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ABSTRACT

Despite extensive research efforts focused on Out-of-Distribution (OOD) detection
on images, OOD detection on nodes in graph learning remains underexplored.
The dependence among graph nodes hinders the trivial adaptation of existing ap-
proaches on images that assume inputs to be i.i.d. sampled, since many unique
features and challenges specific to graphs are not considered, such as the het-
erophily issue. Recently, GNNSafe, which considers node dependence, adapted
energy-based detection to the graph domain with state-of-the-art performance, how-
ever, it has two serious issues: 1) it derives node energy from classification logits
without specifically tailored training for modeling data distribution, making it less
effective at recognizing OOD data; 2) it highly relies on energy propagation, which
is based on homophily assumption and will cause significant performance degrada-
tion on heterophilic graphs, where the node tends to have dissimilar distribution
with its neighbors. To address the above issues, we suggest training Energy-based
Models (EBMs) by Maximum Likelihood Estimation (MLE) to enhance data dis-
tribution modeling and removing energy propagation to overcome the heterophily
issues. However, training EBMs via MLE requires performing Markov Chain
Monte Carlo (MCMC) sampling on both node feature and node neighbors, which
is challenging due to the node interdependence and discrete graph topology. To
tackle the sampling challenge, we introduce Decoupled Graph Energy-based Model
(DeGEM), which decomposes the learning process into two parts—a graph encoder
that leverages topology information for node representations and an energy head
that operates in latent space. Additionally, we propose a Multi-Hop Graph encoder
(MH) and Energy Readout (ERo) to enhance node representation learning, Condi-
tional Energy (CE) for improved EBM training, and Recurrent Update for the graph
encoder and energy head to promote each other. This approach avoids sampling
adjacency matrices and removes the need for energy propagation to extract graph
topology information. Extensive experiments validate that DeGEM, without OOD
exposure during training, surpasses previous state-of-the-art methods, achieving
an average AUROC improvement of 6.71% on homophilic graphs and 20.29% on
heterophilic graphs, and even outperform methods trained with OOD exposure.
Our code is available at: https://github.com/draym28/DeGEM.

1 INTRODUCTION

Detecting Out-of-Distribution (OOD) data is crucial for enhancing AI models’ robustness, reliability,
and safety in real-world scenarios, where input data may deviate from the training data distribution.
Many works (Hendrycks & Gimpel, 2016; Liang et al., 2018; Lee et al., 2018; Hendrycks et al., 2018;
Liu et al., 2020) have been proposed for OOD detection tasks on i.i.d. data, e.g., images. Such an
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urgent need also exists in the domains that apply graph-format data, such as medical-diagnosis (Kukar,
2003) and autonomous driving (Dai & Van Gool, 2018). However, there has been a notable lack
of work focusing on graph OOD node detection, i.e., detecting OOD nodes on which the model is
expected to have low confidence (Amodei et al., 2016; Liang et al., 2018). Due to the interdependence
among graph nodes, it is hard to apply the methods designed for i.i.d. inputs directly.

Figure 1: AUROC across graphs.

Recently, GNNSafe (Wu et al., 2023a) adapted energy-based
OOD detection for graph data mainly by using GNNs as the
backbone, and output energy for nodes as confidence, achiev-
ing current state-of-the-art performance. However, it is trained
by classification loss and constructs node energy by classifica-
tion logits without specifically designed training for modeling
data distribution, limiting the performance of identifying OOD
nodes. Moreover, the energy propagation technique, used in
GNNSafe, heavily relies on the homophily assumption, i.e.,
neighbors often belong to the same class. This will lead to
a significant performance degradation on heterophilic graphs,
where neighbors do not share a similar distribution. To mitigate
these issues, we suggest training Energy-based Models (EBMs)
to detect OOD instances via Maximum Likelihood Estimation (MLE) to obtain better energy, and
removing energy propagation to address the heterophily issue. However, training EBMs via MLE
requires performing Markov Chain Monte Carlo (MCMC) sampling in training, which is notorious
for graphs due to the complexity of graph topology.

In this paper, our proposed Decoupled Graph Energy-based Model (DeGEM) alleviates both the
heterophily issue and sampling challenges of learning EBMs for large graphs. The key insight in our
work is: GNNs can extract the topology information, forming latent space without interdependence.
Hence, we can conduct MCMC sampling on latent space to train the energy head. This approach is
computationally efficient, as it avoids sampling the adjacency matrix, and eliminates the need for
energy propagation techniques, which could degrade performance on heterophilic graphs. Specifically,
DeGEM decomposes the EBM into two components: graph encoder and energy head. First, the graph
encoder is trained by the Graph Contrastive Learning (GCL) algorithm and classification loss for
obtaining informative node representations, then the energy head, trained over latent space by MLE,
outputs the energy scores of nodes, which are used as nodes’ OOD scores. By doing so, DeGEM
transposes operations inherently dependent on the graph structure into the latent representation
domain, thereby decoupling subsequent steps from the graph structure’s dependency. The benefits are
twofold: 1) MCMC sampling can be efficiently conducted on low-dimensional latent space to sample
node representations only, dramatically decreasing the computation cost; 2) the Energy head does
not require a propagation operation to further extract topology information, avoiding performance
degradation on heterophilic graphs.

Moreover, to better unleash the effectiveness of DeGEM in node OOD detection, we propose several
principled training designs: a Multi-Hop Graph encoder (MH) and Energy Readout (ERo) to enhance
node representation learning, Conditional Energy (CE) to improve EBM training, and Recurrent
Update to effectively update the CE and ERo jointly, enabling the graph encoder and energy head
promote each other. Furthermore, we found that existing node OOD detection methods are evaluated
only on homophilic graphs, with heterophilic graphs being overlooked. We therefore conduct a
comprehensive evaluation of existing methods across homophilic and heterophilic graphs. The results
show that existing graph-based methods deliver even worse performance on heterophilic graphs,
compared to those graph-agnostic node OOD detection methods (Fig. 1). Thanks to the powerful
constructed DeGEM, our method can achieve state-of-the-art performance on OOD detection across
both homophilic and heterophilic graphs without OOD exposure.

Our key contributions can be summarized as follows:

• Our proposed DeGEM decomposes EBM into two components, a graph encoder for extracting
topology information and an energy head for estimating density, which avoids the notorious
challenges of sampling the adjacency matrix when training via MLE and prevents serious
performance degradation on heterophilic graphs.

• We are the first to evaluate node OOD detection performance on both homophilic and heterophilic
graphs and provide a comprehensive assessment of existing graph-based methods.
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Figure 2: A & B The detailed graph contrastive learning and EBM training process. The readout of
original node representations in A participates in the Conditional Energy (CE) in B, and the original
node energies in B are delivered to A for Energy Readout (ERo). We propose a Recurrent Update
mechanism to jointly train the CE and ERo effectively. C The comparison between traditional MCMC
sampling and our proposed MCMC sampling.

• We conduct extensive experiments to demonstrate the superiority of DeGEM. The results show
that DeGEM, trained without OOD exposure, outperforms state-of-the-art methods—whether
trained with or without OOD exposure—on both homophilic and heterophilic graphs.

2 PRELIMINARY

Notations. We denote an undirected graph without self-loops as G = {X,A}, where X = {xi}Ni=1 ∈
RN×d0 is the initial node feature matrix, d0 is the feature dimension, and A ∈ RN×N is the adjacency
matrix. N (xi) is the feature set of neighbors of node xi. D is a diagonal matrix standing for the
degree matrix such that Dii =

∑N
j=1 Aij . H(ℓ) = {h(ℓ)

i }Ni=1 ∈ RN×d is the representation matrix
in the ℓ-th layer, where d is the hidden dimension. We use Y = {yi}Ni=1 ∈ RN×C to denote the
ground-truth node label matrix, where C is the number of classes and yi is a one-hot vector.

Graph Out-of-Distribution Node Detection. OOD detection refers to identifying data samples that
do not conform to the distribution of the training data, while keeping the classification capability of
in-distribution (ID) data. Formally, an OOD detection score function S(·, ·) should be defined to map
the node and its neighbors to a scalar score, such that S(x,N (x)) yields a higher value for OOD
nodes than for ID nodes. It can be seen that in the context of graph data, OOD detection becomes
challenging due to the complex interplay between node features and graph topology. The OOD score
for each node depends on itself and also the relational context provided by other nodes within the
graph, which is distinct from OOD detection in the vision domain.

Heterophily Issue. Most traditional GNNs are designed based on the homophily assumption (Kipf &
Welling, 2016; Velickovic et al., 2018), where linked nodes tend to be similar. However, heterophilic
graphs—where linked nodes often belong to different categories—are prevalent in real-world appli-
cations, on which the traditional GCNs perform poorly (Pei et al., 2020). While extensive works
have been proposed to address the heterophily issue (Abu-El-Haija et al., 2019; Bo et al., 2021;
Zhu et al., 2020a; Chien et al., 2021; Li et al., 2022a; Chen et al., 2023; Luo et al., 2024a) in node
classification tasks, it has not received sufficient attention in the context of node OOD detection,
resulting in performance degradation when applying models designed for node OOD detection to
heterophily graphs.

Energy-based Model. A deep EBM models (Du & Mordatch, 2019) the data distribution pd(x)

using Boltzmann distribution pθ(x) =
exp (−Eθ(x))

Zθ
with the energy function Eθ(x), where Zθ is the

corresponding normalizing constant. EBM is trained by minimizing the negative log-likelihood (NLL)
Lθ of pθ(x), such that Lθ = −Ex∼pd(x)

[
log pθ(x)

]
. The EBM loss can be reformulated as follows:
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Lθ = Ex∼pd(x)

[
Eθ(x)

]
− Ex̃∼pθ(x̃)

[
Eθ(sg[x̃])

]
≈ 1

N

N∑
i=1

Eθ(xi)−
1

M

M∑
j=1

Eθ(sg[x̃j ]), (1)

where sg[·] denotes the stop-gradient operation. Sampling x̃ from pθ(x̃) can be achieved by a K-step
Markov chain Monte Carlo (MCMC) sampling:

x̃(k) = x̃(k−1) − λ∇x̃Eθ(x̃(k−1)) + ϵ(k),

where x̃(0) is given initial samples, λ is the step size, and ϵ(k) ∼ N (0, σ2) with a given noise σ2.
More details of derivation can be found in the Appendix D.

3 METHODOLOGY

3.1 REVISITING GRAPH EBM FOR OOD DETECTION

Different from image data, the graph data is neither continuous nor i.i.d. The inherent challenge
is how to define and train an EBM over (x,N (x)). Since N (x) is discrete, potentially huge, and
includes arbitrary neighbor nodes, it is hard to sample N (x) by MCMC for training EBM.

Figure 3: Visualization com-
parison on 2D data.

To avoid such challenge, GNNSafe (Wu et al., 2023b) proposes
to train the EBMs by maximizing the conditional likelihood
log pθ(y|x) = exp(−Eθ(x,y))∑

y′ exp(−Eθ(x,y′)) via node classification, where

Eθ(x, y) = −fθ(x,N (x))[y] and fθ(·, ·) is a classifier. Finally,
the energy score of each node can be regarded as OOD score, i.e.,
S(x,N (x)) = Eθ(x) = − log

∑
y exp(−Eθ(x, y)).

The EBMs trained in this way exhibit limitations in terms of capa-
bility and a heavy reliance on sufficient labeled data. In particular,
it has not been trained for modeling the marginal data distribution,
resulting in an inferior ability to capture the data distribution. For
instance, it may falter even when tasked with handling a simple 2D
dataset, i.e., 8 Gaussians (Fig. 3). This indicates that the energy
constructed by the classification logits does not effectively capture the underlying data distribution.
Consequently, such methods intuitively face challenges in addressing OOD detection for graph data,
particularly when labeled data are scarce.

3.2 OVERVIEW OF OUR METHOD: DEGEM
The framework of our proposed method is shown in Fig. 2. DeGEM first utilizes a graph en-
coder trained by GCL algorithm (Veličković et al., 2018) to extract node representations h =
gα(x,N (x)) ∈ Rd. In this way, the topology information of the original graph is well-encoded into
h, such that the follow-up steps can be free from A. Next, a K-step MCMC sampling is applied over
the low-dimensional latent space h̃ ∼ qω(h̃) to learn an energy function fω , which is defined as an
MLP. Please see Appendix E.1 for detailed training algorithm.

3.3 OUR DESIGN

The powerful capability of EBM comes from its minimal restrictions on modeling, but at the same
time, this is also a double-edged sword that leads to difficult learning. To address the difficulty
of defining EBMs on graphs, we propose to restrict EBM modeling formulation to some extent.
Specifically, we suggest decomposing EBM into two parts: the first part focuses on extracting graph
structural information, and the second part is dedicated to learning the energy.

For node x and its neighbor N (x), we can define the EBM as Eθ(x) = fω ◦ gα(x,N (x)), where
gα(x,N (x)) = h ∈ Rd is a graph encoder that focuses on extracting the graph structural information,
and fω(h) ∈ R is an energy function that outputs the energy score.

