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S1 Functional Determinant

Here we show that the functional determinant of integral operator K, defined by |K| ≜
limJ→∞ |K∆| in (8), can be calculated by the product of its eigenvalues.

Under the discrete scenario (7), the l-th eigenvalue of the J × J matrix, K∆, should satisfy the
following eigenvalue equation,

J∑
j′=1

k(tj , tj′)(tj′ − tj′−1)ṽ
l
j′ = λ̃lṽ

l
j , ∀j ∈ {1, . . . , J}, (S1)

where λ̃l denotes the l-th eigenvalue, and ṽl ≜ (ṽl1, . . . , ṽ
l
J)

⊤ is the J-element eigenvector for
the l-th eigenvalue. The determinant of K∆ is thus given by the product of the finite number of
eigenvalues, |K∆| =

∏L
l=1 λ̃l. Given the limit of the division number J → ∞ (∆ → 0), the

Nyström method [8] states that the eigenvalue equation (S1) converges to a homogeneous Fredholm
integral equation, i.e., the eigenvalue equation of operator K,

Kvl = λlv
l, or

∫
T
k(t, s)vl(s)ds = λlv

l(t), t ∈ T , (S2)

where vl(tj) = ṽlj , and λl = limJ→∞ λ̃l. The set of eigenvalues for the integral equa-
tion (S2) is countably infinite [9]. Therefore, the functional determinant of operator K, that is,
|K| ≜ limJ→∞ |K∆|, can be described as the product of the infinite number of eigenvalues of
(S2):

|K| ≜ lim
J→∞

|K∆| =
∞∏
l=1

λl. (S3)

It should be noted that integral operator K with a positive definite kernel function often has infinitely
small positive eigenvalues, where the marginalization of Gaussian process prior by path integral
(9) leads to the trivial value of zero,

√
|K| = 0. Actually, the path integral provides a rational

result when applied to the marginalization of the posterior probability (16), where the ratio of two
functional determinants are considered.
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S2 Derivation of MAP Estimator Equation

We detail here the derivation of the integral equation (12) that yields the MAP estimator. The
functional derivative of S(x

(
t), x(t)

)
should be zero on the MAP estimator x̂(t):

δS(x̂
(
t), x̂(t)

)
=

∫
T

[
δS

δx̂(t)
δx(t) +

δS

δx̂(t)
δx(t)

]
dt+O((δx)2)

≃
∫
T

[
κ̇
(
x̂(t)

)
−

N∑
n=1

κ̇
(
x̂(tn)

)
κ
(
x̂(tn)

)δ(t− tn) +
1

2
x̂(t)

]
δxdt+

∫
T

1

2
(x̂(t)− µ)δxdt

=

∫
T

[
κ̇
(
x̂(t)

)
−

N∑
n=1

κ̇
(
x̂(tn)

)
κ
(
x̂(tn)

)δ(t− tn) + x̂(t)

]
δxdt = 0,

where the following relation was used,∫
T
(x̂(t)− µ)δxdt =

∫
T
(x̂(t)− µ)

∫
T
k∗(t, t′)δx(t′)dt′dt

=

∫
T
dt′δx(t′)

∫
T
k∗(t, t′)(x̂(t)− µ)dt

=

∫
T
x̂(t′)δxdt′. ∵) k∗(t, t′) = k∗(t′, t)

Thus the following equation is derived,

x̂(t) + κ̇
(
x̂(t)

)
=

N∑
n=1

κ̇
(
x̂(tn)

)
κ
(
x̂(tn)

)δ(t− tn), t ∈ T . (S4)

By applying operator K to (S4), we realize an equation that derives the MAP estimator x̂(t) as
follows,

x̂(t) +

∫
T
k(t, t′)κ̇

(
x̂(t′)

)
dt′ = µ+

N∑
n=1

k(t, tn)
κ̇
(
x̂(tn)

)
κ
(
x̂(tn)

) , t ∈ T . (S5)

