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Abstract

We study online leader-follower games where the leader interacts with a myopic
follower using a quantal response policy. The leader’s objective is to design an
algorithm without prior knowledge of her reward function or the state transition
dynamics. Crucially, the leader also lacks insight into the follower’s reward func-
tion and realized rewards, posing a significant challenge. To address this, the
leader must learn the follower’s quantal response mapping solely through strate-
gic interactions — announcing policies and observing responses. We introduce
a unified algorithm, Planning after Estimation, which updates the leader’s poli-
cies in a two-step approach. In particular, we first jointly estimate the leader’s
value function and the follower’s response mapping by maximizing the sum of the
Bellman error of the value function, the likelihood of the quantal response model,
and a regularization term that encourages exploration. The leader’s policy is then
updated through a greedy planning step based on these estimates. Our algorithm
achieves a sublinear regret in the context of general function approximation. More-
over, this algorithm avoids the intractable optimistic planning and thus enhances
implementation simplicity.

1 Introduction

Stackelberg games are a class of games that feature strategic decision-making under a leader-follower
structure. These games find broad applications in various domains, such as economics, finance,
societal systems, and so on (He et al., 2007; Von Stackelberg, 2010; Keyhani, 2003; Sinha et al.,
2013; Ghosh & De, 2021; Koh et al., 2020; Qiu et al., 2021). In the simplest two-player case, the two
players are referred to as the leader and follower, respectively. These two players have misaligned
objectives and different information structures, and their interactions can be sequential and dynamic.

In this game, the leader has more advantages in the sense that she can regularize the follower’s
behavior by announcing her policy before the two players take actions and promising to commit
to it. In that case, the leader’s policy becomes common knowledge. The follower, knowing the
leader’s policy, determines his policy by solving his decision-making problem determined by both
the leader’s policy and the follower’s reward function. As a result, the follower’s policy is a strategic
response to the leader’s policy, and such a mapping (the response model) depends on the follower’s
reward function. From the leader’s point of view, the response model specifies how the followers
strategically interact with the leader, and the leader aims to maximize her cumulative rewards in
expectation. The leader’s policy that maximizes her cumulative rewards in the presence of the
strategic follower, together with the follower’s response policy, constitutes a Stackelberg equilibrium
of the game. This notion characterizes the optimal behavior of such a leader-follower game.

While there have been many existing works proposing sample-efficient multi-agent reinforcement
learning (MARL) algorithms for solving dynamic games, the study of solving Stackelberg equilibria
from data via MARL is relatively scarce. Most of these works focus on Nash-(Perolat et al., 2017),
Correlated-(Cigler & Faltings, 2011), or coarse correlated equilibria(Sessa et al., 2022) of Markov
games. When it comes to Stackelberg equilibria, the hierarchical and strategic nature make it hard to
learn from data. The main challenge lies in the estimation of the response model of the follower. When
the response model is unknown to the leader, she needs to infer the response model, or equivalently,
estimate the follower’s reward function from data. This entails a challenging exploration problem –
the leader has to find a sequence of policies such that the follower’s responses to them are sufficiently
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informative. Moreover, as shown in Bai et al. (2021), such a problem is ill-posed when the follower
is fully rational, i.e., returning a deterministic reward-maximizing action. In this case, even if the
follower’s reward function is accurately estimated, the resulting estimated response model still has a
considerable error.

To address this challenge, Chen et al. (2023) propose to study Markov Stackelberg games (MSG) with
the follower adopting a quantal response model. That is, the follower solves an entropy-regularized
reward maximization problem and the response policy is stochastic. In this case, after announcing a
policy and observing the action taken by the follower, the leader can estimate the follower’s reward
function via maximum likelihood estimation (MLE). Based on this observation, in the online setting,
Chen et al. (2023) proposes a sample-efficient algorithm based on optimistic planning, in the context
of general function approximation. In particular, their algorithm constructs a confidence for the
follower’s reward function via MLE, and a confidence set for the leader’s value function using the
Bellman error. However, due to the hierarchical structure, this Bellman error takes the follower’s
reward function as a parameter. As a result, optimistic planning over these coupled confidence sets
is highly intractable. Therefore, the following question remains elusive:

Can we design a sample-efficient and easy-to-implement MARL framework
for Markov Stackelberg games with general function approximation?

In this paper, we provide an affirmative answer to this question. Focusing on the online setting
of Markov Stackelberg games where the follower is myopic and boundedly ration, we propose an
easy-to-implement algorithm, dubbed Planning after Estimation (PES). In particular, in each episode,
the algorithm updates the leader’s policy in two steps. First, in the estimation step, we estimate the
leader’s value function and the follower’s quantal response model together using a combined loss
function. This loss function combines (i) the likelihood loss for estimating the follower’s reward
function, (ii) the Bellman loss for estimating the leader’s value function, and (iii) an additional term
that promotes exploration. Such an exploration-promoting term is defined as the expected rewards
of the leader based on the given value function and response model. In the second step, based
on the estimated value function and response model, we update the leader’s policy by solving the
greedy policy. Compared to the optimistic planning algorithm proposed in Chen et al. (2023), our
algorithm circumvents intractable optimistic planning, which involves joint planning of the leader’s
policy, value function, and the follower’s quantal response model. Furthermore, we prove that
PES achieves a sublinear Õ(𝑑𝑐

√
𝑇)-regret with general function approximation, where 𝑑𝑐 is the

decoupling coefficient (Xiong et al., 2022) that captures the complexity of the employed function
classes and 𝑇 is the number of episodes. As a result, our PES is provably sample efficient and
amenable to implementation at the same time. Furthermore, as a concrete example, we instantiate
the leader-follower game to the problem of reinforcement learning with human feedback (RLHF),
demonstrating the efficacy of our algorithm.

2 Related Work

Online Stackelberg Games. Most existing works on learning Stackelberg equilibria in (Markov)
games via online RL assume the follower is myopic and perfectly rational (Bai et al., 2021; Zhong
et al., 2023; Kao et al., 2022; Zhao et al., 2023). In specific, Bai et al. (2021); Zhao et al. (2023) focus
on the static setting. Bai et al. (2021) consider a centralized setting where the central controller can
determine the actions taken by both the leader and the follower, and Zhao et al. (2023) assume the
follower is omniscient in the sense that the follower always plays the best response policy, which is
similar to our setting. They show that when the follower is perfectly rational, the regret of the leader
exhibits different scenarios depending on the relationship between the leader’s and the follower’s
rewards. Besides, Kao et al. (2022) assume that the leader and follower are cooperative and design a
decentralized algorithm for both the leader and follower, under the tabular setting. Zhong et al. (2023)
study online and offline RL for the leader, assuming the follower’s reward function is known, and thus
the best response of the follower is known to the leader. Our work is more related and comparable
to Chen et al. (2023). In particular, Chen et al. (2023) extensively studied Markov Stackelberg
games in the context of general function approximation. They proposed an algorithm framework,
which is provably sample efficient under assumptions that the follower is bounded rational and either
myopic or farsighted. However, they constructed confidence sets for the response model and leader’s
value function and introduced optimistic planning (Auer et al., 2008) to update the leader’s policies.
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Such a method involves joint planning of the leader’s policy and value function, and the follower’s
quantal response model, so the planning steps become computationally intractable, which means the
algorithm is very hard to be implemented in practice. In this paper, we propose our PES algorithm
to overcome this drawback. Instead of using tedious optimistic planning, we exploit the benign
property of the Shannon entropy function to recover the follower’s reward function via his policy.
After estimating the reward function, we execute the planning step by solving the ”greedy” policy.
Compared with Chen et al. (2023), our algorithm is not only easy-to-implement but also easier to
show theoretical guarantee.

Online RL with General Function Approximation. Recently, various works propose RL algo-
rithms in the context of general function approximation (Jiang et al., 2017; Sun et al., 2019; Jin et al.,
2021; Xiong et al., 2022; Liu et al., 2024a). Among these works, Our work is most relevant to Jin
et al. (2021); Xiong et al. (2022); Liu et al. (2024a). Specifically, Jin et al. (2021); Xiong et al. (2022)
introduce the Multi-agent decoupling coefficient that characterizes the exploration difficulty of the
Markov Decision Process (MDP) problems. In Section 5, we introduce similar notions of decoupling
coefficient for learning the leader’s optimal policy. In particular, we introduce two versions of the
decoupling coefficient that capture the complexity of the leader’s Bellman error and the follower’s
quantal response error. Besides, Liu et al. (2024a) proposed an easy-to-implement RL algorithm
framework named Maximize to Explore (MEX) and instantiating MEX on the 2-player zero-sum
game setting. However, their algorithm framework can not be easily instantiated in MSG, because the
follower’s Bellman error is not accessible in our setting, since either the follower’s reward function
or his realized rewards remains unknown.

3 Preliminaries

Notation For a measurable space X, we use Δ(X) to denote the set of probability measure on X.
For an integer 𝑛 ∈ N, we use [𝑛] to denote the set {1, ..., 𝑛}. For a random variable 𝑋 , we use E [𝑋]
and Var [𝑋] to denote its expectation and variance respectively. For two functions 𝑓 (𝑥) and 𝑔(𝑥),
we denote 𝑓 (𝑥) = O(𝑔(𝑥)) if there is a constant 𝐶 s.t. 𝑓 (𝑥) ≤ 𝐶 · 𝑔(𝑥),∀𝑥 ∈ Dom( 𝑓 ) ∩ Dom(𝑔)
and we use Õ to omit all the logarithmic terms. For two functions 𝑓 , 𝑔 : A → R, we denote
⟨ 𝑓 , 𝑔⟩A =

∑
𝑎∈A 𝑓 (𝑎) · 𝑔(𝑎).

3.1 Leader-Follower Markov Games

Problem Settings. A leader-follower Markov Game is between two players, referred to as the leader
and the follower, respectively (also called principal and agent in other literature). These two leaders
will interact within an episode of 𝐻 steps and the states of the game evolve according to a Markov
transition kernel. Let S be the state space, and let A and B be the action sets of the leader and
follower, respectively. Let 𝑃 = {𝑃ℎ : S ×A ×B → Δ(S)}ℎ∈[𝐻 ] denote the transition kernels of the
𝐻 steps, and let 𝑢 = {𝑢ℎ : S ×A × B → [0, 1]}ℎ∈[𝐻 ] and 𝑟 = {𝑟ℎ : S ×A × B → [0, 1]}ℎ∈[𝐻 ] be
the leader and follower’s reward functions of 𝐻 steps, respectively.