Suppose we have a fixed gα that learns graph structural information well, following Eq. (1), the EBM
loss for learning fω can be reformulated as:

Lebm = Epd(x,N (x))

[
fω(sg[gα(xi,N (x))])

]
− Epθ(x,N (x))

[
fω(sg[gα(xi,N (x))])

]
= Epα(h)

[
fω(sg[h])

]
− Eqθ(h)

[
fω(sg[h])

]
⇐⇒ KL

(
pα(h)∥qθ(h)

)
,
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where pα(h) =
∫
pd(x)δ(h− gα(x))dx and qθ(h) =

∫
pθ(x)δ(h− gα(x))dx are the aggregated

distribution over latent space of real data and EBM samples, respectively.

It can be observed that the optimal solution is achieved at pα(h) = qθ(h), and optimizing the
objective actually equals minimizing the KL divergence between two distributions over latent space.
Hence we can formulate a surrogate optimization objective for directly learning a latent EBM fω:

KL
(
pα(h)∥qω(h)

)
⇐⇒ Epα(h)

[
fω(h)

]
− Eqω(h)

[
fω(h)

]
, (2)

where qω(h) = exp(−fω(h))
Zω

. Sampling from qω(h) can be achieved by running K-step MCMC
sampling. By the surrogate objective, we can move the MCMC sampling from (x,N (x)) space to
the informative latent space, avoiding the awkward and challenging scenarios of needing to sample
nodes under high-dimension and their neighbors.

A left challenge is obtaining a flexible gα to extract graph topology information. We suggest
utilizing Graph Contrastive Learning (GCL) algorithm for training the graph encoder to extract node
representations. This can not only extract informative features but also deal with the limited labeled
data case. Among graph contrastive learning methods, we propose using DGI (Veličković et al., 2018)
as the learning algorithm for gα. Intuitively, DGI contrasts between nodes and the whole graph, while
the OOD detection task requires detecting the outliner nodes in a whole graph, the contrast between
the local features and the global can bring more benefits. The effect of different GCL algorithms will
be shown in Sec. 4.4.

DGI first shuffles the rows of node features matrix to get an augmented graph {X′,A′}, then
obtains node representations by hi = gα(xi,N (xi)) and h′

j = gα(x
′
j ,N (x′

j)), respectively. The
contrastive loss for learning gα is given by:

Lcl(h, s) = −
1

2N

 N∑
i=1

logDψ(hi, s) +

N∑
j=1

log(1−Dψ(h
′
j , s))

 , (3)

where s = 1
N

∑N
i=1 hi ∈ Rd is the summary readout of all the node representations, which can be

regarded as a global view of the whole graph. Following DGI (Veličković et al., 2018), we use a
bilinear scoring function for the discriminator Dψ(·, ·), which is also learned by minimizing Lcl.

Additionally, the node representations hi can be further enhanced by ID nodes classification with a
prediction head Iϕ (e.g., MLP) as ŷi = Iϕ(hi), and the cross-entropy loss Lcls is used for learning
the prediction head Iϕ(·) and also graph encoder gα(·, ·).

Multi-Hop (MH) Graph Feature Encoder. Simply using a one-layer GCN, as in DGI (Veličković
et al., 2018), cannot fully extract informative representations from original graph features. Addi-
tionally, similar nodes often lie in the distance in heterophilic graphs, so combining long-range
information could bring positive effects in addressing heterophily issue. Therefore, a L-layer GNN
is employed to learn graph node features in our proposed method. Furthermore, the weighted self-
loops technique is used as a simple enhanced method for graph filter (Bo et al., 2021; Chen et al.,
2023). Finally, all the intermediate features (the output of all the layers) are fused to obtain the final
representations.

First, a symmetric normalized adjacency with weighted self-loops is used for extracting node features:

X(ℓ) =
(
βI+D− 1

2AD− 1
2

)
X(ℓ−1), X(0) = X, (4)

where β is a hyper-parameter. Note that this operation for the positive samples can be done in
preprocessing since it does not involve any learnable parameters, which greatly reduce the running
time. Then the intermediate features are transformed and fused to obtain the final representations:

H =
[
H(0)∥H(1)∥ · · · ∥H(L)

]
Wenc + benc, H(ℓ) = X(ℓ)W(ℓ) + b(ℓ), (5)

where W and b are learnable weights and bias. ∥ is a concatenation operation. The combination
of Eqs. (4) and (5) is denoted by H = gα(X,A).

Conditional Energy (CE). The readout summary s of ID dataset can be used as supervised infor-
mation in energy function fω , to compare between node representations and global representations
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when computing energy. For instance, fω(hi, s) = W[hi∥ρs] + b, fω(hi, s) = h
⊤
i Ws, and etc.,

where ρ is a hyper-parameter, W and b are learned parameters. The benefit of the global information
introduced by the proposed CE is twofold: 1) It can guide MCMC sampling, reducing the sampling
difficulty; 2) It can act as global prior information when detecting OOD nodes.

Energy Readout (ERo). In DGI, the readout summary s is obtained by simply averaging all the
node representations s = 1

N

∑N
i=1 hi. However, the importance of each node may not be the same.

Considering that the density of a node can represent the importance of the node to some extent and
energy is un-normalized density, we propose to use energy for conducting the weighted readout:

sp = γ

N∑
i=1

p̄ihi + (1− γ)
1

N

N∑
i=1

hi =

N∑
i=1

(
γp̄i +

1− γ

N

)
hi,

where p̄i = softmax(−fω(hi)) =
exp(−fω(hi))∑N

j=1 exp(−fω(hj))
∈ R is the weight, and γ is a hyper-parameter

for a trade-off between weight average and direct average.

3.4 RECURRENT UPDATE FOR LEARNING DEGEM

To apply CE and ERo simultaneously, the energy readout sp and conditional energy fω(hi, s) should
be updated recurrently. The Recurrent Update can make energy function fω and graph encoder gα
promote each other, leading to better learning. Next, we introduce the Recurrent Update in details. The
weights of conditional energy are initialized as uniform distribution p̄(0) =

[
1
N , 1

N , · · · , 1
N

]
∈ RN .

In the e-th epoch, node representations of original graph {X,A} and shuffled graph {X′,A′} are
first obtained by hi = gα(xi,N (xi)) and h′

j = gα(x
′
j ,N (x′

j)), respectively, and h̃u ∼ qω(h̃) is
sampled by K-step MCMC sampling, then the final learning at each iteration is conducted as follows:

Step 1: Learning energy head fω given graph encoder gα: The energy head fω is learned by MLE
over informative latent space by a surrogate objective given the well-trained graph encoder gα and
according global representation s̄(e)p :

s̄(e)p =

N∑
i=1

(
γp̄

(e−1)
i +

1− γ

N

)
sg[hi],

Lω = Lebm =
1

N

N∑
i=1

fω(sg[hi], s̄
(e)
p )− 1

M

M∑
u=1

fω(sg[h̃u], s̄
(e)
p ).

Step 2: Learning graph encoder gα given energy head fω: The Graph Encoder gα is learned by
the mix of graph contrastive learning and node classification given well-trained energy head fω for
weighted readout as follows:

p̄
(e)
i = softmax

(
− fω(sg[hi], s̄

(e)
p )

)
,

s(e)p =

N∑
i=1

(
γp̄

(e)
i +

1− γ

N

)
hi,

Lα,ψ,ϕ = Lcl(h, s
(e)
p ) + ξLcls(Iϕ(h),y),

where ξ is a hyper-parameter, Lcls is the cross-entropy loss. See Algorithm 1 for the detailed learning
process.

Inference. For an unknown node xv, its representation is obtained by hv = gα(xv,N (xv)), then
the energy score fω(hv, s

(E)) serves as the OOD score, where s(E) is the summary readout of ID
dataset in the final training epoch, and its label prediction is computed by ŷv = Iϕ(hv).

3.5 UNDERSTANDING OF USING DGI FOR LEARNING GRAPH ENCODER

By comparing Eq. (3) and Eq. (2), it can be found that there are some similarities between these
two objectives. Actually, the learning of DGI can be understood as learning an EBM with global
condition by noise contrastive estimation (Aneja et al., 2021; Gutmann & Hyvärinen, 2010) as the
following form:
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Table 1: OOD detection performance on four homophilic datasets (Cora, Amazon, Twitch and
Arxiv) measured by AUC (↑) and Acc (↑) with three OOD types (Structure manipulation, Feature
interpolation, Label leave-out). Other results for AUPR, FPR95 are deferred to Appendix I.

Method
Cora Amazon-Photo Twitch Arxiv AvgStructure Feature Label Structure Feature Label ES FR RU Acc↑ 2018 2019 2020 Acc↑AUC↑ Acc↑ AUC↑ Acc↑ AUC↑ Acc↑ AUC↑ Acc↑ AUC↑ Acc↑ AUC↑ Acc↑ AUC↑ AUC↑ AUC↑ AUC↑ AUC↑ AUC↑ AUC↑ Acc↑

MSP 75.05 77.30 85.87 77.30 91.10 88.29 98.94 93.64 97.02 92.89 95.49 95.84 66.08 47.40 57.41 63.89 61.76 63.52 67.06 53.87 83.07 80.38
ODIN 30.57 74.60 21.19 77.50 20.29 87.66 3.50 91.42 5.31 92.91 10.16 96.08 43.97 51.84 49.53 62.05 44.01 42.63 38.96 49.29 22.67 78.94
Mahalanobis 41.03 71.90 63.92 74.20 67.45 88.92 62.40 93.42 72.47 92.88 60.80 95.84 46.73 49.69 38.38 62.95 57.08 56.76 56.92 51.59 58.74 78.96
Energy 79.48 79.10 89.34 79.30 93.26 90.19 99.94 93.04 98.51 92.76 97.13 95.68 58.42 72.91 69.90 65.59 64.61 65.90 70.37 53.92 86.46 81.20
ResidualFlow 61.23 82.20 60.72 82.20 64.69 82.20 82.58 93.55 75.46 93.55 78.31 93.55 62.60 55.59 67.68 66.37 62.38 63.82 62.21 54.84 68.47 81.06

GKDE 84.49 78.00 90.75 81.70 94.59 91.77 92.68 89.69 54.52 31.90 76.35 85.55 57.52 57.48 46.25 60.42 69.44 71.32 71.73 21.15 77.25 67.52
GPN 82.21 81.00 88.06 78.80 91.74 91.77 90.35 82.63 86.47 63.38 89.90 89.30 84.07 76.32 78.36 60.29 OOM OOM OOM OOM N/A N/A
OODGAT 53.75 34.90 57.03 14.50 95.57 89.56 71.41 25.42 70.93 25.21 99.18 96.16 77.35 77.72 73.24 60.29 72.35 73.97 72.30 54.69 74.61 50.09
GNNSafe 87.98 75.30 92.18 75.40 92.36 88.92 98.69 93.74 98.47 92.96 97.34 95.72 51.00 79.08 82.93 66.18 67.27 69.20 79.02 54.26 88.73 80.31

DeGEM (Ours) 99.93 84.20 99.84 84.30 97.58 93.04 100.00 94.49 99.91 93.97 99.28 95.80 94.83 97.36 94.76 64.51 81.30 86.00 86.01 58.20 97.08 83.56

Lcl = Epd(x,N (x))

[
r(x,N (x)|s)

]
− Eq(x,N (x))

[
r(x,N (x)|s)

]
,

where q(x,N (x)) =
∫
q(x,N (x)|x̃,N (x̃), s)pd(x̃,N (x̃))dx̃, q(x,N (x)|x̃,N (x̃), s) denotes

the density of augmented samples given data samples, and r(x,N (x)|s) = Dψ(gα(x,N (x)), s).
After perfectly training, the optimal r has following form r∗(x,N (x)|s) = pd(x,N (x)|s)

pd(x,N (x)|s)+q(x,N (x)|s) .
The inherent connection between DGI and EBM enables the effectiveness of constructing energy
function by the learned gα. However, the optimal DGI learns the density ratio between data distribu-
tion and randomly augmented data distribution, which is unsuitable for OOD detection, hence it still
needs to learn fω for output energy.

4 EXPERIMENTS

4.1 SETUP

Dataset and Evaluation Metrics. We evaluate DeGEM on seven benchmark datasets for node
classification tasks (Yang et al., 2016; Shchur et al., 2018; Rozemberczki et al., 2021; Wang et al.,
2020; Pei et al., 2020), including four homophily datasets (Cora, Amazon-Photo, Twitch, and
ogbn-Arxiv) and three heterophily datasets (Chameleon, Actor, and Cornell). We mainly
follow (Wu et al., 2021; 2023b) to adopt two established methods to simulate OOD scenarios. In the
multi-graph context, OOD samples stem from distinct graphs or subgraphs not linked to the training
nodes. Conversely, in the single-graph setting, OOD samples are part of the same graph as the training
data but remain unseen during training. For Twitch, we treat one subgraph as in-distribution (ID)
and others as OOD, using one for OOD exposure during training. In ogbn-Arxiv, we split the
nodes by publication year for ID, OOD, and OOD exposure sets. For Cora, Amazon, Chameleon,
Actor, and Cornell that have no clear domain information, we synthesize OOD data in three
ways: i) Structure manipulation (S); ii) Feature interpolation (F); iii) Label leave-out (L). See detailed
settings and splits in Appendix E.2. For the assessment of OOD detection performance, we employ
standard metrics: Area Under the Receiver Operating Characteristic curve (AUC), Area Under the
Precision-Recall curve (AUPR), and the False Positive Rate at 95% True Positive Rate (FPR95).
In-distribution (ID) performance is quantified using the accuracy (Acc) metric on the testing nodes.
In the following text, we use AUC to denote AUC with a little bit of abuse. Due to the space limits,
we mainly present the results of AUC and Acc, the full results with AUPR and FPR95 can be found
in Appendix I.