S3 Derivation of Predictive Covariance

We detail the derivation of the predictive covariance shown in (13-15). The predictive inverse co-
variance (precision), denoted by σ∗(t, t′), is given by the second functional derivative of S, which
is written as

σ∗(t, t′) ≜
δ2S(x, x

)
δx(t)δx(t′)

∣∣∣∣
x=x̂

= z∗(t, t′) + h∗(t, t′),

where

z∗(t, t′) ≜ −
N∑

n=1

d2 log(κ(x))

dx2

∣∣∣∣
x=x̂(t)

δ(t− tn)δ(t
′ − tn),

h∗(t, t′) ≜ a(t, t′) + k∗(t, t′),

a(t, t′) ≜ κ̈
(
x̂(t)

)
δ(t− t′).

(S6)

Let the integral operators corresponding to σ(t, t′), z(t, t′), h(t, t′), and a(t, t′) be denoted by Σ ,
Z , H, and A, respectively, and their inverse counterparts by ∗. Using the fact that operator Z∗ is
factorized as,

Z∗ =

∫
T
· z∗(t, t′)dt′ = U⊤Z−1U ,

Znn′ ≜ −d2 log(κ(x))

dx2

∣∣∣∣
x=x̂(t)

δnn′ , Un ≜
∫
T
· δ(t′ − tn)dt

′,
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we obtain the predictive covariance σ(t, t′) with a finite (thus tractable) N -dimensional matrix rep-
resentation as follows:

Σ =

∫
T
· σ(t, t′)dt′ = (Z∗ +H∗)∗ = (U⊤Z−1U +H∗)∗

= H−HU⊤(Z + UHU⊤)∗UH

=

∫
T
·
[
h(t, t′)− h(t)⊤(Z +H)−1h(t′)

]
dt′,

∴ σ(t, t′) = h(t, t′)− h(t)⊤(Z +H)−1h(t′),

where Hnn′ ≜ h(tn, tn′), h(t) ≜ (h(t, t1),. . . ,h(t, tN ))⊤; we used the Woodbury matrix identity
in this derivation.

The remaining problem is how to obtain h(t, t′). Equation (S6) states that the operators H, A, and
K hold the relation, H∗ = A+K∗ ⇔ (I +KA)H = K, which leads to the integral equation that
h(t, t′) should satisfy,

h(t, s) +

∫
T
k(t, t′)κ̈

(
x̂(t′)

)
h(t′, s)dt′ = k(t, s). (S7)

S4 Derivation of Marginal Likelihood

We can obtain the marginal likelihood or evidence of GP models, p(D), under Laplace approxima-
tion (13) by performing path integral (9) as follows:

log p(D) = log

∫
exp

[
−S(x

(
t), x(t)

)]
Dx

≃ −S(x̂
(
t), x̂(t)

)
+ log

∫
e−

1
2

∫∫
T×T σ∗(t,t′)(x(t)−x̂(t))(x(t′)−x̂(t′))dtdt′Dx

= −S(x̂
(
t), x̂(t)

)
+

1

2
log |Σ |.

Substituting (S4) into (11), we can write down S(x̂
(
t), x̂(t)

)
as

S(x̂
(
t), x̂(t)

)
=

1

2
log |K| −

N∑
n=1

log κ
(
x̂(tn)

)
+

∫
T
κ
(
x̂(t)

)
dt+

1

2

∫
T
(x̂(t)− µ)x̂(t)dt

=
1

2
log |K| −

N∑
n=1

log κ
(
x̂(tn)

)
+

∫
T
κ
(
x̂(t)

)
dt

+
1

2

∫
T
(x̂(t)− µ)

[ N∑
n=1

κ̇
(
x̂(tn)

)
κ
(
x̂(tn)

)δ(t− tn)−κ̇
(
x̂(t)

)]
dt

=
1

2
log |K|+

∫
T
κ
(
x̂(t)

)
dt− 1

2

∫
T
(x̂(t)− µ)κ̇

(
x̂(t)

)
dt

+

N∑
n=1

[
1

2
(x̂(tn)− µ)

κ̇
(
x̂(tn)

)
κ
(
x̂(tn)

) − log κ
(
x̂(tn)

)]
.