In contrast to a classic Markov game, the leader-follower game features an additional ”communication
stage”: before the beginning of the game, where the leader announces a policy 𝜋 = {𝜋ℎ : S →
Δ(A)}ℎ∈[𝐻 ] and the follower adopts a response policy 𝜐𝜋 = {𝜐𝜋

ℎ
: S → Δ(𝐵)}ℎ∈[𝐻 ] according to a

response model: 𝜋 → 𝜐𝜋 . Then the two players play the joint policy (𝜋, 𝜐𝜋) and generate a trajectory
{𝑠ℎ, 𝑎ℎ, 𝑏ℎ}ℎ∈[𝐻 ] . In particular, at step any step ℎ ∈ [𝐻], the leader and follower observe the current
state 𝑠ℎ ∈ S, take actions 𝑎ℎ ∼ 𝜋ℎ (·|𝑠ℎ) and 𝑏ℎ ∼ 𝜐𝜋

ℎ
(·|𝑠ℎ), receive rewards 𝑢ℎ (𝑠ℎ, 𝑎ℎ, 𝑏ℎ) and

𝑟ℎ (𝑠ℎ, 𝑎ℎ, 𝑏ℎ) respectively, and the environment moves to a new state 𝑠ℎ+1 ∼ 𝑃ℎ (·|𝑠ℎ, 𝑎ℎ, 𝑏ℎ). Here,
we could assume the initial state 𝑠1 is sampled from a fixed distribution 𝜌0 ∈ Δ(S) and the game
terminates after 𝑠𝐻+1 is generated. At last, we define Π = Π1 × Π2 × · · ·Π𝐻 , where Πℎ = Δ(A), as
the domain of the leader’s policy 𝜋.

Quantal Response Model. In the above discussion, we mentioned that after the leader announces
its policy 𝜋, the follower will choose its policy 𝜐𝜋 according to this context. We feature this
process as quantal response models: 𝜋 → 𝜐𝜋 . In this paper, we mainly discuss the boundedly
rational and myopic follower, where the ”myopic” means the follower only tries to maximize his
expected immediate reward and the ”boundedly rational” means the follower considers other factors
(represented as a regularization term) when maximizing his rewards. We define the quantal response
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policy of the follower with respect to 𝜋, denoted by 𝜐𝜋 as the solution to an entropy regularized
policy optimization problem:

𝜐𝜋ℎ (·|𝑠) = arg max
𝜈ℎ

{
E𝜋ℎ ,𝜈ℎ [𝑟ℎ (𝑠ℎ, 𝑎ℎ, 𝑏ℎ) |𝑠ℎ = 𝑠] + 1

𝜂
H(𝜈ℎ (·|𝑠))

}
,∀𝑠 ∈ S, (3.1)

where E𝜋ℎ ,𝜈ℎ [·|𝑠ℎ = 𝑠] means we take expectation with respect to (𝜋ℎ, 𝜈ℎ). Here H is a strongly
convex regularization function and 𝜂 > 0 is a parameter. In order to solve the corresponding problem
directly and give a closed-form solution of the follower’s policy in equation (3.1), we further assume
the regularization function H is the Shannon entropy of the follower’s policy. Here we don’t rule
out the possibility of using other regularization functions, and consider such extension as our future
work.

Stackelberg Equilibrium. When the follower adopts the response model 𝜐, the goal of the leader is
to find the optimal 𝜋★ that maximizes its expected total rewards when the follower’s response model
is 𝜐𝜋 , i.e.,

𝜋★ ∈ arg max
𝜋

𝐽 (𝜋), 𝐽 (𝜋) = E𝜋
[∑

ℎ∈[𝐻 ]𝑢ℎ (𝑠ℎ, 𝑎ℎ, 𝑏ℎ)
]
. (3.2)

Here E𝜋 denotes the expectation over the trajectory {𝑠ℎ, 𝑎ℎ, 𝑏ℎ}[ℎ∈𝐻 ] generated by the joint policy
(𝜋, 𝜐𝜋 , 𝑃) and the maximization in (3.2) is over all policies of the leader. The optimal leader’s policy
𝜋★ and its response 𝜐𝜋★ constitutes a Stackelberg (Markov perfect) equilibrium. That is, Stackelberg
equilibrium characterizes the leader’s optimal policy, when the follower adopts a particular response
model that maps each a leader’s policy 𝜋 to a follower’s policy 𝜐𝜋 .

3.2 Online Stackelberg Game

In this paper, we consider the learning problem of the leader in the online setting. That is, without any
prior knowledge about the reward functions 𝑢 and 𝑟 and transition model 𝑃, the leader aims to learn
𝜋★ by repeatedly playing the same game with a follower and adaptively gathering data, where the
follower adopts the response model 𝜐𝜋 . Specifically, the leader adaptively constructs a sequence of
policies {𝜋𝑡 }𝑡≥1 where 𝜋𝑡 is the policy in the 𝑡-th episode. The leader’s data consists of the trajectories
and bandit feedback of the follower’s reward generated by playing the game. In particular, when
leader adopts 𝜋𝑡 , the follower adopts 𝜐𝜋

𝑡 and they generate a trajectory {𝑠𝑡
ℎ
, 𝑎𝑡
ℎ
, 𝑏𝑡
ℎ
}ℎ∈[𝐻 ] . The

leader observes this trajectory as well the bandit feedback of her reward, i.e., {𝑢ℎ (𝑠𝑡ℎ, 𝑎
𝑡
ℎ
, 𝑏𝑡
ℎ
)}ℎ∈[𝐻 ] .

Based on the data generated before the 𝑡-th episode, the leader constructs 𝜋𝑡 by a learning algorithm
and uses it to generate new data. Here a key assumption of our setting is that the leader does not
know the follower’s realized rewards or the reward function, which is realistic but also the source of
the major technical challenge.

To evaluate the performance of the learning algorithm, we use the notion of sample complexity.
Let 𝜖 ∈ (0, 1) be the desired error level, the sample complexity is defined as the smallest integer
𝑇𝜖 such that the algorithm constructs an 𝜖-optimal policy 𝜋̂ after 𝑇𝜖 episodes, where 𝜋̂ satisfies
𝐽 (𝜋★) − 𝐽 (𝜋̂) ≤ 𝜖 . Specifically, the performance is measured by the regret, which is as

Reg(𝑇) = ∑𝑇
𝑡=1

(
𝐽 (𝜋∗) − 𝐽 (𝜋𝑡 )

)
. (3.3)

4 Algorithm Framework: Planning after Estimation

4.1 Formulate Stackelberg Games via Reinforcement Learning

Formulate Stackelberg games into Bilevel Optimization. First, we recall the quantal response
policy of the follower 𝜐𝜋 could be viewed as the solution to an entropy regularized policy optimization
problem, which is given by equation (3.1). Thus, we could write the maximization of the leader’s
reward as a bilevel optimization problem:

𝜋 = arg max
𝜋∈Π𝐻

𝐽 (𝜋), 𝐽 (𝜋) = E𝜋
[∑

ℎ∈[𝐻 ]𝑢ℎ (𝑠ℎ, 𝑎ℎ, 𝑏ℎ)
]
, (4.1)

𝜐𝜋ℎ (·|𝑠) = arg max
𝜈ℎ

𝐺ℎ (𝜋, 𝜈), 𝐺ℎ (𝜋, 𝜈) = {E𝜋ℎ ,𝜈ℎ [𝑟ℎ (𝑠, 𝑎ℎ, 𝑏ℎ) |𝑠] + 1/𝜂 · H (𝜈ℎ (·|𝑠))} ,∀𝑠 ∈ S,
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where the leader’s problem is in the upper level: for each leader’s policy 𝜋, we find the follower’s
optimal policy 𝜐𝜋 induced by 𝜋, and then find the optimal 𝜋★ that maximizes the leader’s reward.

Leader’s Value Functions. Let 𝑈 𝜋
ℎ

: S × A × 𝐵 → R and 𝑊 𝜋
ℎ

: S → B to be the leader’s
action-value (U) function and state-value (W) function under policy 𝜋, which are defined as:

𝑈 𝜋
ℎ (𝑠ℎ, 𝑎ℎ, 𝑏ℎ) = 𝑢ℎ (𝑠ℎ, 𝑎ℎ, 𝑏ℎ) + E𝑃

[
𝑊 𝜋
ℎ+1 (𝑠ℎ+1) |𝑠ℎ, 𝑎ℎ, 𝑏ℎ

]
= 𝑢ℎ (𝑠ℎ, 𝑎ℎ, 𝑏ℎ) + (𝑃ℎ𝑊 𝜋

ℎ+1) (𝑠ℎ, 𝑎ℎ, 𝑏ℎ), (4.2)
𝑊 𝜋
ℎ (𝑠ℎ) = E𝜋,𝜐

𝜋 [𝑈 𝜋
ℎ (𝑠ℎ, 𝑎ℎ, 𝑏ℎ)] =

〈
𝑈 𝜋
ℎ (𝑠ℎ, ·, ·), 𝜋ℎ ⊗ 𝜐𝜋ℎ (·, ·|𝑠ℎ)

〉
A×B , (4.3)

where the expectation in equation (4.3) is taken w.r.t. 𝑎ℎ ∼ 𝜋ℎ (·|𝑠ℎ, 𝑏ℎ), 𝑏ℎ ∼ 𝜐𝜋
ℎ
(·|𝑠ℎ). Here we

define 𝑃ℎ𝑊 (𝑠, 𝑎, 𝑏) = ∑
𝑠′∈S 𝑃ℎ (𝑠′ |𝑠, 𝑎, 𝑏)𝑊 (𝑠′) and define 𝜋ℎ ⊗ 𝜐𝜋

ℎ
(𝑎, 𝑏 |𝑠) = 𝜋ℎ (𝑎 |𝑠, 𝑏) · 𝜐𝜋ℎ (𝑏 |𝑠)

for ∀ℎ ∈ [𝐻].
Intuitively, 𝑈 𝜋

ℎ
and 𝑊 𝜋

ℎ
are counterparts of the 𝑄-function and 𝑉-function in standard RL, respec-

tively. That is, 𝑊 𝜋
ℎ
(𝑠) is equal to the expected total rewards starting from 𝑠ℎ = 𝑠 and the two players

follow 𝜋 and 𝜐𝜋 . Thus, the total reward of the leader is given by 𝐽 (𝜋) = E𝑠1∼𝜌0 [𝑊 𝜋
1 (𝑠1)], where 𝜌0

is the initial state distribution. For simplicity, we consider the case when the initial state 𝑠1 is fixed.