Baseline Comparisons. Our model is benchmarked against two categories of baseline methods.
The first category comprises models that handle i.i.d. inputs, which are predominantly used in
computer vision. These include MSP (Hendrycks & Gimpel, 2016), ODIN (Liang et al., 2018),
Mahalanobis (Lee et al., 2018), OE (Hendrycks et al., 2018), and Energy(-FT) (Liu et al.,
2020). We also include ResidualFlow (Zisselman & Tamar, 2020), a density-based method
capable of modeling data distribution. For a fair comparison, we substitute the CNN backbones
in these models with a GCN encoder. The second category consists of methods tailored for graph-
structured data, such as GKDE (Zhao et al., 2020b), GPN (Stadler et al., 2021b), OODGAT (Song &
Wang, 2022) and GNNSafe(++) (Wu et al., 2023a). It is noteworthy that OE, Energy-FT and
GNNSafe++ incorporate OOD samples during the training phase, i.e., trained with OOD exposure.

Implemetation Details. We implement our model by PyTorch and conduct experiments on 24GB
RTX-3090ti. Epoch number E = 200, MH layer number L = 5, hidden dimension d = 512, MCMC
steps K = 20. We use Optuna (Akiba et al., 2019) to search hyper-parameters for our proposed
model and baselines (see Appendix E.3 for detailed search space).
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Table 2: OOD detection performance three heterophilic datasets (Chameleon, Actor, Cornell)
measured by AUC (↑) and Acc (↑) on with three OOD types (Structure manipulation, Feature
interpolation, Label leave-out). Other results for AUPR, FPR95 are deferred to Appendix I.

Method
Chameleon Actor Cornell AvgStructure Feature Label Structure Feature Label Structure Feature Label

AUC↑ Acc↑ AUC↑ Acc↑ AUC↑ Acc↑ AUC↑ Acc↑ AUC↑ Acc↑ AUC↑ Acc↑ AUC↑ Acc↑ AUC↑ Acc↑ AUC↑ Acc↑ AUC↑ Acc↑

MSP 99.28 33.41 70.92 32.42 53.32 43.89 71.38 21.64 59.11 24.34 56.32 37.27 81.50 41.50 71.89 43.54 68.50 63.81 70.25 37.98
ODIN 60.09 28.80 53.20 33.24 68.07 37.01 42.32 22.30 52.57 23.90 65.10 35.79 67.99 38.78 85.76 38.10 42.16 63.81 59.69 35.75
Mahalanobis 99.59 29.90 58.93 33.41 42.42 44.54 79.96 24.23 65.94 23.72 52.58 31.98 69.84 36.73 70.08 43.54 81.73 62.86 69.01 36.77
Energy 91.94 37.14 67.75 37.58 59.92 41.69 64.26 25.21 51.71 24.33 55.00 36.71 83.09 38.10 86.70 38.10 69.70 62.86 70.01 37.97
ResidualFlow 48.24 34.50 53.82 34.50 56.16 34.50 49.72 27.63 50.07 27.63 50.68 27.63 67.80 43.54 66.33 43.54 73.09 43.54 57.32 35.22

GKDE 96.06 30.12 67.33 34.94 60.22 40.40 71.27 25.63 58.08 19.56 53.72 33.60 80.53 14.97 77.48 42.86 81.18 63.81 71.76 33.99
GPN 82.90 20.41 64.99 30.99 72.68 34.71 78.58 18.67 62.13 20.21 75.04 38.08 89.68 43.54 83.36 42.86 82.93 63.81 76.92 34.81
OODGAT 54.89 26.06 53.86 29.73 65.33 40.68 51.25 23.65 52.00 25.77 65.39 36.30 67.16 42.18 69.42 42.86 68.52 64.76 60.87 36.89
GNNSafe 34.36 35.33 57.46 38.07 52.18 43.43 31.76 26.30 50.66 26.20 51.60 37.92 74.66 25.17 76.22 41.50 68.17 63.81 55.23 37.52

DeGEM (Ours) 99.99 57.82 99.70 57.93 89.68 64.46 99.76 31.97 99.98 33.87 100.00 36.02 97.97 48.30 100.00 65.31 90.90 77.14 97.55 52.53

Table 3: OOD detection results on varying the available label ratio, measured by the average AUC↑ /
AUPR↑ / FPR95↓.

OOD
Expo

Cora Twitch Chameleon Cornell Avg
AUC↑ AUPR↑ FPR95↓ AUC↑ AUPR↑ FPR95↓ AUC↑ AUPR↑ FPR95↓ AUC↑ AUPR↑ FPR95↓ AUC↑ AUPR↑ FPR95↓

Label Rate = 10%
OE Yes 65.36 47.01 88.69 63.36 71.92 91.87 67.29 74.66 89.12 58.06 65.42 94.78 63.52 64.76 91.12
Energy-FT Yes 72.00 53.02 83.94 86.14 90.54 70.87 56.26 62.77 85.67 60.36 70.78 99.12 68.69 69.28 84.90
GNNSafe++ Yes 78.74 64.55 79.40 77.75 85.01 84.30 33.21 47.70 93.77 69.52 79.51 94.34 64.80 69.19 87.95
DeGEM No 97.87 94.79 10.00 94.67 97.47 51.41 96.64 98.27 14.14 97.57 98.95 11.25 96.69 97.37 21.70
Label Rate = 50%
OE Yes 78.63 60.48 70.92 58.15 68.83 93.38 76.32 79.70 67.46 73.94 79.59 90.20 71.76 72.15 80.49
Energy-FT Yes 77.58 56.54 65.56 87.30 90.72 53.09 68.60 74.14 88.59 67.91 75.24 94.37 75.35 74.16 75.40
GNNSafe++ Yes 86.47 72.80 57.39 93.42 96.14 41.11 44.67 59.29 92.69 73.12 82.01 85.28 74.42 77.56 69.12
DeGEM No 97.53 91.95 8.87 94.21 97.21 49.51 97.03 98.29 13.10 96.32 96.20 16.37 96.27 95.91 21.96
Label Rate = 100%
OE Yes 83.35 68.91 67.19 62.38 73.53 88.43 81.07 82.83 52.23 71.71 72.47 74.05 74.63 74.44 70.48
Energy-FT Yes 89.05 74.77 44.74 87.38 90.43 46.97 79.89 82.72 54.00 78.81 85.93 84.65 83.78 83.46 57.59
GNNSafe++ Yes 92.69 84.62 40.63 96.58 98.03 24.76 48.23 63.37 93.67 79.10 85.10 82.65 79.15 82.78 60.43
DeGEM No 99.16 97.78 4.25 95.65 97.93 29.11 96.46 98.04 13.38 96.29 97.61 23.75 96.89 97.84 17.62

4.2 EVALUATION RESULTS

We report the results of the proposed DeGEM and competing baselines on different datasets in
Tabs. 1 and 2. Our finding indicates that the DeGEM consistently outperforms competing baselines
without OOD exposure in terms of AUC and Acc across both homophilic and heterophilic datasets.
Specifically, DeGEM increases the average AUC by 4.26% (resp. 20.63%) on homophilic (resp.
heterophilic) graphs and improves the average Acc for homophilic (resp. heterophilic) graphs by
2.37% (resp. 13.95%). On the contrary, although the baselines tailored for graph inputs surpass
those designed for i.i.d. data on homophilic graphs, they show a lower performance on heterophilic
graphs. Additionally, after adding the Energy Propagation technique to Energy (i.e., GNNSafe),
the average AUC decreases significantly from 70.01% to 55.23% and 56.42%, indicating that the
Energy Propagation technique will cause severe performance decrease on heterophilic graphs.

The high performance of DeGEM is primarily attributed to the enhancement brought by the robust
representation learned by the GCL algorithm and the classification loss, as well as the powerful data
modeling capabilities of EBM trained via the MLE approach. Overall, these findings underscore the
superiority of DeGEM over baseline approaches, on both homophilic and heterophilic graphs.

4.3 EVALUATION ON LIMITED LABELS

Figure 4: Performance across labeled ratios.

Given the time-consuming and labor-intensive na-
ture of obtaining node labels on graphs in the real
world, an interesting evaluation task is to evaluate
the OOD detection performance of a model with
limited category labels. We follow the data splits
used in the experiments of Sec. 4.2 as a foundation
and progressively reduce the proportion of available
labels in the training set: from 100% to 50%, and
then to 10%. To highlight the performance of our
method, we select three baselines OE, Energy-FT
and GNNSafe++ which incorporate OOD samples during the training phase, i.e., trained with OOD
exposure. Note that we do not reduce the number of nodes used for OOD exposure training, but
only decrease the number of category labels available within the distribution. We present the average
results of each dataset in Tab. 3, and the average performance of each method in Fig. 4 for more
intuitive comparison. We report the full results in Appendix I. The results show that our proposed
DeGEM maintains high performance under different label proportions, with no significant decline; in
contrast, all baselines exhibit a marked performance drop as the labels ratio decrease. In particular,
when the available label rate is 100%, our method still outperforms baselines, highlighting the
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Table 4: Ablation study measured by the average AUC↑. ‘Eprop’ stands for energy propagation.
‘MLE-Energy’ indicates whether the energy head is trained via maximum likelihood estimation,
otherwise, the node energy is obtained by classification logits (Classify-Energy). ‘GCL’ indicates
whether a graph contrastive learning algorithm is employed when training the graph encoder.

Components Homophily Heterophily
AvgEprop Classify- MLE- GCL MH CE ERo Cora Twitch Avg Cham. Cornell AvgEnergy Energy

Energy ✓ 87.36 67.07 77.22 73.20 79.83 76.51 76.87
GNNSafe ✓ ✓ 90.84 71.00 80.92 48.00 73.02 60.51 70.72

✓ ✓ 83.13 47.61 65.37 82.33 82.54 82.44 73.90
✓ 69.11 74.43 71.77 77.51 67.91 72.71 72.24
✓ ✓ 88.87 84.77 86.82 90.63 87.00 88.82 87.82
✓ ✓ ✓ 88.82 69.81 79.32 92.57 84.95 88.76 84.04
✓ ✓ ✓ 92.34 83.12 87.73 93.57 86.31 89.94 88.84
✓ ✓ ✓ ✓ 92.80 84.77 88.78 94.46 85.35 89.91 89.35
✓ ✓ ✓ 97.47 93.61 95.54 95.23 95.90 95.57 95.55
✓ ✓ ✓ ✓ 98.03 94.96 96.50 96.24 95.49 95.87 96.18
✓ ✓ ✓ ✓ 96.24 92.41 94.32 95.80 93.99 94.89 94.61

DeGEM ✓ ✓ ✓ ✓ ✓ 99.12 95.65 97.38 96.46 96.29 96.37 96.88

superiority of our method. These results demonstrate that our method, benefiting from its effective
design, can consistently and effectively extract graph topology information and learn the data density
well, thereby significantly outperforming previous state-of-the-art graph OOD detection methods in
the more practical scenario of limited labels.

4.4 ABLATION STUDY

The Impact of Proposed Techniques. In what follows, we evaluate the impact of training the
energy head via MLE (MLE-Energy) versus deriving node energy directly from classification logits
(Classify-Energy). Additionally, we assess the use of DGI algorithm during graph encoder
training (GCL), and explore the effectiveness of the Energy-Propagation technique (Eprop), the
Multi-Hop Graph Feature Encoder (MH), Conditional Energy (CE), and Energy Readout (ERo). We
present the results in Tab. 4. The baseline (Row 1) utilizes a GCN for node classification and obtains
the node energy by the classification logits. Since Eprop is based on homophily assumption, the
performance increases slightly (Avg +3.7%) on homophilic graphs but shows a dramatic degradation
(Avg -16%) on heterophilic graphs (Row 2). Compared to the baseline (Avg 76.87%), solely utilizing
the MLE for training the energy head (Avg 72.24%) or employing GCL algorithm for training the
graph encoder (Avg 73.90%) does not work. It is the combination of MLE and GCL algorithm
that brings positive effects for OOD detection tasks (Avg 87.82%). More detailed discussion can
be found on Observation 1–4 below. With MH, DeGEM achieves a significant performance boost
(Avg +11%, Row 9), demonstrating that combining local and global information simultaneously
enhances performance on both homophilic and heterophilic graphs. CE alone can improve the average
performance (Avg +0.63%, Row 10); however, using ERo on its own does not yield similar benefits
(Avg -0.94%, Row 11). This is because CE takes the global view into account, producing better node
energy, which enables ERo to generate a more optimized readout summary. Therefore combining
them together via Recurrent Update can bring more positive effects (Avg +1.33%, Row 12).