Furthermore, by using the matrix determinant lemma, we can rewrite log |Σ | as

log |Σ | = log |H −HU⊤(Z + UHU⊤)∗UH|
= log |H| − log |Z + UHU⊤|+ log |(Z + UHU⊤)− (UH)H∗(HU⊤)|
= log |H| − log |Z + UHU⊤|+ log |Z|
= log |H| − log |IN +Z−1H|.
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S5 Calculation of h(t, s)

We apply the Gelerkin method [2], a variant of the projection method, to solve equation (S7) with
regard to h(t, s). Let

h(t, s) ≃
L∑

l=1

ωlφl(t)φl(s),

and solve for the coefficients, {ωl}Ll=1, using the set of residual equations derived from (S7),∫∫
T ×T

r(t, s)φl(t)φl(s)dtds = 0, l = 1, . . . , L,

r(t, s) ≜ h(t, s) +

∫
T
k(t, t′)κ̈

(
x̂(t′)

)
h(t′, s)dt′ − k(t, s).

Using the relations of the eigenfunctions,∫
T
k(t, s)φl(s)ds = λlφl(t),

∫
T
h(t, s)φl(s)ds = ωlφl(t),

we can solve the residual equations, which results in

ωl =
λl

1 + λlΞl
, Ξl =

∫
T
κ̈
(
x̂(t)

)
φ2
l (t)dt.

S6 Representer Theorem

Formula (S5) provides the MAP estimator x̂(t) for general Gaussian Cox processes, but an interest-
ing representation is obtained under a quadratic link function.

If link function κ(x) is given in quadratic form,

κ(x) = x2, κ̇(x) = 2x, κ̈(x) = 2,

then (S5) reduces to a Fredholm integral equation of the second kind,

x̂(t) + 2

∫
T
k(t, t′)x̂(t′)dt′ = µ+ 2

N∑
n=1

k(t, tn)x̂(tn)
−1.

The linearity of the integral equation permits a representation of the form

x̂(t)− µ(1− 2h(t)) = 2

N∑
n=1

h(t, tn)x̂(tn)
−1, (S8)

where h(t, s) is the positive semi-definite kernel defined in (S7), and h(t) ≜
∫
T h(t, s)ds. (S8)

states that MAP estimator x̂(t) can be written as expansions in terms of the training examples,
where the MAP estimation reduces to a finite-dimensional optimization problem corresponding to
new kernel function h(t, s). Therefore, the MAP estimator of Gaussian Cox process involves a
representer theorem under a quadratic link function, which is a generalization of Wahba’s classical
representer theorem [12]. Function h(t, s) has been studied by [11, 3] as the equivalent kernel.

S7 Kronecker Structure in Product of Eigenfunctions

For a set of L =
∏

d Ld points on a Cartesian product grid (the grid need not be regular), p ∈
T1 × · · · × TD, matrix Φ, defined by

Φl′l ≜ φl′(pl) =

D∏
d=1

φ
(d)
l′d

(
p
(d)
ld

)
, 1 ≤ l′d, ld ≤ Ld, (S9)

has a Kronecker structure as indicated by

Φ = Φ(1) ⊗ · · · ⊗Φ(D), Φ
(d)
l′dld

≜ φ
(d)
l′d

(
p
(d)
ld

)
. (S10)

Therefore, in the multi-dimensional input setting, exploiting the Kronecker structure can reduce the
O(L2) computation in MAP estimation, or {

∑
l λlβlφl(pl′)}Ll′=1 and {

∑
l βlφl(pl′)}Ll′=1, to O(L)

computation [10], although we did not employ it in this paper.
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Table S1: Symbols and Definitions.