Bellman Equation By (4.1), we notice that, since the follower is myopic, his response policy at each
step ℎ could be computed separately, which means 𝜐𝜋

ℎ
depends on 𝜋 only through 𝜋ℎ. As a result,

to find the optimal policy 𝜋★, it only suffices to optimize 𝜋ℎ at each step separately in (4.3), which
leads to the following Bellman optimal equation for {𝑈★

ℎ
,𝑊★

ℎ
, 𝜋★}ℎ∈[𝐻 ] :

𝑈★ℎ (𝑠ℎ, 𝑎ℎ, 𝑏ℎ) = 𝑢ℎ (𝑠ℎ, 𝑎ℎ, 𝑏ℎ) + 𝑃ℎ𝑊
★
ℎ+1 (𝑠ℎ, 𝑎ℎ, 𝑏ℎ),

𝑊★
ℎ (𝑠ℎ) = max

𝜋ℎ ( · |𝑠ℎ ) ∈Δ(A)

{〈
𝑈★ℎ (𝑠ℎ, ·, ·), 𝜋ℎ ⊗ 𝜐𝜋ℎ (·, ·|𝑠ℎ)

〉}
, (4.4)

and 𝜋★
ℎ

is the optimal policy that achieves the maximum in (4.4). In other words, 𝜋★ is the “greedy”
policy with respect to 𝑈★ and the quantal response mapping 𝜋 → 𝜐𝜋 .

Recovering Standard MDPs. A special case of this leader-follower game is when B is a singleton.
In this situation, this game reduces to a standard MDP, because 𝑏ℎ = 𝑏 is fixed and 𝜐𝜋 degenerates
into 𝛿(𝑏) for any 𝜋 ∈ Π. Then we can recover the classical Bellman equation in (4.4). Thus,
estimating 𝑢 and 𝑃 is the same as in standard RL.

4.2 Model Estimation and Greedy Planning

According to the discussion in Section 4.1, we know that once the leader knows reward functions
𝑢 and 𝑟 , and the transition kernel 𝑃, then they can solve equation (4.4) to find the optimal pol-
icy 𝜋★. In the online setting, we need to approximately solve equation (4.4) using online data
{𝜋𝑡 , {𝑠𝑡

ℎ
, 𝑎𝑡
ℎ
, 𝑏𝑡
ℎ
, 𝑢𝑡
ℎ
}ℎ∈[𝐻 ]}𝑡∈[𝑇 ] . From the leader’s perspective, there are two types of unknown

quantities: (i) the follower’s response model 𝜐𝜋 , which depends on the follower’s reward function
𝑟 = {𝑟ℎ}ℎ∈𝐻 ; (ii) the leader’s reward function 𝑢 = {𝑢ℎ}ℎ∈[𝐻 ] and the transition kernel 𝑃 = {𝑃ℎ}ℎ∈𝐻 .

Estimate the Response Model. To deal with the unknown quantities relevant to the follower, we
need to consider how his policy 𝜐𝜋 involves with leader’s value function 𝑈,𝑊 . A natural way to
tackle this is via estimating the response model 𝜋 → 𝜐𝜋 . In general, it is an intractable task since
it means we need to estimate a functional mapping from Δ(A) to Δ(B). A promising approach to
address this challenge is to directly estimate the follower’s reward function through his announced
policy, instead of estimating the complicated response model. This approach is equivalent to solving
an inverse optimization problem 𝜐𝜋 shown in equation (4.1). That is, given a solution (the follower’s
policy) of the optimization problem, could we recover the parameter (the follower’s reward function)
of this problem? This kind of inverse problem is usually ill-posed. However, thanks to the benign
property of the Shannon entropy, we could write the follower’s policy in closed form:

𝜐𝜋ℎ (𝑏ℎ |𝑠ℎ) = exp
(
𝜂 · (𝐴𝜋ℎ (𝑠ℎ, 𝑏ℎ))

)
, 𝐴𝜋ℎ (𝑠ℎ, 𝑏ℎ) = 𝑟 𝜋ℎ (𝑠ℎ, 𝑏ℎ) −𝑉 𝜋ℎ (𝑠ℎ), (4.5)

𝑟 𝜋ℎ (𝑠, 𝑏) = E𝑎∼𝜋 [𝑟 (𝑠, 𝑎, 𝑏)] = ⟨𝜋ℎ (·|𝑠, 𝑏), 𝑟ℎ (𝑠, ·, 𝑏)⟩A ,

𝑉 𝜋ℎ (𝑠ℎ) = 1/𝜂 · log
(∑

𝑏∈B exp(𝜂 · 𝑟 𝜋ℎ (𝑠ℎ, 𝑏)
)
.

Here 𝑉 𝜋
ℎ
(𝑠) is a normalizing constant ensuring 𝜐𝜋

ℎ
(·|𝑠) ∈ Δ(B), and 𝜂 > 0 is a parameter. By this

closed-form solution, we know the inverse optimization problem of estimating 𝑟 is well-posed and
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can be solved simply via maximum likelihood estimation (MLE). In particular, we can view 𝜐𝜋 as a
statistical model with parameter 𝑟 , and equation (4.5) enables us to compute the likelihood function
when observing data {𝜋𝑡

ℎ
, 𝑠𝑡
ℎ
, 𝑏𝑡
ℎ
}𝑡∈[𝑇 ] .

To this end, we approximate 𝑟 using a function class F𝑟 = {𝑟 𝜃 : S × A × B → [0, 1]}𝜃∈Θ, where 𝜃

is a parameter with respect to 𝑟 and Θ is the the parameter space. We further assume the realizability
condition on reward function 𝑟:
Assumption 1 ((Realizability of Reward Function)). There exists 𝜃★ ∈ Θ such that 𝑟 𝜃★ = 𝑟.

Then, we can estimate 𝑟★
ℎ
= 𝑟 𝜃

★

ℎ
by using the negative log-likelihood loss:

𝐿𝑡ℎ,1 (𝜃ℎ) = −
𝑡−1∑︁
𝑖=1

log 𝜐𝜋
𝑖 , 𝜃

ℎ
(𝑏𝑖ℎ | 𝑠𝑖ℎ) = −

𝑡−1∑︁
𝑖=1

𝜂 · 𝐴𝜋
𝑖 , 𝜃

ℎ
(𝑠𝑖ℎ, 𝑏

𝑖
ℎ). (4.6)

where 𝜐
𝜋,𝜃ℎ
ℎ

and 𝐴
𝜋,𝜃ℎ
ℎ

are defined in equation (4.5) with 𝑟ℎ replaced by 𝑟
𝜃ℎ
ℎ

. Let 𝜃 = {𝜃ℎ}ℎ∈[𝐻 ] ,
we further define 𝜐𝜋,𝜃 = {𝜐𝜋ℎ , 𝜃ℎ

ℎ
}ℎ∈[𝐻 ] .

Estimate the Value Function. To deal with the unknown quantities relevant to the leader, we try to
estimate her value function. We let 𝜃★ = {𝜃★

ℎ
}ℎ∈[𝐻 ] where 𝜃★

ℎ
is the parameter of 𝑟ℎ, then we have:

𝑈★ℎ (𝑠ℎ, 𝑎ℎ, 𝑏ℎ) = 𝑢ℎ (𝑠ℎ, 𝑎ℎ, 𝑏ℎ) + 𝑃ℎ𝑊
★
ℎ+1 (𝑠ℎ, 𝑎ℎ, 𝑏ℎ),

𝑊★
ℎ (𝑠ℎ) = max

𝜋ℎ ( · |𝑠ℎ ) ∈Δ(A)

{〈
𝑈★ℎ (𝑠ℎ, ·, ·), 𝜋ℎ ⊗ 𝜐

𝜋,𝜃★

ℎ
(·, ·|𝑠ℎ)

〉}
,

and 𝑊★
ℎ+1 appears in the above Bellman equation. As a result, instead of estimating 𝑢ℎ alone, we aim

to estimate𝑈★
ℎ
= 𝑢ℎ +𝑃ℎ𝑊★

ℎ+1, which is known as the Bellman target in online RL. The estimation of
this target is well-studied in the literature. We can either use model-based or model-free approaches.
In this paper, we exploit the model-free approach to minimize our assumptions on the function class
of the leader’s reward function and transition kernel.

To this end, we approximate 𝑈★ using a function class U = U1 × U2 × · × U𝐻 , where Uℎ ⊂
(S × A × B → R). To simplify our discussion, we introduce two types of Bellman operator
{T★,𝜃
ℎ

}ℎ∈[𝐻 ], 𝜃∈Θ, which is common in the literature (Perolat et al., 2015; Jin et al., 2022):

T∗, 𝜃
ℎ

𝑈 (𝑠ℎ, 𝑎ℎ, 𝑏ℎ) = 𝑢ℎ (𝑠ℎ, 𝑎ℎ, 𝑏ℎ) + E𝑠ℎ+1∼𝑃ℎ ( · |𝑠ℎ ,𝑎ℎ ,𝑏ℎ ) [(𝑇
∗, 𝜃
ℎ+1𝑈ℎ+1) (𝑠ℎ+1)],

where 𝑇∗, 𝜃
ℎ

(𝑈ℎ) (𝑠ℎ) = max
𝜋ℎ∈Δ(A)

〈
𝑈ℎ (𝑠ℎ, ·, ·), 𝜋ℎ ⊗ 𝜐

𝜋,𝜃

ℎ
(·, · | 𝑠ℎ)

〉
.