Observation 1: combining DGI with classification does not work. As shown in Tab. 4, although
the Classifier-Energy variant shows 5.93% improvement of AUC on heterophilic graphs after
adding DGI loss (GCL) into the classification task (Row 3), its performance on homophilic graphs
dramatically decrease from 77.22% to 65.37%. This indicates that the integration of DGI algorithm
and Classifier-Energy has an overall negative impact on its performance.

Observation 2: naively training Energy Head via MLE does not work. As shown in Tab. 4, when
decoupling the model into two parts (a graph encoder and an energy head), if we train the energy
head via MLE but only employ classification loss for training the graph encoder (Row 4), the model
will show a worse performance compared to the Classifier-Energy variant (Row 1).

Observation 3: combining DGI and MLE works well As shown in Tab. 4, after adding DGI loss
(GCL), the performance of MLE-Energy variant dramatically improves from 72.74% to 87.82% on
average in terms of AUC, outperforming previous state-of-the-art method GNNSafe.

Observation 4: combining other GCL and MLE not works well We try to replace the DGI
algorithm with other widely used GCL algorithms: GRACE (Zhu et al., 2020b) and SUGRL (Mo
et al., 2022) (without MH, CE, and ERo). From Tab. 5, DGI consistently outperforms its counterparties.
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Table 5: The performance of different GCL algorithms, measured by the average AUC↑.
Cora Twitch Cham. Cornell Avg

GCN 68.25 53.94 74.65 75.75 68.15
GRACE 83.01 65.78 87.99 80.76 79.38
SUGRL 82.41 72.15 82.71 63.67 75.24
DGI 88.87 84.77 90.63 87.00 87.82

From the above observation, we can conclude that the key reason behind the success of proposed
DeGEM is due to the symbiosis between DGI and EBM. We extensively evaluate the potential
variants, however all variants show significantly worse performance. This also aligns with our
theoretical analysis in Sec. 3.5, which said that the learning of DGI can be viewed as learning EBM
via variational learning. The property enables us to use DGI for learning the graph encoder as part of
the final constructed EBMs.

5 RELATED WORK

EBMs on Graph. Some previous works (Hataya et al., 2021; Liu et al., 2021) apply EBMs on
graphs that are trained with MLE have been proposed for graph generation. However, their works are
performed on small graphs, where the over-computational issue of the sampling adjacency matrix is
neglected, making them non-scalable. In contrast, our proposed CLEBM focuses on OOD detection,
decomposing the EBM networks into informative representation extraction and output energy score
based on given latent. The design enables us to move MCMC to latent space, which does not suffer
from sampling adjacency matrix and therefore has excellent scalability.

Graph OOD Detection. OOD detection for non-graph data by neural networks has garnered
considerable attention in the literature (Hendrycks & Gimpel, 2016; Hendrycks et al., 2019; Bevandić
et al., 2018; Liu et al., 2020; Mohseni et al., 2020; Ren et al., 2019). However, these methods typically
assume that instances (such as images) are i.i.d., overlooking scenarios with inter-dependent data
that are common in many real-world applications. In contrast, Graph OOD Detection that inherently
includes inter-dependent structures has not been explored well. Recently, some works (Li et al.,
2022b; Bazhenov et al., 2022) focus on Graph OOD Detection on graph-level, i.e., detecting OOD
graphs. These works treat each graph as an independent instance, while OOD detection on node-level
presents unique challenges given the non-negligible inter-dependence between instances. To this end,
Bayesian GNN models have been proposed that can detect OOD nodes within a graph by incorporating
the inherent uncertainty in such inter-dependent data (Zhao et al., 2020a; Stadler et al., 2021a).
OODGAT (Song & Wang, 2022) emphasizes the importance of node connection patterns for outlier
detection, explicitly modeling node interactions and separating inliers from outliers during feature
propagation. Energy-based Detection on graphs has been explored in GNNSafe (Wu et al., 2023b),
by directly combing GNNs and Energy-based Detection on Images (Liu et al., 2020). However,
their energy score is directly construed by classification, which is less effective. Moreover, they
use energy propagation to enhance performance, which highly relies on the homophily assumption.
Additionally, some methods train the model with OOD Exposure, i.e., training with both a known ID
dataset and a known OOD dataset (Hendrycks et al., 2018; Liu et al., 2020; Wu et al., 2023b). In
contrast, we decompose EBM learning into representation learning and energy learning, delivering
better detection capability without OOD exposure (see Sec. 4.2). Additionally, benefits from powerful
energy construction and effective graph encoder, we do not require energy propagation, thus keeping
high performance across homophilic and heterophilic graphs.

6 CONCLUSION

We introduce a novel approach, DeGEM, for graph OOD node detection, overcoming the heterophily
issue and the computational challenges associated with MCMC sampling in large graphs. By
decoupling the learning process into a GNN-based graph encoder and an energy head, we managed
to leverage the GCL algorithm and classification loss to learn robust node representations and
perform efficient MCMC sampling in the latent space, circumventing the need to directly sample the
adjacency matrix. The design of DeGEM, featuring a Multi-Hop Graph encoder and a Recurrent
Update mechanism, facilitates the incorporation of topological information into node representations,
which is crucial for OOD detection in graph-structured data. Extensive experimental evaluations
have validated the effectiveness of DeGEM, which not only exhibits superior performance on both
homophilic and heterophilic graphs compared to baselines with/without OOD exposure, but also
outperforms methods trained with OOD exposure in a label-insufficient scenario.
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Matjaž Kukar. Transductive reliability estimation for medical diagnosis. Artificial Intelligence in
Medicine, 29(1-2):81–106, 2003.

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting
out-of-distribution samples and adversarial attacks. Advances in neural information processing
systems, 31, 2018.

Xiang Li, Renyu Zhu, Yao Cheng, Caihua Shan, Siqiang Luo, Dongsheng Li, and Weining Qian.
Finding global homophily in graph neural networks when meeting heterophily. In International
Conference on Machine Learning, pp. 13242–13256. PMLR, 2022a.

Zenan Li, Qitian Wu, Fan Nie, and Junchi Yan. Graphde: A generative framework for debiased
learning and out-of-distribution detection on graphs. In Advances in Neural Information Processing
Systems, 2022b.

Shiyu Liang, Yixuan Li, and R Srikant. Enhancing the reliability of out-of-distribution image
detection in neural networks. In International Conference on Learning Representations, 2018.

Meng Liu, Keqiang Yan, Bora Oztekin, and Shuiwang Ji. Graphebm: Molecular graph generation
with energy-based models. In Energy Based Models Workshop-ICLR 2021, 2021.

Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution detection.
Advances in neural information processing systems, 33:21464–21475, 2020.

Yihong Luo, Yuhan Chen, Siya Qiu, Yiwei Wang, Chen Zhang, Yan Zhou, Xiaochun Cao, and Jing
Tang. Fast graph sharpness-aware minimization for enhancing and accelerating few-shot node
classification, 2024a. URL https://arxiv.org/abs/2410.16845.

12

https://api.semanticscholar.org/CorpusID:260852064
https://api.semanticscholar.org/CorpusID:260852064
https://proceedings.mlr.press/v9/gutmann10a.html
https://proceedings.mlr.press/v9/gutmann10a.html
http://arxiv.org/abs/1609.02907
https://arxiv.org/abs/2410.16845


Published as a conference paper at ICLR 2025

Yihong Luo, Siya Qiu, Xingjian Tao, Yujun Cai, and Jing Tang. Energy-calibrated vae with test time
free lunch, 2024b. URL https://arxiv.org/abs/2311.04071.

Yujie Mo, Liang Peng, Jie Xu, Xiaoshuang Shi, and Xiaofeng Zhu. Simple unsupervised graph repre-
sentation learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36,
pp. 7797–7805, 2022.

Sina Mohseni, Mandar Pitale, JBS Yadawa, and Zhangyang Wang. Self-supervised learning for
generalizable out-of-distribution detection. In AAAI Conference on Artificial Intelligence, pp.
5216–5223, 2020.

Hongbin Pei, Bingzhe Wei, Kevin Chen Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. In 8th International Conference on Learning Representations, ICLR
2020, 2020.

Zhen Peng, Wenbing Huang, Minnan Luo, Qinghua Zheng, Yu Rong, Tingyang Xu, and Junzhou
Huang. Graph Representation Learning via Graphical Mutual Information Maximization. In
Proceedings of The Web Conference, 2020. doi: https://doi.org/10.1145/3366423.3380112.

Jie Ren, Peter J Liu, Emily Fertig, Jasper Snoek, Ryan Poplin, Mark Depristo, Joshua Dillon, and
Balaji Lakshminarayanan. Likelihood ratios for out-of-distribution detection. Advances in neural
information processing systems, 32, 2019.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. Journal
of Complex Networks, 9(2):cnab014, 2021.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
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A POTENTIAL BROADER IMPACT

This paper presents work whose goal is to advance the field of Machine Learning. There are many
potential societal consequences of our work, none of which we feel must be specifically highlighted
here.

B LIMITATIONS

DeGEM has achieved excellent performance, but the results are nearly maxed out on some datasets.
We need better and more challenging benchmarks to evaluate performance. Additionally, DeGEM
shares the same drawback as EBMs trained with MLE: training requires MCMC sampling. However,
it still shows superior performance. Besides, the cost of MCMC sampling can be reduced by
cooperative learning (Xie et al., 2018; 2021; Luo et al., 2024b).

C ADDITIONAL RELATED WORKS

Graph Contrastive Learning. Contrastive learning (CL) stands as a widely applied self-supervised
learning method, aiming to derive informative sample representation solely from feature information.
The main idea of CL is to align the representations of similar samples in close proximity while
driving apart the representations of dissimilar samples. Witnessing the remarkable advancement
of Graph Neural Networks (GNNs), a substantial amount of recent research has focused on Graph
Contrastive Learning (GCL) (Veličković et al., 2018; Peng et al., 2020; Hassani & Khasahmadi,
2020; Zhu et al., 2020b; Mo et al., 2022). DGI (Veličković et al., 2018) learns by maximizing
mutual information between node representations and corresponding high-level summaries of graphs.
GRACE (Zhu et al., 2020b) maximizes the agreement of corresponding node representations in two
augmented views for a graph. SUGRL (Mo et al., 2022) explores the complementary information
from structural and neighbor information to maximize inter-class variation and minimize intra-
class variation through triplet losses and an upper bound loss, while removing the need for data
augmentation and discriminators. Our work builds upon the foundation of GCL, where we employ
DGI as part of learning the graph encoder that extract graph topology information. We also establish
the relationship between DGI and EBM: DGI can be understood as an EBM trained by noise
contrastive estimation. To further enhance the capabilities of the proposed method, we design
recurrent update to let the energy head and DGI promote each other in training (see Sec. 3.3), and
experiments show that this to be greatly beneficial for OOD detection (see Sec. 4.4).

Node Anomaly Detection (NAD). NAD is a binary classification task, that directly categorizes
nodes into two different categories: normal and anomalous. Some works (Dong et al., 2025a; 2024;
2025b; Zhao & Akoglu, 2021; Gong et al., 2023) have been proposed to handle this problem. In
contrast, node OOD detection requires balancing the ability to classify in-distribution nodes and
detect out-of-distribution nodes.

D DERIVIATIONS

D.1 TRAINING EBMS

Given a Boltzmann distribution pθ(x) =
exp(−Eθ(x))

Zθ
, its negative log-likelihood (NLL) Lθ is:

Lθ = −Ex∼pd(x)

[
log pθ(x)

]
.
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To minimize Lθ, we first need to calculate the gradient of log pθ(x) w.r.t. θ:

∇θ log pθ(x) = ∇θ log
exp (−Eθ(x))

Zθ
= −∇θEθ(x)−∇θ logZθ
= −∇θEθ(x)−∇θ log

∑
x

exp (−Eθ(x))

= −∇θEθ(x)−
1∑

x′ exp (−Eθ(x′))

∑
x

∇θ exp (−Eθ(x))

= −∇θEθ(x) +
∑
x

exp (−Eθ(x))∑
x′ exp (−Eθ(x′))

∇θEθ(x)

= −∇θEθ(x) +
∑
x

pθ(x)∇θEθ(x)

= −∇θEθ(x) + Ex̃∼pθ(x̃)

[
∇θEθ(x̃)

]
.

So, we have

∇θLθ = −∇θEx∼pd(x)

[
log pθ(x)

]
= Ex∼pd(x)

[
∇θEθ(x)

]
− Ex̃∼pθ(x̃)

[
∇θEθ(x̃)

]
,

Therefore, the EBM loss can be reformulated as:

Lθ = Ex∼pd(x)

[
Eθ(x)

]
− Ex̃∼pθ(x̃)

[
Eθ(x̃)

]
≈ 1

N

N∑
i=1

Eθ(xi)−
1

M

M∑
j=1

Eθ(x̃j).