Symbol Definition
N number of data points
T observation region
D = {tn ∈ T }Nn=1 observed data points
k(∗)(t, t′) (inverse) kernel function
K(∗) =

∫
T k(∗)(t, t′) · dt′ integral operator corresponding to k(∗)(t, t′)

|K| functional determinant of operator K∫
·Dx path integral computation with respect to continuous path x(t)

Table S2: Summary of related works. OM , OV , OE represent the computational costs of the
MAP/predictive mean, the predictive covariance, and the marginal likelihood/evidence lower bound,
respectively. Q and P represent the number of gradient descent iterations and the number of MCMC
samplings, respectively. For the other symbols, see the main text.

Proposed [13] [1, 6] [4]
OM (NL+L2)Q (N ·min(N,L))Q (NL2+L3)Q (NL+L2)P

OV
OM +NmcL + OM +

(NL2+L3)Q (NL+L2)P
(N+L)·min(N2, L2) (N+L)·min(N2, L2)

OE
OM +NmcL + OM +

(NL2+L3) (NL+L2)
(N+L)·min(N2, L2) (N+L)·min(N2, L2)

S8 Summary of Key Expression and Algorithm

We summarize the key expressions in Section 2.1-2.2 (see Table S1) and the proposed algorithm
(see Algorithm 1).

S9 Summary of Computational Complexity

We provide a summary of the related works about the computational complexity (see Table S2).
Here we focus on the algorithms that could scale linearly with the number of data points. OV and
OE of our proposed method reduces to those of [13] under the quadratic link function because the
integral in Eq. (19) can be performed analytically. Note that the complexity of each algorithm
could be reduced by utilizing a stochastic gradient descent algorithm or by exploiting the Kronecker
structure.

S10 Experimental Settings and Additional Experiments

S10.1 Experimental Settings

For all the experiments in Section 5, we used a multiplicative Gaussian kernel, k(t, s) =∏
d e

−(θ(td−sd))
2

, where hyper-parameter θ was optimized for each trial by grid search. We cal-
culated the marginal likelihoods or the evidence lower bounds on the following sets of hyper-
parameters:

θλ1(t) = {.01, .02, . . . , 0.1}, θλ2(t) = {0.5, 1.0, . . . , 5.0}, θλ3(t) = {.01, .02, . . . , 0.1},

for synthetic data, and

θ2D neuronal data = {.01, .02, .03, . . . , 0.1}, θ3D taxi data = {0.5, 1.0, 1.5, . . . , 5.0},

for open real-world data sets. Then we adopted the hyper-parameter that maximized the marginal
likelihood or the evidence lower bounds. Note that each of the parameter sets contains values close
to those used in [1].
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Algorithm 1 Bayesian Inference via Path Integral Formulation

1: procedure INFERENCE(t,D, T , J, L,Nmc, Ngd, κ(·), k(·, ·|θ), µ, {pl}Ll=1)
2: {β̂l, ω̂l, λl, φl(·)}Ll=1, log p(D|θ) = TRAINING(D, T , J, L,Nmc, Ngd, κ(·), k(·, ·|θ), µ, {pl}Ll=1)
3: Predictive mean / MAP: x̂(t) = µ+

∑
n k(t, tn)γ

(∑
l β̂lφl(tn)

)
−
∑

l λlβ̂lφl(t)
4: Predictive covariance is evaluated by Eq. (14)
5: procedure TRAINING(D, T , J, L,Nmc, Ngd, κ(·), k(·, ·|θ), µ, {pl}Ll=1)
6: {λl, φl(·)}Ll=1 = EIGENFUNCTION(T , J, L, k(·, ·|θ))
7: {β̂l}Ll=1 = MAP(D, L,Ngd, κ(·), k(·, ·|θ), µ, {pl}Ll=1, {λl, φl(·)}Ll=1)
8: {ω̂l}Ll=1 = HFUNCTION(T , L,Nmc, κ(·), k(·, ·|θ), {β̂l, λl, φl(·)}Ll=1)
9: log p(D|θ) = MARGINALLIKELIHOOD(D, T , L,Nmc, κ(·), k(·, ·|θ), µ, {β̂l, ω̂l, λl, φl(·)}Ll=1)