The corresponding Bellman error is defined as:

𝑙𝑖ℎ (𝑈
′
ℎ,𝑈ℎ+1, 𝜃) (𝑠𝑖ℎ, 𝑎

𝑖
ℎ, 𝑏

𝑖
ℎ, 𝑠

𝑖
ℎ+1) = (𝑈′

ℎ − 𝑢ℎ) (𝑠𝑖ℎ, 𝑎
𝑖
ℎ, 𝑏

𝑖
ℎ) − 𝑇

∗, 𝜃
ℎ+1𝑈ℎ+1 (𝑠𝑖ℎ+1). (4.7)

Then, we estimate 𝑈★
ℎ

by minimizing the Bellman error, and the loss function is defined as

𝐿𝑡ℎ,2 (𝑈, 𝜃) =
𝑡−1∑︁
𝑖=1

𝑙𝑖ℎ (𝑈ℎ,𝑈ℎ+1, 𝜃ℎ+1)2 − inf
𝑈′∈Uℎ

𝑡−1∑︁
𝑖=1

𝑙𝑖ℎ (𝑈
′,𝑈ℎ+1, 𝜃ℎ+1)2. (4.8)

Greedy Planning after Estimation. After identifying the loss functions we use to bound the
two types of unknown quantities that are mentioned in Section 4.2, we propose Planning after
Estimation (PES, Algorithm 1) for solving online Stackelberg Games in the context of general
function approximations. We first give a generic algorithm framework and then compare our
algorithm with other concurrent works.

Algorithm 1 Planning after Estimation (PES)
1: Initial: D = ∅.
2: for 𝑡 = 1, 2, · · · , 𝑇 do
3: Calculate 𝑈𝑡 , 𝜃𝑡 = arg max𝑈,𝜃

(
𝑊
𝑈,𝜃

1 (𝑠1) − 𝜂1
∑𝐻
ℎ=1 𝐿

𝑡
ℎ,1 (𝜃ℎ) − 𝜂2

∑𝐻
ℎ=1 𝐿

𝑡
ℎ,2 (𝑈ℎ, 𝜃ℎ)

)
.

4: Execute 𝜋𝑡 = arg max𝜋∈Π
〈
𝑈𝑡1 (𝑠1, ·, ·), 𝜋1 ⊗ 𝜐

𝜋,𝜃 𝑡

1 (·, · | 𝑠1)
〉
A×B

.
5: Collect data 𝐷𝑡 = {𝐷𝑡

ℎ
}ℎ∈[𝐻 ] with 𝐷𝑡

ℎ
= (𝑠𝑡

ℎ
, 𝑎𝑡
ℎ
, 𝑏𝑡
ℎ
, 𝑢𝑡
ℎ
, 𝜋𝑡
ℎ
), and update D = D ∪ 𝐷𝑡 .

6: end for
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In each episode 𝑡 ∈ [𝑇], the agent first estimates the value function 𝑈𝑡 and reward function 𝜃𝑡 using
historical data {𝐷𝑠}𝑠∈[𝑡−1] by maximizing a composite objective given in Algorithm 1. Specifically,
in order to achieve exploiting history knowledge while encouraging exploration, the agent considers
the composite objective that sums: (a) the negative log-likelihood loss 𝐿𝑡

ℎ,1 (𝜃
𝑡 ), which represents

the exploitation of the agent’s current knowledge of the follower’s policy; (b) the Bellman error
𝐿𝑡
ℎ,2 (𝑈

𝑡 , 𝜃𝑡 ), which represents the exploitation of the agent’s current knowledge on the Bellman
target; (c) the expected total return of the optimal policy associated with our chosen (𝑈𝑡 , 𝜃𝑡 ), i.e.,
𝑊
𝑈𝑡 , 𝜃 𝑡

1 , which represents exploration for a higher return. With tuning parameters 𝜂1, 𝜂2, the agent
balances the weight put on the tasks of exploitation and exploration.

Then the agent predicts 𝜋𝑡 via the optimal policy associated with the solved (𝑈𝑡 , 𝜃𝑡 ), execute 𝜋𝑡 to
collect data 𝐷𝑡 = {(𝑠𝑡

ℎ
, 𝑎𝑡
ℎ
, 𝑏𝑡
ℎ
, 𝑢𝑡
ℎ
, 𝜋𝑡
ℎ
}ℎ∈[𝐻 ] , and update the loss function 𝐿𝑡

ℎ,1, 𝐿
𝑡
ℎ,2.

Comparison with Optimistic Planning (Chen et al., 2023) The algorithm proposed in Chen et al.
(2023) first built a confidence set CU,Θ for (𝑈★, 𝜃★), and then predicts 𝜋 via optimal policy with
solved (𝑈𝑡 , 𝜃𝑡 ). We could formulate their estimation and planning steps as:

(𝑈𝑡 , 𝜃𝑡 ) = arg max
(𝑈,𝜃 ) ∈CU,Θ (𝛽)

〈
𝑈1 (𝑠1, ·, ·), 𝜋1 ⊗ 𝜐

𝜋,𝜃

1 (·, · | 𝑠1))
〉
A×B ,

𝜋𝑡 (𝑠ℎ) = arg max
𝜋∈[Δ(A) ]𝐻

〈
𝑈𝑡1 (𝑠1, ·, ·), 𝜋1 ⊗ 𝜐

𝜋,𝜃 𝑡

1 (·, · | 𝑠1)
〉
A×B

.

The most important difference between our PES algorithm and their optimistic planning algorithm
is that they need to solve a constrained optimization problem inside the complicated confidence
set, which is often intractable in practice. The reason is that the confidence set CU,Θ is coupled.
Intuitively, it can be written as

CU,Θ = {(𝑈, 𝜃) : 𝜃 ∈ CΘ,𝑈 ∈ CU (𝜃)}.

Here CΘ a confidence set for 𝜃★, constructed by the MLE loss in (4.6) for estimating 𝜃★, and CU (𝜃) is
a confidence for 𝑈★ based on the Bellman error in (4.7), which involves a parameter 𝜃. Instead, PES
only needs to maximize a composite objective, i.e. solve an unconstrained optimization problem,
which is not only tractable but also easy to implement in practice.

We need to highlight that PES is not a Lagrangian duality of the constrained optimization objectives
within data-dependent level-sets proposed by Chen et al. (2023) or any other optimistic planning
algorithm that could potentially solve this task. In fact, PES could fix the parameter choice 𝜂1, 𝜂2
across each episode 𝑡. Thus 𝜂1, 𝜂2 is independent of data and predetermined, which contrasts
Lagrangian methods that involve an inner loop of optimization for the dual variables.

5 Regret Analysis for PES Algorithm

5.1 General Function Approximation

It is well known that RL with function approximation is intractable without any further assumptions
(Krishnamurthy et al., 2016; Weisz et al., 2021). Therefore, it is common to make additional
assumptions over the function class in the literature on general function approximation in MDPs,
especially for the realizability and completeness assumptions (Wang et al., 2020; Jin et al., 2021;
Dann et al., 2021).

Value Function Approximation. As MSG could be seen as an extension of MDPs, the generalized
realizability and completeness assumptions are also adopted in this work.
Assumption 2 (Realizability of Value Function). For the Stackelberg equilibrium, it holds that
𝑈★
ℎ
∈ Uℎ. Moreover, for any 𝜋 ∈ Π and any 𝜃 ∈ Θ, it holds that 𝑈 𝜋,𝜃

ℎ
∈ Uℎ, where we define

𝑈
𝜋,𝜃

ℎ
(𝑠, 𝑎, 𝑏) = 𝑢ℎ (𝑠, 𝑎, 𝑏) + 𝑃ℎ𝑊

𝜋,𝜃

ℎ+1 , 𝑊
𝜋,𝜃

ℎ
(𝑠) =

〈
𝑈
𝜋,𝜃

ℎ
(𝑠, ·, ·), 𝜋ℎ ⊗ 𝜐

𝜋,𝜃

ℎ
(·, · | 𝑠)

〉
A×B .

Assumption 3 (Completeness of Value Function). For any 𝑈 ∈ U, 𝜋 ∈ Π, and 𝜃 ∈ Θ, we have
T𝜋,𝜃
ℎ

𝑈 ∈ Uℎ. That is, the Bellman operator T𝜋,𝜃
ℎ

is closed with respect to U.
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In the previous subsection, we introduced the Bellman errors in equation (4.7). However, our regret
analysis is more related to the squared Bellman errors. Such phenomena have been well studied in the
literature of single-agent setting (Dann et al., 2021) and multiple-agent setting (Xiong et al., 2022).
Following Xiong et al. (2022), here we define the decoupling coefficient to capture the hardness of
our learning problem.
Definition 1 (Multi-agent Decoupling Coefficient). Given a two-player Stackelberg Game M, a
function class F and a set of probability measure 𝜚, the decoupling coefficient 𝑑 (M, F , 𝜚) is the
smallest real number 𝑑 such that for any 𝜇 > 0 and any {𝜌𝑡 }𝑡∈[𝑇 ]⊆ 𝜚 , we have

𝐻∑︁
ℎ=1

𝑇∑︁
𝑡=1

E𝜌
𝑡 [ 𝑓 𝑡 (𝑠ℎ, 𝑎ℎ, 𝑏ℎ)] ≤ 𝜇 ·

𝐻∑︁
ℎ=1

𝑇∑︁
𝑡=1

𝑡−1∑︁
𝑖=1

E𝜌
𝑖 [
( 𝑓 𝑡 (𝑠ℎ, 𝑎ℎ, 𝑏ℎ))2] + 𝑑

4𝜇
.

Then we identify the Bellman residual class 𝐺𝐿 = {𝑈ℎ − T∗, 𝜃
ℎ

𝑈ℎ+1,𝑈ℎ ∈ Uℎ,𝑈ℎ+1 ∈ Uℎ+1, 𝜃 ∈
Θ, ℎ ∈ [𝐻]} and the decoupling coefficient 𝑑1 = 𝑑 (M, 𝐺𝐿 , 𝜚1) to capture the complexity of leader’s
Bellman error, where

𝜚1 = {𝜌 ∈ Δ(S × A × B) : 𝜌 = P𝜋 ((𝑠ℎ, 𝑎ℎ, 𝑏ℎ) = (·, ·, ·))}.
is the measure set generated by any (𝜋, 𝜐𝜋 , 𝑃),∀𝜋 ∈ Π.