Additionally, minimizing Lθ is equivalent to minimizing the KL divergence KL
(
pd(x)∥pθ(x)

)
:

∇θKL
(
pd(x)∥pθ(x)

)
= ∇θ

∑
x

pd(x) log
pd(x)

pθ(x)

= ∇θ
∑
x

pd(x) log pd(x)−∇θ
∑
x

pd(x) log pθ(x)

= ∇θEx∼pd(x)

[
log pd(x)

]
−∇θEx∼pd(x)

[
log pθ(x)

]
= 0+∇θLθ = ∇θLθ.

D.2 REGULARIZATION FOR EBM LOSS

Additionally, we follow (Du & Mordatch, 2019) to adopt the L2 regularization for energy magnitudes
of both true data and sampled data when computing Lebm during training, as otherwise while the
difference between true data and sampled data was preserved, the actual values would fluctuate to
numerically unstable values. For an energy function Eθ(·), true data xi ∼ pd(x), and sampled data
x̃j ∼ pθ(x̃):

Lebm =
1

N

N∑
i=1

Eθ(xi)−
1

M

M∑
j=1

Eθ(x̃j) + c

 1

N

N∑
i=1

Eθ(xi)
2 +

1

M

M∑
j=1

Eθ(x̃j)
2

 ,

where c is a coefficient, we set c = 1 here.

D.3 SAMPLING FROM EBM

Given a Boltzmann distribution pθ(x) =
exp(−Eθ(x))

Zθ
, the gradient of log pθ(x) w.r.t. x is:

∇x log pθ(x) = ∇x log
exp (−Eθ(x))

Zθ
= −∇xEθ(x)−∇x logZθ
= −∇xEθ(x),
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Algorithm 1 Training algorithm of DeGEM.
Require: graph G = (X,A), learning rate η, classification loss weight ξ, MCMC step size λ,

MCMC noise variance σ2, MCMC steps K, MCMC samples M , epoch number E.
Ensure: optimized models {gα̂, Dψ̂, fω̂, Iϕ̂}.

1: Initialize weights {α0,ψ0,ω0,ϕ0};
2: Initialize MCMC replay buffer B ← ∅;
3: for e← 1 to E do
4: Get node embeddings {hi}Ni=1 ← {gαe−1

(xi,N (xi))}Ni=1;
5:
6: # MCMC sampling
7: for sample node j = 1 to M do
8: h̃

(0)
j ∼ B with 95% probability and U otherwise;

9: for sample step k = 1 to K do
10: h̃

(k)
j = h̃

(k−1)
j − λ∇h̃fωe−1

(h̃
(k−1)
j ) + ϵ(k), ϵ(k) ∼ N (0, σ2);

11: end for
12: h̃j ← sg[h̃(K)

j ];
13: B ← B ∪ {h̃j};
14: end for
15: Sampled embeddings {h̃j}Mj=1;
16:
17: # compute losses
18: Compute Lebm, Lcl, and Lcls via recurrent update (Sec. 3.4);
19:
20: # update models
21: αe ← αe−1 − η∇α(Lcl + ξLcls);
22: ψe ← ψe−1 − η∇ψLcl;
23: ωe ← ωe−1 − η∇ωLebm;
24: ϕe ← ϕe−1 − η∇ϕ(ξLcls);
25: end for
26: α̂← αE , ψ̂ ← ψE , ω̂ ← ωE , ϕ̂← ϕE .

so we can first initialize a sample using uniform distribution x(0) ∼ U , and utilize multi steps
stochastic gradient to make the sample follow distribution pθ(x):

x(k) = x(k−1) + λ∇x log pθ(x(k−1)) + ϵ(k)

= x(k−1) − λ∇xEθ(x(k−1)) + ϵ(k),

where ϵ(k) ∼ N (0, σ2). After K steps, x̃(K) is the output of K-step MCMC sampling.

E IMPLEMENTATION DETAILS

E.1 TRAINING ALGORITHM

The detailed training algorithm is shown in Algorithm 1. We first obtain node embeddings (Line
4), and then sample nodes by a K-step MCMC sampling (Line 7-15). Then the recurrent update is
conducted for computing losses Lebm, Lcl, and Lcls (Line 18). Finally, update the parameters (Line
21-24).

Furthermore, we follow (Du & Mordatch, 2019) to use sample relay buffer. The initialization of
MCMC chain plays a crucial role in mixing time, but langevin dynamics does not place restrictions
on sample initialization given sufficient sampling steps. Thus we use a sample replay buffer B in
which we preserve previously generated samples and use either these samples or uniform noise for
initialization.
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Table 6: Search space of hyper-parameters.
Search Space

learning rate η {0.05, 0.01, 0.001, 0.0005, 0.0001}
weight decay {0.0, 0.01, 0.001, 0.0005, 0.0001}
dropout {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}
β {0, 0.1, 0.3, 0.5, 0.7, 0.9, 1}
ρ {0, 0.1, 0.3, 0.5, 0.7, 0.9, 1}
γ {0, 0.1, 0.3, 0.5, 0.7, 0.9, 1}
λ {1, 5, 10}
σ2 {0.01, 0.005}
ξ {0.01, 0.05, 0.1, 0.3, 0.5, 1.0}

E.2 DATASET AND SPLITS

For Twitch that has several subgraphs, we use DE as ID dataset and the other five subgraphs as
OOD datasets. The subgraph ENGB is used as OOD exposure dataset for training the OOD Expo
baselines. These subgraphs are different in size, edge densities, and degree distribution, thus can be
regarded as samples from different distribution (Wu et al., 2021).

For Arxiv that is in a single graph, we divide the nodes into three parts: the papers published before
2015 are used as ID data, those after 2017 are used as OOD data, and those between are used as OOD
exposure data for training the OOD Expo baselines.

For Cora, Amazon, Chameleon, Actor, and Cornell that have no clear domain information,
we synthesize OOD data in three ways (Wu et al., 2023a). Structure manipulation (S): use the original
graph as ID data and adopt a stochastic block model to randomly generate a OOD graph. Feature
interpolation (F): use random interpolation to create node features for OOD data and the original
graph as ID data. Label leave-out (L): use nodes with partial classes as ID and leave out others for
OOD.

We split the ID dataset as 10%/10%/80% (train/valid/test), and use all the nodes in OOD dataset
for evaluation. Additionally, an extra OOD dataset is also used in training for OOD exposure (OE,
Energy-FT, and GNNSafe++).

E.3 SEARCH SPACE FOR HYPER-PARAMETERS

The detailed search space of hyper-parameters is shown in Tab. 6. We use Optuna (Akiba et al., 2019)
to conduct random search for hyper-parameters.

F COMPLEXITY ANALYSIS

Compared to other baselines, our additional computational complexity comes from the introduced
GCL and MCMC sampling.

Suppose that the GCN is used as the graph encoder in other baselines, with m the edge numbers, n
the node numbers, d0 the initial node dimension, d1 the latent dimension of node representation, and
L the number of layers (propagation numbers). So other baselines have a complexity of O(Lmd0d1).

In terms of our methods, the GCL processes both positive nodes and negative nodes, but the prop-
agation for positive nodes is conducted in pre-process, with only the transformation remaining in
training iterations. So the complexity for GCL is O(Lnd0d1 + Lmd0d1) ≈ O(Lmd0d1), since
normally m >> n, where n is the number of nodes. The MCMC sampling has a complexity of
O((nd1d2 + nd2)K) = O(nd1d2K), where d2 is the hidden dimension of Energy Function (2-layer
MLP), and K is the number of steps of MCMC sampling.

This actually suggests that our method has scalability comparable to GNNs, since the seemingly
computationally intensive MCMC steps do not suffer from edges, with complexity only scaling
linearly with the number of nodes.
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Table 7: The average time consumption (s) of one-run DeGEM training, including the total time, the
time consumption of GCL algorithm and MCMC sampling.

Cora Amazon Twitch Arxiv Chameleon Actor Cornell Avg
Total 11.64 15.26 15.54 149.17 10.40 17.71 5.52 32.18 100%
GCL 0.71 0.90 0.67 10.08 0.58 1.02 0.18 2.02 6%
MCMC 5.15 5.45 4.18 15.12 4.53 6.82 2.61 6.27 19%

Table 8: The average training time consumption (s) (for one-run) comparison between baselines and
DeGEM.

Cora Amazon Twitch Arxiv Chameleon Actor Cornell Avg
MSP 3.95 17.98 24.45 104.16 5.87 6.35 3.16 23.70
ODIN 6.43 31.65 42.72 225.78 10.23 10.68 5.38 47.55
Mahalanobis 28.77 96.66 187.42 4956.43 36.32 71.06 20.40 771.01
Energy 4.81 21.40 26.36 117.02 7.14 7.78 4.10 26.94
GKDE 5.21 10.58 14.15 45.06 5.37 7.72 4.48 13.22
GPN 15.28 27.88 23.55 OOM 14.39 22.51 11.43 N/A
OODGAT 5.18 23.13 33.80 144.25 7.78 8.70 4.56 32.49
GNNSafe 5.59 22.28 26.42 136.55 7.55 8.12 3.83 30.05
OE 5.72 24.40 27.39 129.01 7.63 8.38 4.27 29.54
Energy-FT 6.34 25.06 28.37 131.99 8.44 9.30 5.14 30.66
GNNSafe++ 8.23 25.68 31.14 138.09 9.66 10.43 7.13 32.91
DeGEM 11.64 15.26 15.54 149.17 10.40 17.71 5.52 32.18

Table 9: Average OOD detection performance measured by AUC↑ on synthetic-Cora datasets with
various homophily level.

homo ratio 0.0 0.2 0.4 0.6 0.8 1.0

GNNSafe 69.02 70.65 72.73 73.72 79.08 79.12
DeGEM 99.66 96.56 98.39 99.11 99.86 99.96

G TIME CONSUMPTION

The detailed time consumption of DeGEM training is shown in Tab. 7. In the GCL algorithm,
message-passing for positive samples is handled during preprocessing, and the augmentation step
only involves shuffling the rows of the node feature matrix. This makes the entire GCL learning
process highly efficient. Furthermore, MCMC sampling is conducted in the latent space, which is
low-dimensional and topology-free, resulting in an acceptable time consumption. Overall, GCL
learning and MCMC sampling account for only 6% and 19% of the total training time, respectively.

Tab. 8 compares the training time consumption (s) of baseline models and our proposed DeGEM.
Thanks to preprocessing node features and MCMC sampling in the latent space, DeGEM requires
only slightly more time during the training phase compared to other baselines. Specifically, training
DeGEM (32.18s) is just 7% slower than GNNSafe (30.66s), while delivering significant performance
improvements, particularly on heterophilic graphs.

H EVALUATION ON SYNTHETIC GRAPHS

We conduct additional experiments on varying the homophilic ratio using synthetic graphs (Zhu
et al., 2021). We report the AUROC results on synthetic-Cora in Tab. 9, and we use the Feature OOD
setting.

As the homophilic ratio decreases from 1.0 to 0.0, the performance of GNNSafe decreases signifi-
cantly from 79.12 to 69.02. In contrast, DeGEM consistently maintains a high performance across
homophilic ratios, achieving around 99 in most cases. This indicates that GNNSafe struggles to han-
dle heterophily, whereas our proposed method demonstrates strong performance on both homophilic
and heterophilic graphs.
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Table 10: Detailed OOD detection performance measured by AUC↑ / AUPR↑ / FPR95↓ / Acc↑ on
homophilic datasets with three OOD types (Structure manipulation, Feature interpolation, Label
leave-out). The cells filled in gray are methods tailored for graph-format inputs.

