
As illustrated in the figure 3, the selected image pairs include real-world images, images of the same
subject taken under different shooting conditions, and images of the same object depicted under
various artistic styles. GST demonstrated outstanding performance across all these examples.

C LIMITATIONS AND FUTURE WORKS

The scarcity of multi-view datasets with precise camera annotations poses a significant barrier to
scaling up GST. In the current work, we only explored the most fundamental scenario involving
a single observation image and one novel perspective. Consequently, when sampling multiple im-
ages and camera positions simultaneously, issues of consistency may arise, although this problem
decreases as the number of training viewpoints increases. In the future, we will aim to collect more
multi-view data with precise poses and will explore extending GST to accommodate an arbitrary
number of views as conditions, thereby broadening its applicability. Additionally, we trained on
datasets without scale, and the potential for extension to scenes with real-world scale remains to be
investigated.
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Input View Sampled Cameras Generated Novel Views

1.4     17

Figure 2: Visualization results of novel view synthesis.
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Input Views Estimated Cameras

Figure 3: Visualization results of relative camera pose estimation.
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