10: return {β̂l, ω̂l, λl, φl(·)}Ll=1, log p(D|θ)
11: procedure EIGENFUNCTION(T , J, L, k(·, ·|θ))
12: for d = 1, . . . , D do
13: w = T (d)/J
14: for j, j′ = 1, . . . , J do
15: K[j, j′] = k(d)(jw, j′w)

16: Solve Kvj = ejvj : e1 > e2 > · · · > eJ
17: k(·) = (k(d)(·, w), k(d)(·, 2w), . . . , k(d)(·, Jw))⊤
18: for j = 1, . . . , Ld do
19: λ

(d)
j , φ

(d)
j (·) = ejw, k(·)⊤vj/(ej

√
w)

20: U = ∅
21: for j1 = 1, . . . , L1 do
22: . . .
23: for jD = 1, . . . , LD do
24: U = U ∪

{(∏D
d=1 λ

(d)
jd

,
∏D

d=1 φ
(d)
jd

(·)
)}

25: return U
26: procedure MAP(D, L,Ngd, κ(·), k(·, ·|θ), µ, {pl}Ll=1, {λl, φl(·)}Ll=1)
27: Initialize β ≡ (β1, . . . , βL)
28: for i = 1, . . . , Ngd do
29: δ = ∇β

∑L
l=1[r(pl)]

2 : r(pl) is defined in Eq. (18)
30: Update β by Adam(δ)

31: return β

32: procedure HFUNCTION(T , L,Nmc, κ(·), k(·, ·|θ), {β̂l, λl, φl(·)}Ll=1)
33: Sample Nmc points on T , {ui}Nmc

i=1
34: for l = 1, . . . , L do
35: Compute Ξl by Monte Carlo integration with {ui}Nmc

i=1 : See Eq. (19)
36: ωl = λl/(1 + λlΞl)

37: return {ωl}Ll=1

38: procedure MARGINALLIKELIHOOD(D, T , L,Nmc, κ(·), k(·, ·|θ), µ, {β̂l, ω̂l, λl, φl(·)}Ll=1)
39: Sample Nmc points on T , {ui}Nmc

i=1

40: Compute log p(D|θ) by Monte Carlo integration with {ui}Nmc
i=1 : See Eq. (20)

41: return log p(D|θ)
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Table S3: Results on three types of synthetic data with standard errors in brackets.

λ1(t)
L = 3 L = 5 L = 10 L = 20

IQL.5 IQL.85 Time IQL.5 IQL.85 Time IQL.5 IQL.85 Time IQL.5 IQL.85 Time

PIFs
13.00 9.68 10.33 11.33 7.64 10.19 11.56 8.02 10.49 11.58 7.62 10.96
(2.24) (3.48) (0.37) (3.10) (3.44) (0.39) (3.43) (3.38) (0.47) (3.26) (3.22) (0.75)

PIFe
12.65 9.56 10.09 12.04 9.26 10.01 11.89 9.50 10.11 12.29 9.30 10.45
(1.76) (2.06) (0.37) (3.38) (2.95) (0.31) (4.43) (3.70) (0.30) (4.33) (3.74) (0.40)

PIFq
11.80 8.65 9.91 11.88 8.17 9.86 12.73 9.02 10.05 12.50 9.00 10.49
(2.19) (2.68) (0.24) (3.15) (2.93) (0.30) (4.30) (3.92) (0.31) (4.40) (4.29) (0.58)

STVB 12.59 8.70 34.86 11.81 8.20 34.88 11.86 8.39 35.25 12.04 8.54 35.90
(2.17) (2.91) (1.15) (2.45) (2.97) (0.99) (2.82) (3.31) (1.13) (2.99) (3.58) (1.21)

VBPP 12.12 8.65 24.69 12.18 8.44 25.12 11.69 7.68 26.31 15.99 10.92 27.38
(1.99) (2.35) (0.92) (3.61) (3.39) (1.00) (4.94) (4.06) (1.16) (3.17) (4.77) (0.79)