Methods OOD
Expo

Structure Feature Label Avg
AUC↑ AUPR↑ FPR95↓ Acc↑ AUC↑ AUPR↑ FPR95↓ Acc↑ AUC↑ AUPR↑ FPR95↓ Acc↑ AUC↑ AUPR↑ FPR95↓ Acc↑

Cora
MSP No 75.05 52.23 85.23 77.30 85.87 75.26 65.29 77.30 91.10 78.24 43.41 88.29 84.01 68.57 64.64 80.96
ODIN No 30.57 19.28 97.90 74.60 21.19 17.02 99.56 77.50 20.29 15.11 99.90 87.66 24.02 17.14 99.12 79.92
Mahalanobis No 41.03 23.12 99.41 71.90 63.92 41.65 92.43 74.20 67.45 39.82 87.53 88.92 57.47 34.86 93.12 78.34
Energy No 79.48 54.22 66.36 79.10 89.34 79.96 55.98 79.30 93.26 82.42 33.67 90.19 87.36 72.20 52.00 82.86
ResidualFlow No 61.23 40.72 92.21 82.20 60.72 42.25 94.68 82.20 64.69 66.52 90.77 82.20 62.22 49.83 92.55 82.20
GKDE No 84.49 60.76 56.57 78.00 90.75 82.21 44.20 81.70 94.59 84.66 21.10 91.77 89.94 75.88 40.62 83.82
GPN No 82.21 57.01 56.50 81.00 88.06 73.28 43.61 78.80 91.74 85.71 51.62 91.77 87.34 72.00 50.58 83.86
OODGAT No 53.75 30.58 96.38 34.90 57.03 37.64 98.89 14.50 95.57 88.58 19.68 89.56 68.78 52.27 71.65 46.32
GNNSafe No 87.98 79.29 76.48 75.30 92.18 86.48 49.41 75.40 92.36 81.55 34.48 88.92 90.84 82.44 53.46 79.87

OE Yes 74.42 53.05 83.20 71.60 86.58 77.23 66.03 74.10 89.06 76.45 52.33 88.61 83.35 68.91 67.19 78.10
Energy-FT Yes 82.34 57.36 62.67 79.20 91.13 81.01 40.10 78.60 93.68 85.94 31.44 91.14 89.05 74.77 44.74 82.98
GNNSafe++ Yes 91.11 82.69 53.58 76.90 94.51 89.03 32.90 76.50 92.45 82.13 35.40 90.51 92.69 84.62 40.63 81.30

DeGEM (Ours) No 99.93 99.81 0.33 84.20 99.84 99.50 0.66 84.30 97.58 93.61 12.27 93.04 99.12 97.64 4.42 87.18
Amazon-Photo

MSP No 98.94 99.07 2.46 93.64 97.02 95.39 10.93 92.89 95.49 94.13 27.77 95.84 97.15 96.20 13.72 94.13
ODIN No 3.50 26.70 100.00 91.42 5.31 26.92 99.74 92.91 10.16 24.55 99.89 96.08 6.33 26.06 99.88 93.47
Mahalanobis No 62.40 70.20 99.75 93.42 72.47 66.92 83.93 92.88 60.80 47.36 79.17 95.84 65.22 61.49 87.62 94.04
Energy No 99.94 99.92 0.07 93.04 98.51 96.39 3.83 92.76 97.13 96.11 14.35 95.68 98.53 97.47 6.08 93.83
ResidualFlow No 82.58 85.75 94.51 93.55 75.46 80.42 99.45 93.55 78.31 89.08 98.20 93.55 78.78 85.08 97.39 93.55
GKDE No 92.68 94.80 74.22 89.69 54.52 49.48 94.00 31.90 76.35 75.89 87.07 85.55 74.52 73.39 85.10 69.04
GPN No 90.35 90.53 57.53 82.63 86.47 85.47 82.60 63.38 89.90 84.64 37.93 89.30 88.90 86.88 59.35 78.44
OODGAT No 71.41 71.93 100.00 25.42 70.93 74.80 98.54 25.21 99.18 98.42 2.34 96.16 80.51 81.72 66.96 48.93
GNNSafe No 98.69 99.26 0.00 93.74 98.47 98.91 0.39 92.96 97.34 96.96 3.89 95.72 98.16 98.38 1.43 94.14

OE Yes 99.84 99.82 0.09 92.89 98.60 96.51 3.46 92.84 96.58 95.39 16.63 95.96 98.34 97.24 6.73 93.90
Energy-FT Yes 99.97 99.97 0.00 93.63 98.88 96.98 2.72 90.26 98.37 97.23 6.56 87.44 99.07 98.06 3.09 90.44
GNNSafe++ Yes 99.60 99.77 0.00 93.04 99.57 99.42 0.17 92.76 97.57 97.58 5.36 95.52 98.91 98.92 1.84 93.77

DeGEM (Ours) No 100.00 100.00 0.00 94.49 99.91 99.86 0.41 93.97 99.28 98.62 1.82 95.80 99.73 99.49 0.74 94.76
Twitch

ES FR RU Avg Acc↑AUC↑ AUPR↑ FPR95↓ AUC↑ AUPR↑ FPR95↓ AUC↑ AUPR↑ FPR95↓ AUC↑ AUPR↑ FPR95↓

MSP No 66.08 76.56 91.50 47.40 53.65 95.85 57.41 71.21 93.75 56.97 67.14 93.70 63.89
ODIN No 43.97 58.89 97.48 51.84 55.13 96.15 49.53 63.70 96.99 48.45 59.24 96.88 62.05
Mahalanobis No 46.73 58.91 93.98 49.69 53.28 95.79 38.38 56.34 97.83 44.94 56.18 95.87 62.95
Energy No 58.42 68.55 90.45 72.91 75.26 80.48 69.90 79.26 86.11 67.07 74.36 85.68 65.59
ResidualFlow No 62.60 74.31 93.20 55.59 61.24 95.15 67.68 77.84 88.14 61.96 71.13 92.16 66.37
GKDE No 57.52 67.30 91.93 57.48 61.28 93.97 46.25 61.51 96.28 53.75 63.36 94.06 60.42
GPN No 84.07 91.92 83.99 76.32 84.37 93.97 78.36 88.86 89.33 79.59 88.38 89.10 60.29
OODGAT No 77.35 84.45 82.44 77.72 80.06 78.83 73.24 81.12 83.26 76.10 81.88 81.51 60.29
GNNSafe No 51.00 57.41 80.79 79.08 81.54 68.51 82.93 86.45 57.08 71.00 75.13 68.79 66.18
OE Yes 64.52 77.11 88.47 52.99 62.00 92.81 69.64 81.48 84.01 62.38 73.53 88.43 64.71
Energy-FT Yes 93.55 96.62 42.86 70.89 75.99 87.47 97.71 98.69 10.58 87.38 90.43 46.97 63.82
GNNSafe++ Yes 97.75 98.93 9.70 92.11 95.22 64.57 99.87 99.94 0.00 96.58 98.03 24.76 65.83
DeGEM (Ours) No 94.83 97.63 43.80 97.36 98.58 2.53 94.76 97.57 41.00 95.65 97.93 29.11 64.51

Arxiv
2018 2019 2020 Avg Acc↑AUC↑ AUPR↑ FPR95↓ AUC↑ AUPR↑ FPR95↓ AUC↑ AUPR↑ FPR95↓ AUC↑ AUPR↑ FPR95↓

MSP No 61.76 70.21 89.09 63.52 65.89 87.96 67.06 90.63 85.74 64.11 75.58 87.60 53.87
ODIN No 44.01 55.17 97.85 42.63 47.18 98.28 38.96 78.45 99.37 41.87 60.27 98.50 49.29
Mahalanobis No 57.08 65.09 93.69 56.76 57.85 94.01 56.92 85.95 95.01 56.92 69.63 94.24 51.59
Energy No 64.61 72.30 88.40 65.90 67.80 87.44 70.37 91.85 85.35 66.96 77.32 87.06 53.92
ResidualFlow No 62.38 71.02 91.09 63.82 67.23 91.26 62.21 89.22 92.74 62.81 75.83 91.70 54.84
GKDE No 69.44 76.46 86.37 71.32 73.79 86.82 71.73 92.23 86.50 70.83 80.83 86.56 21.15
GPN No OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
OODGAT No 72.35 75.38 77.05 73.97 72.32 77.89 72.30 91.22 79.16 72.87 79.64 78.03 54.69
GNNSafe No 67.27 75.46 87.17 69.20 72.41 85.99 79.02 94.91 80.69 71.83 80.93 84.62 54.26
OE Yes 70.51 77.38 81.45 71.75 73.47 80.19 75.12 93.24 77.06 72.46 81.37 79.56 53.17
Energy-FT Yes 78.93 83.99 68.81 79.13 80.19 68.71 82.08 95.44 66.21 80.04 86.54 67.91 39.26
GNNSafe++ Yes 75.76 82.15 75.34 76.95 79.18 73.55 83.82 96.05 66.18 78.84 85.79 71.69 48.05
DeGEM (Ours) No 81.30 81.20 42.03 86.00 80.50 31.41 86.01 94.71 31.28 84.44 85.47 34.91 58.20

I DETAILED EVALUATION RESULTS

The detailed results of OOD detection on homophilic and heterophilic graphs are shown in Tabs. 10
and 11, respectively.

The detailed results of OOD detection on varying the available label ratio are shown in Tab. 12.

The full results of the ablation study regarding the different components are shown in Tab. 13.

The detailed results of OOD detection performance of different GCL algorithms are shown in Tab. 14.
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Table 11: Detailed OOD detection performance measured by AUC↑ / AUPR↑ / FPR95↓ / Acc↑ on
heterophilic datasets with three OOD types (Structure manipulation, Feature interpolation, Label
leave-out). The cells filled in gray are methods tailored for graph-format inputs.

Methods OOD
Expo

Structure Feature Label Avg
AUC↑ AUPR↑ FPR95↓ Acc↑ AUC↑ AUPR↑ FPR95↓ Acc↑ AUC↑ AUPR↑ FPR95↓ Acc↑ AUC↑ AUPR↑ FPR95↓ Acc↑

Chameleon
MSP No 99.28 99.33 1.41 33.41 70.92 71.75 86.39 32.42 53.32 71.78 91.67 43.89 74.51 80.95 59.82 36.57
ODIN No 60.09 70.22 100.00 28.80 53.20 49.82 91.13 33.24 68.07 81.48 74.78 37.01 60.45 67.17 88.64 33.02
Mahalanobis No 99.59 99.57 0.92 29.90 58.93 55.55 97.80 33.41 42.42 67.25 82.46 44.54 66.98 74.13 60.39 35.95
Energy No 91.94 95.28 100.00 37.14 67.75 66.73 84.15 37.58 59.92 75.25 70.18 41.69 73.20 79.09 84.77 38.80
ResidualFlow No 48.24 42.46 99.39 34.50 53.82 53.61 99.91 34.50 56.16 84.94 99.34 34.50 52.74 60.34 99.55 34.50
GKDE No 96.06 96.66 18.45 30.12 67.33 70.27 91.26 34.94 60.22 77.42 74.78 40.40 74.54 81.45 61.50 35.15
GPN No 82.90 87.44 100.00 20.41 64.99 57.79 88.76 30.99 72.68 82.83 77.85 34.71 73.52 76.02 88.87 28.70
OODGAT No 54.89 52.07 97.45 26.06 53.86 49.47 97.28 29.73 65.33 74.23 78.29 40.68 58.03 58.59 91.01 32.16
GNNSafe No 34.36 56.86 100.00 35.33 57.46 58.24 95.83 38.07 52.18 73.72 85.09 43.43 48.00 62.94 93.64 38.94

OE Yes 98.67 98.83 3.60 34.89 69.00 65.65 82.26 35.49 75.54 84.02 70.83 40.22 81.07 82.83 52.23 36.87
Energy-FT Yes 98.95 99.15 0.61 38.01 65.19 64.56 94.51 38.89 75.53 84.45 66.89 39.30 79.89 82.72 54.00 38.74
GNNSafe++ Yes 36.23 58.23 100.00 36.59 57.80 58.51 93.94 37.41 50.65 73.38 87.06 42.33 48.23 63.37 93.67 38.78

DeGEM (Ours) No 99.99 99.98 0.00 57.82 99.70 99.51 1.10 57.93 89.68 94.62 39.04 64.46 96.46 98.04 13.38 60.07
Actor

MSP No 71.38 72.10 92.30 21.64 59.11 53.90 92.04 24.34 56.32 85.03 89.21 37.27 62.27 70.35 91.19 27.75
ODIN No 42.32 43.97 99.66 22.30 52.57 47.79 93.55 23.90 65.10 90.12 85.58 35.79 53.33 60.62 92.93 27.33
Mahalanobis No 79.96 74.27 70.51 24.23 65.94 58.33 85.08 23.72 52.58 82.78 87.92 31.98 66.16 71.79 81.17 26.64
Energy No 64.26 64.61 98.16 25.21 51.71 48.17 96.68 24.33 55.00 84.54 89.80 36.71 56.99 65.77 94.88 28.75
ResidualFlow No 49.72 45.67 97.96 27.63 50.07 45.13 97.47 27.63 50.68 87.99 97.30 27.63 50.15 59.60 97.58 27.63
GKDE No 71.27 69.91 93.39 25.63 58.08 52.60 90.67 19.56 53.72 84.44 92.50 33.60 61.02 68.98 92.19 26.26
GPN No 78.58 79.13 62.50 18.67 62.13 56.27 93.42 20.21 75.04 93.13 75.73 38.08 71.92 76.18 77.22 25.65
OODGAT No 51.25 46.46 94.83 23.65 52.00 48.78 95.20 25.77 65.39 88.68 84.64 36.30 56.21 61.31 91.56 28.57
GNNSafe No 31.76 42.55 99.05 26.30 50.66 46.38 95.62 26.20 51.60 83.80 87.81 37.92 44.68 57.58 94.16 30.14

OE Yes 68.52 67.55 94.59 21.61 61.52 56.27 94.84 24.64 60.54 86.41 83.00 37.11 63.53 70.07 90.81 27.79
Energy-FT Yes 74.36 74.16 89.74 24.67 61.43 54.84 90.87 25.39 58.75 85.85 88.04 37.34 64.85 71.62 89.55 29.13
GNNSafe++ Yes 58.49 63.44 98.89 25.13 62.64 62.03 93.49 25.31 52.36 84.47 89.92 37.22 57.83 69.98 94.10 29.22