Follower’s Policy Approximation. Here we still use the decoupling coefficient to capture the
complexity of quantal response error. We identify the reward residual class 𝐺𝐹 = {𝑟 𝜃

ℎ
− 𝑟ℎ, 𝜃 ∈

Θ, ℎ ∈ [𝐻]} and the decoupling coefficient 𝑑2 = 𝑑 (M, 𝐺𝐹 , 𝜚2), where
𝜚2 = {P𝜋 (𝑎ℎ = · | ·, ·)𝛿 (𝑠ℎ ,𝑏ℎ ) (·, ·) − P𝜋 ((𝑎ℎ, 𝑏ℎ) = (·, ·) | ·)𝛿 (𝑠ℎ ) (·),∀𝜋 ∈ Π},

and we define P𝜋 (𝑎ℎ, 𝑏ℎ | 𝑠ℎ) = P𝜋 (𝑎ℎ | 𝑏ℎ, 𝑠ℎ) · 𝜐𝜋ℎ (𝑏ℎ | 𝑠ℎ), and 𝛿 (𝑠ℎ ,𝑏ℎ ) is the probability
measure that assigns 1 to the pair (𝑠ℎ, 𝑏ℎ).
To simplify the notation, we denote the integral operator T 𝜋

ℎ
as

T 𝜋
ℎ (𝑟) (𝑠ℎ, 𝑏ℎ) = ⟨𝜋ℎ (· | 𝑠ℎ, 𝑏ℎ), 𝑟 (𝑠ℎ, ·, 𝑏ℎ)⟩ − ⟨𝜋ℎ ⊗ 𝑣𝜋ℎ (·, · | 𝑠ℎ), 𝑟 (𝑠ℎ, ·, ·)⟩. (5.1)

Then by the definition of 𝜚2, for any 𝜋 ∈ Π, ℎ ∈ [𝐻], there exists one probability measure 𝜌 ∈ 𝜚2
such that T 𝜋

ℎ
(𝑟) (𝑠ℎ, 𝑏ℎ) = E𝜌 [𝑟 (𝑠ℎ, 𝑏ℎ)] and vice versa.

5.2 Bounds for the Decoupling Coefficient.

Here we provide several examples whose decoupling coefficient is provably small.

Linear MSG The first example is the MSG with linear function approximation, which is generalized
from the definition of linear Markov Game in Xie et al. (2020)
Definition 2 (Linear MSG). We say a Markov Stackelberg game is linear, if there exists a feature
map 𝜙(𝑠, 𝑎, 𝑏) ∈ R𝑑 such that for any (𝑠, 𝑎, 𝑏) ∈ S × A × B, 𝑠′ ∈ S, and ℎ ∈ [𝐻], it holds that
𝑢ℎ (𝑠, 𝑎, 𝑏) = 𝜙(𝑠, 𝑎, 𝑏)⊤𝜑★

ℎ
, 𝑃ℎ (𝑠′ |𝑠, 𝑎, 𝑏) = 𝜙(𝑠, 𝑎, 𝑏)⊤𝜇ℎ (𝑠′) and 𝑟ℎ (𝑠, 𝑎, 𝑏) = 𝜙(𝑠, 𝑎, 𝑏)⊤𝜃★

ℎ
, for

some unknown 𝜑★
ℎ
, 𝜇ℎ (·), 𝜃★ℎ ∈ R𝑑 satisfying max{



𝜃★
ℎ



 , ∥𝜇ℎ∥ , 

𝜑★ℎ

} ≤ √
𝑑

We have the following upper bound for the decoupling coefficient:
Proposition 1. For a 𝑑-dimensional MSG with the function class Uℎ = {(𝜙⊤

ℎ
𝜑ℎ) : ∥𝜑ℎ∥ ≤ (𝐻 −

ℎ + 1)
√
𝑑} and F 𝑟

ℎ
= {(𝜙⊤

ℎ
𝜃ℎ) : ∥𝜃ℎ∥ ≤

√
𝑑} and ∥𝜙(𝑠, 𝑎, 𝑏)∥ ≤ 1, ∀(𝑠, 𝑎, 𝑏) ∈ S × A × B, then

we have
𝑑1, 𝑑2 ≤ 2𝑑𝐻 · (2 + ln(2𝐻𝑇)).

Generalized Linear MSG We consider a MSG with generalized linear function approximation.
Definition 3 (Generalized Linear MSG). We say an MSG is generalized linear, if there exists a
feature map 𝜙(𝑠, 𝑎, 𝑏) ∈ R𝑑 such that for any (𝑠, 𝑎, 𝑏) ∈ S × A × B, 𝑠′ ∈ S, and ℎ ∈ [𝐻], it
holds that 𝑢ℎ (𝑠, 𝑎, 𝑏) = 𝜎(𝜙(𝑠, 𝑎, 𝑏)⊤𝜑★

ℎ
), 𝑃ℎ (𝑠′ |𝑠, 𝑎, 𝑏) = 𝜎(𝜙(𝑠, 𝑎, 𝑏)⊤𝜇ℎ (𝑠′)) and 𝑟ℎ (𝑠, 𝑎, 𝑏) =

𝜎(𝜙(𝑠, 𝑎, 𝑏)⊤𝜃★
ℎ
), for some unknown 𝜑★

ℎ
, 𝜇ℎ (·), 𝜃★ℎ ∈ R𝑑 , where 𝜎 is differentiable and strictly

increasing. We further assume that 𝜎′ ∈ (𝑐1, 𝑐2) for some 𝑐1, 𝑐2 ∈ R.
Proposition 2. For a 𝑑-dimensional MSG with the function class Uℎ = {𝜎(𝜙⊤

ℎ
𝜑ℎ) : ∥𝜑ℎ∥ ≤

(𝐻 − ℎ + 1)
√
𝑑} and F 𝑟

ℎ
= {𝜎(𝜙⊤

ℎ
𝜃ℎ) : ∥𝜃ℎ∥ ≤

√
𝑑} and ∥𝜙(𝑠, 𝑎, 𝑏)∥ ≤ 1, ∀(𝑠, 𝑎, 𝑏) ∈ S × A × B,

then we have
𝑑1, 𝑑2 ≤ 2 · 𝑐2

2/𝑐
2
1 · 𝑑𝐻 · (2 + ln(2𝐻𝑇)).
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5.3 Theoretical Guarantee.

Then we can get the following theorem for the PES algorithm.
Theorem 1. If we choose 𝜂1 = 𝜂2 = 1/

√
𝑇 , then for any 𝛿 ∈ (0, 1/3)with probability at least 1 − 3𝛿,

the Algorithm 1 achieves a regret

Reg(𝑇) ≤
(
𝐻 (𝛽1 + 𝛽2) + 4𝐶2

𝜂𝑑1 + 16(𝐶0 + 𝐶1)2𝑑2

) √
𝑇 + O(𝐻 log(𝐻/𝛿)), (5.2)

where 𝐶𝜂 = O(𝜂−1 + 𝐵𝐴), 𝐵𝐴 = 2(𝜂−1 log( |B|) + 1), 𝐶1 = 𝜂2 exp(2𝜂𝐵𝐴) (2 + 𝜂𝐵𝐴 · exp(2𝜂𝐵𝐴))/2,
and 𝛽1 and 𝛽2 are defined in Lemma 7 and 8 respectively.

Here we provide a proof sketch for Theorem 1 and defer the detailed proof in Appendix B.

Step 1. At first, we decompose the regret into two terms: one is from the estimation error between
(𝑈★, 𝜃★) and (𝑈𝑡 , 𝜃𝑡 ); the other is from the approximation error when we execute the greedy policy
to generate 𝜋𝑡 , i.e. the difference between 𝑊𝑈𝑡 , 𝜃 𝑡 and 𝑊 𝜋𝑡 .

Step 2. To bound the estimation error, we first notice that (𝑈𝑡 , 𝜃𝑡 ) maximizes of the loss function
defined in Algorithm 1. Thus, we could upper bound this error with the difference between the loss
functions. By lemma 7 and 8, we could bound the difference of 𝐿𝑡

ℎ,1 and 𝐿𝑡
ℎ,2, respectively.

Step 3. To bound the approximation error, we introduce the performance difference lemma proposed
by Chen et al. (2023), which decompose the approximation error into the expected Bellman residuals
and the expected estimation error of the follower’s policy.

Step 4. By the decoupling coefficient assumption, we could transfer the errors that we get in Step 3
into terms relevant to Step 2. By choosing the right kind of 𝜂1, 𝜂2, we could get the regret bound.

The main difference between our algorithm and other concurrent works is that our algorithm not
only circumvents the intractable optimistic planning, but also achieves 𝑂̃ (

√
𝑇)-regret guarantee with

simplest hyper-parameter choice: 𝜂1 = 𝜂2 = 1/
√
𝑇 , which means our algorithm is easy-to-implement

and does not need to tune or search the best hyper-parameter.

6 Case Study: Reinforcement Learning with Human Feedback

Our algorithm can also be applied to the Reinforcement Learning with Human Feedback (RLHF)
setting by formulating the RLHF as a turn-based Stackelberg game. Specifically, given the initial
distribution 𝜌 and the prompt 𝑥 ∼ 𝜌, the Large Language Model (leader) generates two outputs
𝑎 = (𝑦1, 𝑦2) as the action, and the human agent’s (follower) action is binary, 𝑦1 ≻ 𝑦2 or 𝑦1 ≺ 𝑦2,
indicating which output the human prefers. We denote 𝑏 = 1 if 𝑦1 ≻ 𝑦2 and 𝑏 = 0 if 𝑦1 ≺ 𝑦2. Finally,
the leader observes the human’s preference and collects the data (𝑥, 𝑎, 𝑏). Define the reward function
𝑅(𝑥, 𝑦) ∈ [0, 1] over the outputs, and the leader’s and follower’s reward functions are given by

𝑢(𝑥, 𝑎, 𝑏) = 𝑅(𝑥, 𝑦1) + 𝑅(𝑥, 𝑦2),∀𝑏 ∈ {0, 1}.
𝑟 (𝑥, 𝑎, 𝑏 = 1) = 𝑅(𝑥, 𝑦1) − 𝑅(𝑥, 𝑦2),
𝑟 (𝑥, 𝑎, 𝑏 = 0) = 𝑅(𝑥, 𝑦2) − 𝑅(𝑥, 𝑦1).