λ2(t)
L = 3 L = 5 L = 10 L = 20

IQL.5 IQL.85 Time IQL.5 IQL.85 Time IQL.5 IQL.85 Time IQL.5 IQL.85 Time

PIFs
15.57 15.38 10.02 15.05 10.66 9.86 14.57 11.10 10.44 14.46 10.96 10.51
(1.64) (4.92) (0.22) (1.06) (3.89) (0.15) (0.93) (3.53) (0.73) (0.83) (3.20) (0.50)

PIFe
34.73 30.96 9.81 19.41 13.83 9.62 15.95 12.56 9.99 15.68 12.35 10.12
(13.79) (8.88) (0.28) (8.76) (5.81) (0.21) (2.24) (2.71) (0.51) (1.67) (1.99) (0.40)

PIFq
21.83 29.12 9.64 15.23 11.31 9.57 14.46 10.02 10.04 13.05 8.65 10.15
(3.71) (8.91) (0.17) (2.98) (3.06) (0.15) (1.96) (2.61) (0.64) (1.88) (1.70) (0.38)

STVB 15.37 9.51 34.47 14.71 10.24 34.45 14.48 10.03 36.10 13.38 9.10 36.18
(0.96) (2.62) (0.35) (1.41) (2.61) (0.22) (1.48) (2.72) (1.90) (1.91) (2.69) (1.17)

VBPP 29.54 15.92 23.80 15.18 10.20 23.90 14.79 10.14 26.66 13.13 8.79 26.66
(4.17) (0.83) (0.36) (1.67) (1.43) (0.29) (1.77) (2.07) (1.67) (1.69) (1.45) (0.79)

λ3(t)
L = 3 L = 5 L = 10 L = 20

IQL.5 IQL.85 Time IQL.5 IQL.85 Time IQL.5 IQL.85 Time IQL.5 IQL.85 Time

PIFs
45.17 35.01 11.05 32.59 20.21 10.80 25.60 14.75 10.87 27.10 15.81 10.90
(4.26) (9.64) (0.33) (7.24) (6.94) (0.29) (6.17) (3.80) (0.27) (6.12) (3.06) (0.32)

PIFe
39.69 26.70 10.24 32.24 21.05 10.17 31.46 21.89 10.53 31.23 21.15 10.48
(4.55) (6.15) (0.27) (7.14) (4.79) (0.39) (6.17) (3.92) (0.44) (5.83) (4.20) (0.32)

PIFq
39.82 25.42 10.47 30.81 20.03 10.42 29.89 18.73 10.41 31.36 19.96 10.46
(4.89) (5.88) (0.21) (5.89) (4.12) (0.29) (4.47) (3.53) (0.27) (5.91) (3.56) (0.32)

STVB 42.41 23.01 40.02 30.89 16.75 48.83 28.87 17.37 38.98 28.59 16.75 38.35
(5.71) (5.95) (1.20) (7.04) (3.17) (37.64) (6.76) (3.31) (0.65) (6.46) (3.46) (1.04)

VBPP 38.73 22.79 26.60 30.97 19.41 25.88 30.50 19.31 26.86 37.09 25.06 28.14
(4.35) (4.14) (0.74) (4.88) (3.23) (0.70) (5.37) (3.67) (0.84) (6.90) (3.57) (0.90)

For fair comparison, we employed a popular (batch) gradient descent algorithm, Adam [5], to per-
form estimations for all compared methods. We equally set the number of iteration as 5,000, but
used different learning parameters for the models: 0.5 for PIFe; 0.05 for PIFq; 0.05 for PIFs; 0.005
for STVB; 0.05 for VBPP. We implemented all the models by using TensorFlow-2.2, where for
STVB we used the python code provided by Aglietti et al. [1]. Each of the CPU times reported is
the amount of time required to calculate the MAP/predictive mean, the predictive covariance, and
the marginal likelihood given a hyper-parameter, where computing the eigenfunctions of the kernel
is of course included in the CPU time.