DeGEM (Ours) No 99.76 99.65 0.84 31.97 99.98 99.98 0.08 33.87 100.00 100.00 0.00 36.02 99.92 99.88 0.31 33.95
Cornell

MSP No 81.50 84.58 92.35 41.50 71.89 61.46 84.15 43.54 68.50 85.15 89.47 63.81 111.98 77.06 88.66 49.61
ODIN No 67.99 57.50 98.91 38.78 85.76 87.82 75.96 38.10 42.16 66.71 89.47 63.81 94.76 70.68 88.11 46.89
Mahalanobis No 69.84 69.08 92.90 36.73 70.08 69.09 92.90 43.54 81.73 93.72 97.37 62.86 104.50 77.30 94.39 47.71
Energy No 83.09 84.90 86.34 38.10 86.70 85.61 83.06 38.10 69.70 85.99 100.00 62.86 121.88 85.50 89.80 46.35
ResidualFlow No 67.80 64.21 93.44 43.54 66.33 61.30 98.36 43.54 73.09 91.56 97.37 43.54 88.58 72.35 96.39 43.54
GKDE No 80.53 80.81 91.26 14.97 77.48 72.00 98.36 42.86 81.18 92.76 86.84 63.81 109.97 81.86 92.15 40.54
GPN No 89.68 90.86 61.20 43.54 83.36 75.12 37.70 42.86 82.93 92.79 60.53 63.81 168.50 86.26 53.14 50.07
OODGAT No 67.16 66.13 97.81 42.18 69.42 61.27 99.45 42.86 68.52 82.45 81.58 64.76 95.30 69.95 92.95 49.93
GNNSafe No 74.66 82.14 93.44 25.17 76.22 83.44 88.52 41.50 68.17 80.87 68.42 63.81 115.19 82.15 83.46 43.49

OE Yes 82.05 79.76 74.32 26.53 77.29 62.74 55.74 37.41 55.79 74.93 92.11 57.14 110.50 72.47 74.05 40.36
Energy-FT Yes 80.42 83.71 92.90 43.54 90.19 90.55 71.58 39.46 65.81 83.53 89.47 62.86 128.71 85.93 84.65 48.62
GNNSafe++ Yes 77.59 83.44 89.07 26.53 82.94 87.28 98.36 43.54 76.77 84.57 60.53 60.95 125.22 85.10 82.65 43.67

DeGEM (Ours) No 97.97 96.11 5.46 48.30 100.00 100.00 0.00 65.31 90.90 96.74 65.79 77.14 233.73 97.61 23.75 63.58
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Table 12: Detailed OOD detection performance on varying the available label ratio, measured by
AUC↑ / AUPR↑ / FPR95↓ / Acc↑.

Cora
OOD
Expo

Structure Feature Label Avg
AUC↑ AUPR↑ FPR95↓ Acc↑ AUC↑ AUPR↑ FPR95↓ Acc↑ AUC↑ AUPR↑ FPR95↓ Acc↑ AUC↑ AUPR↑ FPR95↓ Acc↑

Label Rate = 10%
OE Yes 51.47 30.28 93.09 42.50 64.60 42.82 89.11 49.30 80.01 67.94 83.87 74.37 65.36 47.01 88.69 55.39
Energy-FT Yes 63.03 37.80 92.84 51.90 65.89 47.46 96.60 54.90 87.08 73.80 62.37 68.99 72.00 53.02 83.94 58.60
GNNSafe++ Yes 76.10 56.67 81.72 52.50 72.84 60.39 97.75 52.90 87.27 76.58 58.72 77.85 78.74 64.55 79.40 61.08
DeGEM No 99.50 98.25 1.92 61.20 98.78 96.23 5.17 60.80 95.35 89.90 22.92 80.70 97.87 94.79 10.00 67.57
Label Rate = 50%
OE Yes 67.64 45.88 86.96 68.30 82.14 67.48 66.06 71.60 86.12 68.08 59.74 87.66 78.63 60.48 70.92 75.85
Energy-FT Yes 67.91 42.20 79.99 70.00 77.13 59.17 71.16 70.80 87.69 68.26 45.54 89.24 77.58 56.54 65.56 76.68
GNNSafe++ Yes 82.22 67.91 74.19 70.60 87.76 76.69 60.97 71.90 89.43 73.81 37.02 88.61 86.47 72.80 57.39 77.04
DeGEM No 98.46 95.88 6.76 79.90 98.72 97.08 4.95 78.40 95.40 82.90 14.91 91.14 97.53 91.95 8.87 83.15
Label Rate = 100%
OE Yes 74.42 53.05 83.20 71.60 86.58 77.23 66.03 74.10 89.06 76.45 52.33 88.61 83.35 68.91 67.19 78.10
Energy-FT Yes 82.34 57.36 62.67 79.20 91.13 81.01 40.10 78.60 93.68 85.94 31.44 91.14 89.05 74.77 44.74 82.98
GNNSafe++ Yes 91.11 82.69 53.58 76.90 94.51 89.03 32.90 76.50 92.45 82.13 35.40 90.51 92.69 84.62 40.63 81.30
DeGEM No 99.93 99.81 0.33 84.20 99.98 99.93 0.15 83.20 97.58 93.61 12.27 93.04 99.16 97.78 4.25 86.81

Twitch
OOD
Expo

ES FR RU Avg Acc↑AUC↑ AUPR↑ FPR95↓ AUC↑ AUPR↑ FPR95↓ AUC↑ AUPR↑ FPR95↓ AUC↑ AUPR↑ FPR95↓

Label Rate = 10%
OE Yes 67.85 76.78 90.12 61.77 66.67 92.78 60.45 72.32 92.70 63.36 71.92 91.87 62.55
Energy-FT Yes 85.09 90.89 73.86 85.98 89.06 76.28 87.36 91.66 62.46 86.14 90.54 70.87 63.54
GNNSafe++ Yes 75.41 82.92 84.90 76.58 82.00 87.79 81.24 90.11 80.23 77.75 85.01 84.30 63.04
DeGEM No 93.63 97.09 73.97 96.21 97.93 17.69 94.15 97.39 62.58 94.67 97.47 51.41 60.29

Label Rate = 50%
OE Yes 68.98 80.25 89.82 50.07 56.44 95.50 55.39 69.81 94.82 58.15 68.83 93.38 62.18
Energy-FT Yes 90.74 95.11 63.21 73.73 78.69 84.90 97.43 98.37 11.15 87.30 90.72 53.09 64.43
GNNSafe++ Yes 94.93 97.52 40.90 86.03 91.24 80.80 99.30 99.65 1.62 93.42 96.14 41.11 64.04
DeGEM No 93.66 97.07 65.77 96.50 98.05 16.58 92.46 96.51 66.18 94.21 97.21 49.51 61.84

Label Rate = 100%
OE Yes 64.52 77.11 88.47 52.99 62.00 92.81 69.64 81.48 84.01 62.38 73.53 88.43 64.71
Energy-FT Yes 93.55 96.62 42.86 70.89 75.99 87.47 97.71 98.69 10.58 87.38 90.43 46.97 63.82
GNNSafe++ Yes 97.75 98.93 9.70 92.11 95.22 64.57 99.87 99.94 0.00 96.58 98.03 24.76 65.83
DeGEM No 94.83 97.63 43.80 97.36 98.58 2.53 94.76 97.57 41.00 95.65 97.93 29.11 64.51

Chameleon
OOD
Expo

Structure Feature Label Avg
AUC↑ AUPR↑ FPR95↓ Acc↑ AUC↑ AUPR↑ FPR95↓ Acc↑ AUC↑ AUPR↑ FPR95↓ Acc↑ AUC↑ AUPR↑ FPR95↓ Acc↑

Label Rate = 10%
OE Yes 75.16 82.02 100.00 25.23 65.42 64.01 85.77 24.79 61.29 77.96 81.58 31.77 67.29 74.66 89.12 62.55
Energy-FT Yes 55.58 67.05 100.00 24.96 45.36 43.21 97.80 30.01 67.84 78.06 59.21 39.12 56.26 62.77 85.67 63.54
GNNSafe++ Yes 24.66 47.47 100.00 30.83 50.77 48.11 95.83 28.25 50.39 69.30 86.62 41.05 41.94 54.96 94.15 63.04
DeGEM No 99.78 99.82 0.13 43.12 99.75 99.63 1.27 40.59 90.38 95.35 41.01 48.30 96.64 98.27 14.14 60.29

Label Rate = 50%
OE Yes 94.14 95.83 53.67 33.52 67.73 65.30 84.23 34.01 67.10 77.95 64.47 38.57 76.32 79.70 67.46 62.18
Energy-FT Yes 76.88 83.39 100.00 29.95 55.29 55.24 95.39 31.54 73.62 83.80 70.39 39.94 68.60 74.14 88.59 64.43
GNNSafe++ Yes 31.95 54.80 100.00 36.86 55.79 51.99 94.20 34.12 50.47 72.90 83.99 38.48 46.07 59.89 92.73 64.04
DeGEM No 99.98 99.97 0.09 53.48 99.64 99.48 1.71 48.71 91.47 95.42 37.50 55.83 97.03 98.29 13.10 61.84
Label Rate = 100%
OE Yes 98.67 98.83 3.60 34.89 69.00 65.65 82.26 35.49 75.54 84.02 70.83 40.22 81.07 82.83 52.23 64.71
Energy-FT Yes 98.95 99.15 0.61 38.01 65.19 64.56 94.51 38.89 75.53 84.45 66.89 39.30 79.89 82.72 54.00 63.82
GNNSafe++ Yes 36.23 58.23 100.00 36.59 57.80 58.51 93.94 37.41 50.65 73.38 87.06 42.33 48.23 63.37 93.67 65.83
DeGEM No 99.99 99.98 0.00 57.82 99.70 99.51 1.10 57.93 89.68 94.62 39.04 64.46 96.46 98.04 13.38 64.51

Cornell
OOD
Expo

Structure Feature Label Avg
AUC↑ AUPR↑ FPR95↓ Acc↑ AUC↑ AUPR↑ FPR95↓ Acc↑ AUC↑ AUPR↑ FPR95↓ Acc↑ AUC↑ AUPR↑ FPR95↓ Acc↑

Label Rate = 10%
OE Yes 78.38 77.47 95.08 42.86 61.03 52.40 94.54 29.93 34.76 66.40 94.74 65.71 58.06 65.42 94.78 62.55
Energy-FT Yes 68.18 76.80 100.00 43.54 59.50 61.45 100.00 43.54 53.41 74.09 97.37 64.76 60.36 70.78 99.12 63.54
GNNSafe++ Yes 72.52 80.70 99.45 34.01 73.64 82.04 96.72 43.54 62.39 75.80 86.84 63.81 69.52 79.51 94.34 63.04
DeGEM No 99.62 99.50 2.19 14.97 100.00 100.00 0.00 17.01 93.08 97.35 31.58 63.81 97.57 98.95 11.25 60.29

Label Rate = 50%
OE Yes 84.13 83.96 89.07 44.22 80.47 77.97 84.15 36.05 57.22 76.85 97.37 60.95 73.94 79.59 90.20 62.18
Energy-FT Yes 67.17 67.68 98.91 41.50 78.34 82.89 100.00 42.86 58.22 75.16 84.21 62.86 67.91 75.24 94.37 64.43
GNNSafe++ Yes 77.86 84.38 91.80 37.41 76.49 83.70 95.63 40.82 65.01 77.94 68.42 62.86 73.12 82.01 85.28 64.04
DeGEM No 97.84 92.02 3.28 44.22 99.88 99.85 1.09 55.78 91.23 96.73 44.74 73.33 96.32 96.20 16.37 61.84

Label Rate = 100%
OE Yes 82.05 79.76 74.32 26.53 77.29 62.74 55.74 37.41 55.79 74.93 92.11 57.14 71.71 72.47 74.05 64.71
Energy-FT Yes 80.42 83.71 92.90 43.54 90.19 90.55 71.58 39.46 65.81 83.53 89.47 62.86 78.81 85.93 84.65 63.82
GNNSafe++ Yes 77.59 83.44 89.07 26.53 82.94 87.28 98.36 43.54 76.77 84.57 60.53 60.95 79.10 85.10 82.65 65.83
DeGEM No 97.97 96.11 5.46 48.30 100.00 100.00 0.00 65.31 90.90 96.74 65.79 77.14 96.29 97.61 23.75 64.51
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Table 13: Detailed ablation study results measured by AUC↑ / AUPR↑ / FPR95↓ / Acc↑. ‘Eprop’
stands for energy propagation. ‘MLE-Energy’ indicates whether the energy head is trained via
maximum likelihood estimation, otherwise, the node energy is obtained by classification logits
(Classify-Energy). ‘GCL’ indicates whether a graph contrastive learning algorithm is employed when
training the graph encoder.