We can simplify the notation 𝑢(𝑥, 𝑎, 𝑏) as 𝑢(𝑥, 𝑎) since it is not dependent on the preference 𝑏. Using
the reward model above, the quantal response of the follower is given by

P(𝑏 = 1 | 𝑥, 𝑎) ∝ exp(𝜂 · 𝑟 (𝑥, 𝑎, 𝑏 = 1)) ∝ exp(𝜂 · (𝑅(𝑥, 𝑦1) − 𝑅(𝑥, 𝑦2)))
P(𝑏 = 0 | 𝑥, 𝑎) ∝ exp(𝜂 · 𝑟 (𝑥, 𝑎, 𝑏 = 0)) ∝ exp(𝜂 · (𝑅(𝑥, 𝑦2) − 𝑅(𝑥, 𝑦1))),

which is exactly the Bradley-Terry model (Bradley & Terry, 1952) in the previous RLHF literature
(Rafailov et al., 2024; Liu et al., 2024b; Xiong et al., 2024; Cen et al., 2024).

The objective of the leader is to maximize the human’s reward with a KL regularization:

max
𝜋

𝐽 (𝑢, 𝜋) := E𝑥∼𝜌,𝑎∼𝜋 ( · |𝑥 ) [𝑢(𝑠, 𝑎)] − 𝛽DKL [𝜋 ∥ 𝜋ref],

where 𝜋ref is the reference policy that usually trains with supervised fine-tuning, and the parameter
𝛽 controls the deviation between the output policy 𝜋 and the reference policy.
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We parameterize the reward function 𝑅(𝑥, 𝑦) using a function class {𝑅𝜃 (𝑥, 𝑦)}𝜃∈Θ. Note that the
preference feedback is only dependent on the difference 𝑅(𝑥, 𝑦1) − 𝑅(𝑥, 𝑦2), hence the reward 𝑅∗ is
only identifiable up to a global shift. Hence, we can construct a base policy 𝜋base and consider the
following reward function class

{𝑅𝜃 : E𝑥∼𝜌,𝑎∼𝜋base [𝑅𝜃 (𝑥, 𝑦)] = 0}
Now we apply our PES algorithm to the RLHF setting. The pseudo-code is shown in Algorithm
2. The corresponding reward function of the follower and the leader are denoted as 𝑢𝜃 (𝑥, 𝑎) and
𝑟 𝜃 (𝑥, 𝑎, 𝑏). We also denote the ground-truth reward function and the optimal policy as 𝑅∗, 𝑢∗, 𝑟∗ and
𝜋∗ respectively. Now in each episode 𝑡 ∈ [𝑇], the agent first estimates the reward function 𝜃𝑡 using
the historical data {𝐷𝑠}𝑠∈[𝑡−1] = {𝑥𝑠 , 𝑎𝑠 , 𝑏𝑠 , 𝜋𝑠}𝑠∈[𝑡−1] by maximizing max𝜋 𝐽 (𝑢𝜃

𝑡

, 𝜋) − 𝜂1𝐿
𝑡 (𝜃),

where

𝐿𝑡 (𝜃) = −
𝑡−1∑︁
𝑖=1

[
𝑏𝑖 log(𝜎(𝜂 · 𝑟 𝜃 (𝑥𝑖 , 𝑎𝑖 , 𝑏𝑖)))

]
is the cross-entropy loss, and 𝜎(𝑧) = 1/(1 + exp(−𝑧)) is the sigmoid function. Then the agent
predicts 𝜋𝑡 via the optimal policy associated with 𝜃𝑡 , and executes 𝜋𝑡 to collect data 𝐷𝑡 . The regret
Reg(𝑇) then can be defined as Equation 3.3.

Algorithm 2 Planning after Estimation-RLHF (PES-RLHF)
1: Initial: D = ∅.
2: for 𝑡 = 1, 2, · · · , 𝑇 do
3: Calculate 𝜃𝑡 = arg max𝜃

(
max𝜋 𝐽 (𝑢𝜃

𝑡

, 𝜋) − 𝜂1𝐿
𝑡 (𝜃)

)
.

4: Execute 𝜋𝑡 = arg max𝜋∈[Δ(A) ]𝐻 𝐽 (𝑢𝜃 𝑡 , 𝜋).
5: Collect data 𝐷𝑡 with 𝐷𝑡 = (𝑠𝑡 , 𝑎𝑡 , 𝑏𝑡 , 𝜋𝑡 ), and update D = D ∪ 𝐷𝑡 .

6: end for

Now we can get the following theoretical result for the RLHF setting.
Theorem 2. If we choose 𝜂1 = 1/

√
𝑇 , then with probability at least 1 − 𝛿, the Algorithm 2 achieves

a regret

Reg(𝑇) ≤ 2
√
𝑇 log

|R |
𝛿

+ 2 · (3 + 𝑒2)2𝜂−2𝑑𝜅 exp(2/𝛽)
√
𝑇, (6.1)

where R is the reward hypothesis function class, 𝜅 = sup𝑥,𝑦
𝜋base (𝑦 |𝑥 )
𝜋ref (𝑦 |𝑥 ) , and 𝑑 is the multi-agent

decoupling coefficient in Definition 1 with
F = { 𝑓 : 𝑓 (𝑥, (𝑦1, 𝑦2), 𝑏) = (𝑅(𝑥, 𝑦1) − 𝑅(𝑥, 𝑦2)) − (𝑅∗ (𝑥, 𝑦1) − 𝑅∗ (𝑥, 𝑦2))}

𝜚 = {𝜌 ∈ P𝜋 (𝑎ℎ = ·, 𝑥 ∼ 𝜌),∀𝜋 ∈ Π}.

The result above shows that the PES algorithm framework can handle the RLHF setting as a special
case, and the resulting PES-RLHF algorithm is similar to the online version of RPO (Liu et al.,
2024b), and the reward-based version of VPO (Cen et al., 2024). Moreover, compared to Cen
et al. (2024), we only relies on the decoupling coefficient of the reward function class, rather than
the stronger linear assumption. Compared to Liu et al. (2024b), they study offline setting with the
coverage assumption and pessimism principle, so the first exploration term max𝜋 𝐽 (𝑢𝜃

𝑡

, 𝜋) changes
the sign (Liu et al., 2024b).

7 Conclusion

In this paper, we propose an easy-to-implement RL algorithm, Planning after Estimation (PES) to
efficiently solve MSG in the context of general function approximation. Compared to the other con-
current works , our algorithm not only circumvents intractable optimistic planning, which involves
joint planning of the leader’s policy, value function, and the follower’s quantal response model. In
the theoretical analysis, we prove that with a set of simple hyper-parameter choices, PES achieves
a sublinear Õ(𝑑𝑐

√
𝑇)-regret with general function approximation, where 𝑑𝑐 is the decoupling coef-

ficient (Xiong et al., 2022) and 𝑇 is the number of episodes. At last, we apply PES to the RLHF
setting by formulating the RLHF as a turn-based Stackelberg game.
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A Technical Lemmas

Lemma 1. Let 𝑍𝑡 be a sequence of random variables, where each 𝑍𝑡 may depend on the previous
observations S𝑡−1 = [𝑍1, ..., 𝑍𝑡−1] ∈ Z𝑡−1. Furthermore, we define a filtration {F𝑡 = 𝜎(S𝑡 )},
which is also the natural filtration of {𝑍𝑡 }. Consider a sequence of real-valued random (measurable)
functions 𝜉1 (S1), ..., 𝜉𝑇 (S𝑇 ). Let 𝜏 ≤ 𝑇 be a stopping time so that I(𝑡 ≤ 𝜏) is measurable in S𝑡 . We
have

ES𝑇
exp

(
𝜏∑︁
𝑡=1

𝜉𝑖 −
𝜏∑︁
𝑡=1

lnE𝑍𝑡 |S𝑡−1𝑒
𝜉𝑡

)
= 1.

Proof. This proof is a revised version of Lemma 13.1 in Zhang (2023). We prove this lemma by
induction. When 𝑇 = 0, the equality apparently holds. We then assume that the claim holds at 𝑇 − 1
for some 𝑇 ≥ 1. Now we will prove the equation at time 𝑇 using the induction hypothesis.

First we define 𝜉𝑡 = 𝜉𝑡 I(𝑡 ≤ 𝜏) and notice that 𝜉𝑡 is measurable in S𝑡 so we have

ES𝑇
exp

(
𝜏∑︁
𝑡=1

𝜉𝑡 −
𝜏∑︁
𝑖=1

lnE𝑍𝑡 |S𝑡−1𝑒
𝜉𝑡

)
=ES𝑇

exp

(
𝑇∑︁
𝑡=1

𝜉𝑡 −
𝑇∑︁
𝑖=1

lnE𝑍𝑡 |S𝑡−1𝑒
𝜉𝑡

)
=ES𝑇−1

[
exp

(
𝑇−1∑︁
𝑡=1

𝜉𝑡 −
𝑇−1∑︁
𝑖=1

lnE𝑍𝑡 |S𝑡−1𝑒
𝜉𝑡

)
E𝑍𝑇 |S𝑇−1 exp

(
𝜉𝑇 − lnE𝑍𝑡 |S𝑡−1𝑒

𝜉𝑇

)]
=ES𝑇−1

[
exp

(
𝑇−1∑︁
𝑡=1

𝜉𝑡 −
𝑇−1∑︁
𝑖=1

lnE𝑍𝑡 |S𝑡−1𝑒
𝜉𝑡

)]
=ES𝑇−1

[
exp

(min(𝜏,𝑇−1)∑︁
𝑡=1

𝜉𝑡 −
min(𝜏,𝑇−1)∑︁

𝑖=1
lnE𝑍𝑡 |S𝑡−1𝑒

𝜉𝑡

)]
=1,

where the third equality exploits the fact that E
𝑍

(𝑦)
𝑇

exp
(
𝜉𝑇 − lnE𝑍𝑡 |S𝑡−1𝑒

𝜉𝑇

)
= 1; and the last

equality is because we could treat min(𝜏, 𝑇 − 1) as a stopping time no more than 𝑇 − 1 and we could
use the induction hypothesis. □

Lemma 2 (Martingale exponential inequality). For a sequence of real-valued random variables
{𝑋𝑡 }𝑡≤𝑇 adapted to a filtration {F𝑡 }𝑡≤𝑇 , the following holds with probability at least 1 − 𝛿, for
∀𝑡 ∈ [𝑇],

−
𝑡∑︁
𝑠=1

𝑋𝑠 ≤
𝑡∑︁
𝑠=1

lnE
[
𝑒−𝑋𝑠 |F𝑠−1

]
+ ln

1
𝛿
.