S10.2 Figure 1A in tabular form

We provide the results in Figure 1A in tabular form (see Table S3) to make the results easy to review.

S10.3 Experiments of How Stably the Proposed Scheme Works on Real-world Data

To demonstrate that our scheme is stable on real-world data, we ran additional experiments based
on the real-world data used in Figure 2. For the 2D neuronal data (Ntrain = 583, Ntest = 29127),
we extracted two training datasets of 583 data points from the original test data randomly, which
resulted in three training (Ntrain = 583) and a test (Ntest = 27961) datasets. For the 3D taxi data (Ntrain
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Figure S1: The predictive performances on open real-world data. The error bars represent the stan-
dard deviations. (A) 2D neuronal data. (B) 3D spatio-temporal taxi data.

= 1000, Ntest = 3401), we extracted two training datasets of 1000 data points from the original test
data randomly, which resulted in three training (Ntrain = 1000) and a test (Ntest = 1401) datasets. We
evaluated three times the predictive performances of the compared models in terms of the test log
likelihood, and calculated the means and the standard deviations (error bars) of the performances.
Figure S1 shows the results.

S10.4 Experiments on Larger Taxi Dataset
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Figure S2: Results on large 3D taxi datasets. (A) The CPU times. (B) The test log-likelihoods. The
error bars represent the standard deviations. (C) The estimated intensity function on the dataset with
110,705 data points.

To demonstrate that our scheme is scalable to large data size, we ran an additional experiment on a
larger 3D taxi dataset [7]. The area considered was the same as that used in Experiments, and we
took 10, 50, 100, and 150 weekdays from 1 July 2013, resulting in the training data sets containing
from 9,971 to 110,705 data points. It should be noted that the maximum data size is comparable
to that considered in [4] (113,020). We employed PIFq with L = 103, and plot the execution times
with respect to the number of data points (see Figure S2A). Also, we randomly divided the datasets
(N = 110, 705) into the training (N = 100,000) and the test (N = 10,705) data, ran PIFq on various
sizes of subsets of the training data, and evaluated the test log-likelihoods. Figure S2B plots the
test log-likelihoods as functions of the number of data points used for training; it shows that our
approach (PIFq) can process large datasets effectively and recover the underlying intensity function
more accurately with larger training datasets.

S10.5 Application of Stochastic Optimization Algorithm

Because the objective function to be minimized in the MAP estimation,
∑L

l=1[r(pl)]
2, is given as a

sum of residuals, we can apply a mini-batch gradient descent (MGD) algorithm to the optimization
problem. With mini-batch size L̃ ≪ L, MGD reduces the computational complexity for each itera-
tion to O(NL+NL̃+ L̃2) ≃ O(NL), where the dominant cost stems from {γ

[∑
l βlφl(tn)

]
}Nn=1.

Figure S3 shows the performances of MGD with L̃ = 258 and the batch gradient descent (BGD)
on the 3D spatio-temporal taxi data used in Section 5 (Ntrain = 1000), where the number of induc-
ing points, L, was set as 203 for all models. In PIFq and PIFe, MGD (red line) converged much
faster than BGD (blue line), which suggests that MGD would enhance the practical utility of our
scheme under a large number of inducing points. In PIFs, however, BGD achieved the convergence
so rapidly and MGD worked poorly compared to BGD. Here we used the learning parameters of
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Figure S3: Training of MAP estimator on 3D spatio-temporal taxi data. L was set to 203 for each
model. The blue and red lines represent the results yielded by batch gradient descent and mini-batch
gradient descent with mini-batch size of 258, respectively. The maximum of the x-axis (elapsed
time) in each figure equals the elapsed time that the batch gradient descent needed to execute the
5,000 epoch updates.

10−3, 10−2, and 10−5 for PIFq, PIFe, and PIFs, respectively, but examining the parameters of Adam
[5] more carefully would speed up the convergence.
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