Cora

Eprop Classify- MLE- GCL MH CE ERo Structure Feature Label Avg
Energy Energy AUROC↑ AUPR↑ FPR95↓ Acc↑ AUROC↑ AUPR↑ FPR95↓ Acc↑ AUROC↑ AUPR↑ FPR95↓ Acc↑ AUROC↑ AUPR↑ FPR95↓ Acc↑

Energy ✓ 79.48 54.22 66.36 79.10 89.34 79.96 55.98 79.30 93.26 82.42 33.67 90.19 87.36 72.20 52.00 82.86
GNNSafe ✓ ✓ 87.98 79.29 76.48 75.30 92.18 86.48 49.41 75.40 92.36 81.55 34.48 88.92 90.84 82.44 53.46 79.87

✓ ✓ 85.90 61.26 39.00 55.60 92.98 74.66 23.45 73.50 70.52 41.03 80.43 86.71 83.13 58.98 47.62 71.94
✓ 59.46 34.47 94.13 73.20 67.92 44.80 86.60 73.30 79.94 60.09 77.38 85.44 69.11 46.45 86.04 77.31
✓ ✓ 86.32 59.53 40.77 58.10 87.54 69.55 40.21 74.70 92.75 80.01 33.57 89.56 88.87 69.70 38.18 74.12
✓ ✓ ✓ 81.01 52.82 58.46 73.90 92.15 77.50 29.87 75.50 93.31 83.26 36.00 85.76 88.82 71.19 41.44 78.39
✓ ✓ ✓ 86.52 62.21 43.61 75.60 96.43 84.84 9.19 78.40 94.07 84.54 26.98 87.97 92.34 77.20 26.59 80.66
✓ ✓ ✓ ✓ 87.89 63.84 41.77 76.70 96.43 84.84 9.19 78.40 94.07 84.54 26.98 87.97 92.80 77.74 25.98 81.02
✓ ✓ ✓ 98.73 96.62 5.95 82.10 97.94 92.64 6.79 80.80 95.75 90.06 22.01 92.09 97.47 93.11 11.58 85.00
✓ ✓ ✓ ✓ 98.12 94.83 5.87 81.10 99.06 96.62 2.73 82.70 96.93 91.45 12.98 92.41 98.03 94.30 7.20 85.40
✓ ✓ ✓ ✓ 95.22 82.38 13.04 83.50 98.84 96.44 5.21 82.80 94.65 86.29 23.63 93.04 96.24 88.37 13.96 86.45

DeGEM ✓ ✓ ✓ ✓ ✓ 99.93 99.81 0.33 84.20 99.84 99.50 0.66 84.30 97.58 93.61 12.27 93.04 99.12 97.64 4.42 87.18
Twitch

Eprop Classify- MLE- GCL MH CE ERo ES FR RU Avg Acc↑Energy Energy AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑ FPR95↓

Energy ✓ 58.42 68.55 90.45 72.91 75.26 80.48 69.90 79.26 86.11 67.07 74.36 85.68 65.59
GNNSafe ✓ ✓ 51.00 57.41 80.79 79.08 81.54 68.51 82.93 86.45 57.08 71.00 75.13 68.79 66.18

✓ ✓ 52.12 63.85 92.58 48.78 57.40 98.60 41.94 56.59 95.07 47.61 59.28 95.42 63.87
✓ 74.52 85.07 86.14 79.01 84.93 86.84 69.76 80.70 85.45 74.43 83.57 86.15 60.29
✓ ✓ 83.40 90.59 80.51 90.79 93.87 66.36 80.11 88.21 78.72 84.77 90.89 75.20 60.29
✓ ✓ ✓ 67.06 74.88 91.09 69.53 76.28 92.76 72.85 81.23 84.08 69.81 77.46 89.31 60.61
✓ ✓ ✓ 82.47 88.59 75.09 87.16 90.17 72.42 79.74 86.74 73.20 83.12 88.50 73.57 60.29
✓ ✓ ✓ ✓ 83.40 90.59 80.51 90.79 93.87 66.36 80.11 88.21 78.72 84.77 90.89 75.20 60.29
✓ ✓ ✓ 91.13 95.26 70.29 96.66 98.04 10.73 93.02 96.48 53.77 93.61 96.60 44.93 60.29
✓ ✓ ✓ ✓ 92.14 95.71 57.92 97.82 98.77 1.80 94.92 97.47 28.83 94.96 97.32 29.51 60.29
✓ ✓ ✓ ✓ 90.32 92.75 51.55 96.68 96.78 3.02 90.22 93.02 52.86 92.41 94.18 35.81 60.29

DeGEM ✓ ✓ ✓ ✓ ✓ 94.83 97.63 43.80 97.36 98.58 2.53 94.76 97.57 41.00 95.65 97.93 29.11 64.51

Chameleon

Eprop Classify- MLE- GCL MH CE ERo Structure Feature Label Avg
Energy Energy AUROC↑ AUPR↑ FPR95↓ Acc↑ AUROC↑ AUPR↑ FPR95↓ Acc↑ AUROC↑ AUPR↑ FPR95↓ Acc↑ AUROC↑ AUPR↑ FPR95↓ Acc↑

Energy ✓ 91.94 95.28 100.00 37.14 67.75 66.73 84.15 37.58 59.92 75.25 70.18 41.69 73.20 79.09 84.77 65.75
GNNSafe ✓ ✓ 34.36 56.86 100.00 35.33 57.46 58.24 95.83 38.07 52.18 73.72 85.09 43.43 48.00 62.94 93.64 66.18

✓ ✓ 89.44 91.15 86.69 33.52 85.25 83.33 68.73 42.79 72.30 83.17 76.32 60.15 82.33 85.88 77.25 63.87
✓ 76.55 76.82 97.89 55.07 75.38 70.45 92.62 55.73 80.59 88.87 73.68 62.63 77.51 78.71 88.07 60.29
✓ ✓ 94.83 95.17 20.55 52.93 90.21 87.54 87.35 56.99 86.85 93.05 55.04 63.18 90.63 91.92 54.32 60.29
✓ ✓ ✓ 97.52 96.00 4.61 51.45 95.02 92.65 21.34 57.43 85.17 92.17 52.19 63.54 92.57 93.61 26.05 60.29
✓ ✓ ✓ 98.16 97.74 8.30 55.13 95.69 94.68 19.41 56.56 86.86 93.37 52.41 62.72 93.57 95.26 26.71 60.29
✓ ✓ ✓ ✓ 98.15 97.19 6.94 56.34 97.61 94.34 5.27 56.61 87.63 93.93 48.03 64.37 94.46 95.15 20.08 60.29
✓ ✓ ✓ 99.16 98.27 3.34 55.46 96.97 95.83 12.78 55.84 89.56 94.63 41.89 62.08 95.23 96.24 19.33 60.29
✓ ✓ ✓ ✓ 99.94 99.93 0.04 54.85 98.99 98.68 3.78 55.46 89.79 94.99 38.60 64.65 96.24 97.87 14.14 60.29
✓ ✓ ✓ ✓ 99.85 99.80 0.92 56.72 99.99 99.99 0.00 56.17 87.55 92.70 48.03 60.79 95.80 97.50 16.32 60.29

DeGEM ✓ ✓ ✓ ✓ ✓ 99.99 99.98 0.00 57.82 99.70 99.51 1.10 57.93 89.68 94.62 39.04 64.46 96.46 98.04 13.38 64.51

Cornell

Eprop Classify- MLE- GCL MH CE ERo Structure Feature Label Avg
Energy Energy AUROC↑ AUPR↑ FPR95↓ Acc↑ AUROC↑ AUPR↑ FPR95↓ Acc↑ AUROC↑ AUPR↑ FPR95↓ Acc↑ AUROC↑ AUPR↑ FPR95↓ Acc↑

Energy ✓ 83.09 84.90 86.34 38.10 86.70 85.61 83.06 38.10 69.70 85.99 100.00 62.86 79.83 85.50 89.80 65.75
GNNSafe ✓ ✓ 74.66 82.14 93.44 25.17 76.22 83.44 88.52 41.50 68.17 80.87 68.42 63.81 73.02 82.15 83.46 66.18

✓ ✓ 85.24 73.90 32.79 44.22 85.95 80.87 70.49 51.70 76.44 87.65 94.74 65.71 82.54 80.80 66.01 63.87
✓ 63.55 65.61 92.90 42.86 67.71 59.90 95.63 48.98 72.46 87.37 76.32 63.81 67.91 70.96 88.28 60.29
✓ ✓ 93.64 91.96 20.22 44.22 89.50 86.49 60.11 49.66 77.87 90.31 97.37 65.71 87.00 89.58 59.23 60.29
✓ ✓ ✓ 91.06 87.09 27.32 40.82 88.47 86.19 36.07 51.02 75.31 88.31 68.42 63.81 84.95 87.20 43.94 60.29
✓ ✓ ✓ 89.81 86.46 30.60 44.22 91.66 85.79 24.04 51.02 77.44 89.40 76.32 65.71 86.31 87.22 43.65 60.29
✓ ✓ ✓ ✓ 87.37 84.68 51.37 45.58 93.88 90.46 27.32 50.34 74.81 89.05 97.37 67.62 85.35 88.06 58.69 60.29
✓ ✓ ✓ 99.09 97.14 3.83 43.54 97.50 96.09 13.11 62.59 91.13 96.67 57.89 71.43 95.90 96.63 24.94 60.29
✓ ✓ ✓ ✓ 98.54 97.96 5.46 48.30 99.56 99.36 2.19 61.90 88.37 95.62 52.63 68.57 95.49 97.65 20.09 60.29
✓ ✓ ✓ ✓ 98.46 95.55 2.73 45.58 99.51 99.28 1.64 64.63 83.98 93.97 78.95 70.48 93.99 96.27 27.77 60.29

DeGEM ✓ ✓ ✓ ✓ ✓ 97.97 96.11 5.46 48.30 100.00 100.00 0.00 65.31 90.90 96.74 65.79 77.14 96.29 97.61 23.75 64.51

Table 14: The detailed OOD detection performance of different GCL algorithms, measured by AUC↑
/ AUPR↑ / FPR95↓.

Cora
Structure Feature Label Avg

AUC↑ AUPR↑ FPR95↓ AUC↑ AUPR↑ FPR95↓ AUC↑ AUPR↑ FPR95↓ AUC↑ AUPR↑ FPR95↓

GCN 59.54 37.00 94.83 70.85 46.21 81.46 74.37 49.15 86.71 68.25 44.12 87.67
GRACE 67.56 42.24 90.69 89.71 78.84 49.00 91.75 74.81 32.56 83.01 65.29 57.42
SUGRL 74.97 45.75 67.98 84.52 71.12 63.04 87.73 72.97 45.33 82.41 63.28 58.78
DGI 86.32 59.53 40.77 87.54 69.55 40.21 92.75 80.01 33.57 88.87 69.70 38.18

Twitch
ES FR RU Avg

AUC↑ AUPR↑ FPR95↓ AUC↑ AUPR↑ FPR95↓ AUC↑ AUPR↑ FPR95↓ AUC↑ AUPR↑ FPR95↓

GCN 50.89 64.14 94.49 53.82 57.39 94.23 57.10 73.16 95.30 53.94 64.90 94.67
GRACE 67.66 73.59 88.15 63.54 64.71 93.67 66.15 72.59 86.64 65.78 70.30 89.48
SUGRL 70.89 80.04 84.53 84.23 87.11 74.77 61.32 72.55 94.07 72.15 79.90 84.46
DGI 83.40 90.59 80.51 90.79 93.87 66.36 80.11 88.21 78.72 84.77 90.89 75.20

Chameleon
Structure Feature Label Avg

AUC↑ AUPR↑ FPR95↓ AUC↑ AUPR↑ FPR95↓ AUC↑ AUPR↑ FPR95↓ AUC↑ AUPR↑ FPR95↓

GCN 68.19 73.99 99.78 84.64 79.36 56.92 71.13 82.73 93.86 74.65 78.69 83.52
GRACE 89.95 90.68 60.52 87.63 87.94 88.45 86.38 92.23 60.09 87.99 90.28 69.69
SUGRL 85.91 84.02 62.71 78.67 71.97 66.45 83.56 90.11 61.84 82.71 82.03 63.67
DGI 94.83 95.17 20.55 90.21 87.54 87.35 86.85 93.05 55.04 90.63 91.92 54.32

Cornell
Structure Feature Label Avg

AUC↑ AUPR↑ FPR95↓ AUC↑ AUPR↑ FPR95↓ AUC↑ AUPR↑ FPR95↓ AUC↑ AUPR↑ FPR95↓

GCN 77.25 83.09 100.00 73.54 70.99 93.44 76.47 90.65 86.84 75.75 81.58 93.43
GRACE 84.94 86.86 74.86 80.39 78.44 77.60 76.94 91.05 86.84 80.76 85.45 79.77
SUGRL 60.43 55.31 96.17 62.09 54.02 91.26 68.51 84.73 86.84 63.67 64.69 91.42
DGI 93.64 91.96 20.22 89.50 86.49 60.11 77.87 90.31 97.37 87.00 89.58 59.23
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