And also
𝑡∑︁
𝑠=1

𝑋𝑠 ≤
𝑡∑︁
𝑠=1

lnE
[
𝑒𝑋𝑠 |F𝑠−1

]
+ ln

1
𝛿
.

Proof. It only suffices to show the case when {𝜉𝑖}𝑇𝑖=1 is a finite case. The statement implies the
original lemma by pushing 𝑇 → +∞. Let

𝑈𝜏 = −
𝜏∑︁
𝑠=1

𝑋𝑠 −
𝜏∑︁
𝑠=1

lnES𝑡
𝑒−𝑋𝑠 ,

where 𝜏 is some stopping time. By Lemma 1 we have E(exp𝑈𝜏 ) = 1. (In this case, we apply
𝑍𝑠 = 𝜉𝑠 = −𝑋𝑠 in Lemma 1). Now we define the stopping time 𝜏 as

𝜏 = min (𝑇,min (𝑛 : 𝑈𝑛 ≥ − ln 𝛿)) .

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Then it follows that

P (∃𝑛 : 𝑈𝜏 ≥ − ln 𝛿) ≤ E
[
𝑒𝑈𝜏+ln 𝛿 ] = 𝛿E

[
𝑒𝑈𝜏

]
= 𝛿,

where the first inequality is by the famous Markov Inequality.

By considering the complementary event, we know with probability at least 1 − 𝛿, the following
inequality holds for any 𝑡 ∈ [𝑇]

−
𝑡∑︁
𝑠=1

𝑋𝑠 ≤
𝑡∑︁
𝑠=1

lnE
[
𝑒−𝑋𝑠 |F𝑠−1

]
+ ln

1
𝛿
.

□

Lemma 3 (Freedman’s inequality). Let {𝑋𝑡 }𝑡≤𝑇 be any sequence of real-valued random variables
adapted to filtration {F𝑡 }𝑡≤𝑇 . If |𝑋𝑡 | ≤ 𝑅 almost surely, then for any 𝜂 ∈ (0, 1

2𝑅 ] it holds that with
probability at least 1 − 𝛿,

𝑇∑︁
𝑡=1

𝑋𝑡 ≤
𝑇∑︁
𝑡=1

E(𝑋𝑡 |F𝑡−1) + 𝜂

𝑇∑︁
𝑡=1

Var [𝑋𝑡 |F𝑡−1] +
ln 1

𝛿

𝜂
.

Furtheremore, we have
𝑇∑︁
𝑡=1

E(𝑋𝑡 |F𝑡−1) ≤
𝑇∑︁
𝑠=1

𝑋𝑠 + 𝜂

𝑇∑︁
𝑠=1

Var [𝑋𝑠 |F𝑠−1] +
ln 1

𝛿

𝜂
.

Proof. For any random variable 𝑋 we assume |𝑋 | ≤ 𝑅 almost surely, and let 𝑋 ′ = 𝑋 −E𝑋 . We then
get |𝑋 ′ | ≤ 2𝑅 almost surely, and we have

lnE
[
𝑒𝜆𝑋

]
= 𝜆E𝑋 + lnE𝑒𝜆𝑋

′

≤ 𝜆E𝑋 + E𝑒𝜆𝑋
′ − 1

= 𝜆E𝑋 + 𝜆2E
[
𝑒𝜆𝑋

′−𝜆𝑋′−1

(𝜆𝑋 ′)2 (𝑋 ′)2
]

≤ 𝜆E𝑋 + 𝜆2𝜙(𝜆2𝑅)Var [𝑋] ,

where 𝜙(𝑥) = 𝑒𝑥−𝑥−1
𝑥2 ; the first inequality uses ln 𝑥 ≤ 𝑥 − 1; the second inequality exploits the fact

that 𝜙(𝑥) is non-decreasing. Then, we consider the Taylor expansion: 𝑒𝑥 =
∑∞
𝑛=0

𝑥𝑛

𝑛! , and we have

𝜙(𝑥) =
∞∑︁
𝑛=2

(
𝑥𝑛−2

𝑛!

)
≤ 1

2

∞∑︁
𝑛=0

( 𝑥
2

)𝑛
.

For any 𝜆 ∈ (0, 1
2𝑅 ], we could get a finite upper bound for lnE

[
𝑒𝜆𝑋

]
:

lnE
[
𝑒𝜆𝑋

]
≤ 𝜆E𝑋 + 𝜆2 1

2

∞∑︁
𝑛=0

(𝜆𝑅)𝑛 Var [𝑋] = 𝜆E𝑋 + 𝜆2Var [𝑋]
2(1 − 𝜆𝑅) . (A.1)

Similar to Lemma 2, we let

𝑉𝜏 (𝜆) = 𝜆

𝜏∑︁
𝑠=1

𝑋𝑠 −
𝜏∑︁
𝑠=1

lnES𝑡
𝑒𝜆𝑋𝑠 ,

where 𝜏 is some stopping time. By Lemma 1 we have E(exp𝑉𝜏 (𝜆) ) = 1. (In this case, we apply
𝑍𝑠 = 𝜉𝑠 = 𝑋𝑠 in Lemma 1). Now we define the stopping time 𝜏 as

𝜏 = min (𝑇,min (𝑛 : 𝑉𝑛 (𝜆) ≥ − ln 𝛿)) .
Then it follows that

P (∃𝑛 : 𝑉𝜏 (𝜆) ≥ − ln 𝛿) ≤ E
[
𝑒𝑉𝜏 (𝜆)+ln 𝛿 ] = 𝛿E [𝑉𝜏 (𝜆)] = 𝛿,

where the first inequality is by the famous Markov Inequality.
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By considering the complementary event, we know with probability at least 1 − 𝛿, the following
inequality holds

𝑇∑︁
𝑠=1

𝑋𝑠 ≤
1
𝜆

(
𝑇∑︁
𝑠=1

lnE
[
𝑒𝜆𝑋𝑠 |F𝑠−1

]
+ ln

1
𝛿

)
.

Then we take 𝜆 = 𝜂 ∈ (0, 1
2𝑅 ] and use equation (A.1) to prove the original statement:

𝑇∑︁
𝑠=1

𝑋𝑠 ≤
𝑇∑︁
𝑡=1

E(𝑋𝑡 |F𝑡−1) +
𝜂
∑𝑇
𝑠=1 Var [𝑋𝑠 |F𝑠−1]

2(1 − 𝜂𝑅) +
ln 1

𝛿

𝜂

≤
𝑇∑︁
𝑡=1

E(𝑋𝑡 |F𝑡−1) + 𝜂

𝑇∑︁
𝑠=1

Var [𝑋𝑠 |F𝑠−1] +
ln 1

𝛿

𝜂
.

By letting 𝑋 ′
𝑠 = −𝑋𝑠 , we could easily get

𝑇∑︁
𝑡=1

E(𝑋𝑡 |F𝑡−1) ≤
𝑇∑︁
𝑠=1

𝑋𝑠 + 𝜂

𝑇∑︁
𝑠=1

Var [𝑋𝑠 |F𝑠−1] +
ln 1

𝛿

𝜂
.

□

Lemma 4 (Elliptical Potential Lemma). Let {𝑥𝑠}𝑠∈[𝑘 ] be a sequence of vectors with 𝑥𝑠 ∈ V for
some Hilbert space V. Let Λ0 be a positive definite matrix and define Λ𝑘 = Λ0 +

∑𝑘
𝑠=1 𝑥𝑠𝑥

⊤
𝑠 . Then

it holds that
𝑘∑︁
𝑠=1

min
{
1, ∥𝑥𝑠 ∥Λ−1

𝑠

}2
≤ 2 ln

(
det(Λ𝐾+1)

det(Λ0)

)
.

Proof. This proof mainly follows Lemma 11 in Abbasi-Yadkori et al. (2011). By simple calculation,
we have

det(Λ𝑘) = det(Λ𝑘−1 + 𝑥𝑘𝑥
⊤
𝑘 ) = det(Λ𝑘−1) det(𝐼 + Λ

− 1
2

𝑘−1𝑥𝑘 (Λ
− 1

2
𝑘−1𝑥𝑘)

⊤)

= det(Λ𝑘−1) (1 + ∥𝑥𝑛−1∥2
Λ−1
𝑘−1

) = det(Λ0)
𝑘∏
𝑠=1

(
1 + ∥𝑠𝑠 ∥2

Λ−1
𝑠−1

)
,

where we use the fact that all eigenvalues of a matrix of the form 𝐼 + 𝑥𝑥⊤ are 1 except one eigenvalue,
which is 1 + ∥𝑥∥2

2 and which corresponds to the eigenvector 𝑥. Using log(1 + 𝑡) ≤ 𝑡, we can bound
log(det(Λ𝑘)) by

log det(Λ𝑘) ≤ log det(Λ0) +
𝑘∑︁
𝑠=1

∥𝑥𝑠 ∥2
Λ−1
𝑠−1

.

Combining 𝑥 ≤ 2 log(1 + 𝑥) when 𝑥 ∈ [0, 1], we get
𝑘∑︁
𝑠=1

min
(
1, ∥𝑥𝑠 ∥2

Λ−1
𝑠−1

)
≤ 2

𝑛∑︁
𝑡=1

log
(
1 + ∥𝑥𝑠 ∥2

Λ−1
𝑠−1

)
= 2 ln

(
det(Λ𝑘)
det(Λ0)

)
.

□

Lemma 5. (Lemma G.2 of Chen et al. (2023)) We consider a fixed policy 𝜋 and Let 𝑄̃ be an estimate
of 𝑄 𝜋 . We define a V-function 𝑉̃ and an advantage function 𝐴̃ by letting

𝑉̃ℎ (𝑠) =
1
𝜂

log

(∑︁
𝑏∈B

exp(𝜂 · 𝑄̃ℎ (𝑠, 𝑏))
)
, 𝐴̃ℎ (𝑠, 𝑎) = 𝑄̃ℎ (𝑠, 𝑏) − 𝑉̃ℎ (𝑠).

Furthermore, we define a follower’s policy 𝜐̃ be letting 𝜐̃ℎ (𝑏 |𝑠) = exp(𝜂 · 𝐴̃ℎ (𝑠, 𝑏)). Then we have

DH (𝜐𝜋 , 𝜐̃) ≥
𝜂2

8(1 + 𝜂𝐵𝐴)2 ·
〈
𝜐𝜋 , ( 𝐴̃ − 𝐴)2〉

B .

where 𝐵𝐴 = 2
(
𝜂−1 log |B| + 1

)
.
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Lemma 6. For any ℎ ∈ [𝐻] and (𝑠ℎ, 𝑏ℎ) ∈ S ×B, using the same notation as in Lemma 5, we have

𝐴𝜋ℎ (𝑠ℎ, 𝑏ℎ) − 𝐴̃ℎ (𝑠ℎ, 𝑏ℎ) = (E𝑠ℎ ,𝑏ℎ − E𝑠ℎ )
[
𝑄ℎ (𝑠ℎ, 𝑏ℎ) 𝜋 − 𝑄̃ℎ (𝑠ℎ, 𝑏ℎ)

]
+ 1
𝜂

KL
(
𝜐𝜋ℎ ∥𝜐̃ℎ

)
.

Proof. This proof mainly follows Lemma G.4 in Chen et al. (2023). At first,we notice the fact that
1
𝜂
H(𝜐𝜋ℎ ) = −1

𝜂

〈
𝜐𝜋ℎ , log 𝜐𝜋ℎ

〉
B = −

〈
𝜐𝜋ℎ , 𝑄

𝜋
ℎ (𝑠ℎ, 𝑏ℎ) −𝑉 𝜋ℎ (𝑠ℎ)

〉
B , (A.2)

1
𝜂
H(𝜐̃ℎ) = −1

𝜂

〈
𝜐̃𝜋ℎ , log 𝜐̃ℎ

〉
B = −

〈
𝜐̃ℎ, 𝑄̃ℎ (𝑠ℎ, 𝑏ℎ) − 𝑉̃ℎ (𝑠ℎ)

〉
B . (A.3)

Then we could write the difference of V-functions as

𝑉 𝜋ℎ (𝑠ℎ) − 𝑉̃ℎ (𝑠ℎ)
=

〈
𝜐𝜋ℎ , 𝑉

𝜋
ℎ (𝑠ℎ)

〉
B −

〈
𝜐̃ℎ, 𝑉̃ℎ (𝑠ℎ)

〉
B

=
〈
𝜐𝜋ℎ , 𝑄

𝜋
ℎ (𝑠ℎ, 𝑏ℎ)

〉
B + 1

𝜂
H(𝜐𝜋ℎ ) −

〈
𝜐̃ℎ, 𝑄̃ℎ (𝑠ℎ, 𝑏ℎ)

〉
B − 1

𝜂
H(𝜐ℎ)

=
〈
𝜐𝜋ℎ , 𝑄

𝜋
ℎ (𝑠ℎ, 𝑏ℎ) − 𝑄̃ℎ (𝑠ℎ, 𝑏ℎ)

〉
B +

〈
𝜐𝜋ℎ − 𝜐̃ℎ, 𝑄̃ℎ (𝑠ℎ, 𝑏ℎ)

〉
B

−
〈
𝜐𝜋ℎ , 𝑄

𝜋
ℎ (𝑠ℎ, 𝑏ℎ) −𝑉 𝜋ℎ (𝑠ℎ)

〉
B +

〈
𝜐̃ℎ, 𝑄̃ℎ (𝑠ℎ, 𝑏ℎ) − 𝑉̃ℎ (𝑠ℎ)

〉
B ,

where the first equality exploits the fact that 𝑉ℎ (𝑠ℎ) is constant w.r.t. 𝑏ℎ ∈ B and 𝜐𝜋
ℎ
, 𝜐̃ℎ are

probability distributions on B; the second equality is by equation (A.2); the last equality is by simple
algebraic tricks.

Then, by direct calculation and omitting (𝑠ℎ, 𝑏ℎ) for 𝑄 𝜋
ℎ
, 𝑄̃ℎ and (𝑠ℎ) for 𝑉ℎ, 𝑉̃ℎ, we have

−
〈
𝜐𝜋ℎ , 𝑄

𝜋
ℎ −𝑉 𝜋ℎ − (𝑄̃ℎ − 𝑉̃ℎ)

〉
B =

〈
𝜐𝜋ℎ − 𝜐̃ℎ, 𝑄̃ℎ

〉
B −

〈
𝜐𝜋ℎ , 𝑄

𝜋
ℎ −𝑉 𝜋ℎ

〉
B +

〈
𝜐̃ℎ, 𝑄̃ℎ − 𝑉̃ℎ

〉
B ,

where we use the fact
〈
𝜐𝜋
ℎ
, 𝑉ℎ

〉
B =

〈
𝜐̃ℎ, 𝑉̃ℎ

〉
B , since 𝑉̃ℎ is a constant w.r.t. 𝑏ℎ ∈ B. Therefore, we

can write 𝑉 𝜋
ℎ
(𝑠ℎ) − 𝑉̃ℎ (𝑠ℎ) as

𝑉 𝜋ℎ (𝑠ℎ) − 𝑉̃ℎ (𝑠ℎ)
=

〈
𝜐𝜋ℎ , 𝑄

𝜋
ℎ (𝑠ℎ, 𝑏ℎ) − 𝑄̃ℎ (𝑠ℎ, 𝑏ℎ)

〉
B −

〈
𝜐ℎ, 𝑄

𝜋
ℎ (𝑠ℎ, 𝑏ℎ) −𝑉 𝜋ℎ (𝑠ℎ) − (𝑄̃ℎ (𝑠ℎ, 𝑏ℎ) −𝑉ℎ (𝑠ℎ))

〉
B

=
〈
𝜐𝜋ℎ , 𝑄

𝜋
ℎ (𝑠ℎ, 𝑏ℎ) − 𝑄̃ℎ (𝑠ℎ, 𝑏ℎ)

〉
B −

〈
𝜐ℎ, 𝐴

𝜋
ℎ (𝑠ℎ, 𝑏ℎ) − 𝐴̃ℎ (𝑠ℎ, 𝑏ℎ)

〉
B

=
〈
𝜐𝜋ℎ , 𝑄

𝜋
ℎ (𝑠ℎ, 𝑏ℎ) − 𝑄̃ℎ (𝑠ℎ, 𝑏ℎ)

〉
B − 1

𝜂
KL

(
𝜐𝜋ℎ ∥𝜐̃ℎ

)
B .

We notice the fact that KL
(
𝜐𝜋
ℎ
∥𝜐̃ℎ

)
= 𝜂

〈
𝜐𝜋
ℎ
, 𝐴𝜋

ℎ
(𝑠ℎ, 𝑏ℎ) − 𝐴̃ℎ (𝑠ℎ, 𝑏ℎ)

〉
𝑏∈B . At last, we could get

𝐴𝜋ℎ (𝑠ℎ, 𝑏ℎ) − 𝐴̃ℎ (𝑠ℎ, 𝑏ℎ) = (E𝑠ℎ ,𝑏ℎ − E𝑠ℎ )
[
𝑄 𝜋
ℎ (𝑠ℎ, 𝑏ℎ) − 𝑄̃ℎ (𝑠ℎ, 𝑏ℎ)

]
+ 1
𝜂

KL
(
𝜐𝜋ℎ ∥𝜐̃ℎ

)
.

□

Lemma 7. We define a distance 𝜌1 on Θ by letting

𝜌1 (𝜃, 𝜃) := max
𝜋∈Π,𝑠ℎ∈S,ℎ∈[𝐻 ]

{
𝐷H

(
𝜐
𝜋,𝜃

ℎ
(·|𝑠ℎ), 𝜐𝜋,𝜃ℎ

(·|𝑠ℎ)
)
, (1 + 𝜂)




𝑟 𝜋,𝜃
ℎ

− 𝑟
𝜋,𝜃

ℎ





∞

}
. (A.4)

Let N𝜌1 (𝜃, 𝜖) be the 𝜖-covering number of Θ with respect to the distance 𝜌1. For any 𝛿 ∈ (0, 1), we
set 𝛽1 = 2 ln(𝐻 · N (Θ, 𝑇−1)/𝛿) + 8. For ∀𝜃 ∈ Θ,∀ℎ ∈ [𝐻],

𝑡−1∑︁
𝑖=1

E𝜋
𝑖

Var𝜋
𝑖 , 𝜃★

𝑠ℎ

[
𝑟
𝜋𝑖 , 𝜃

ℎ
(𝑠ℎ, 𝑏ℎ) − 𝑟

𝜋𝑖 , 𝜃★

ℎ
(𝑠ℎ, 𝑏ℎ)

]
≤ 4𝐶2

𝜂 (𝐿𝑡ℎ,1 (𝜃) − 𝐿𝑡ℎ,1 (𝜃
★)) + 𝛽,

where we define

Var𝜋,𝜃𝑠ℎ
[𝑍] = Var𝜋,𝜃 [𝑍 |𝑠ℎ] = E𝜋ℎ ,𝜐

𝜋,𝜃

ℎ [(𝑍 − E𝜋ℎ ,𝜐
𝜋,𝜃

ℎ [𝑍 |𝑠ℎ])2 |𝑠ℎ],

𝐶𝜂 =
1
𝜂
+ 𝐵𝐴, 𝐵𝐴 = 2(𝜂−1 log |B| + 1).
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Proof. We first exploit Lemma 2 with 𝑋ℎ𝑡 = 1
2 (log 𝜐𝜋𝑖 , 𝜃

ℎ
(𝑠𝑡
ℎ
|𝑏𝑡
ℎ
) − log 𝜐𝜋𝑖 , 𝜃

★

ℎ
(𝑠𝑡
ℎ
|𝑏𝑡
ℎ
)). We choose

filtration to be Fℎ;𝑡−1{𝑋ℎ𝑖 : 𝑖 ∈ [𝑡 − 1]}. Let N𝜌1 (Θ, 𝜖) be the covering number for the 𝜖-covering
net of Θ with respect to norm 𝜌1 defined in A.4. Let Θ𝜖 be the 𝜖-covering net of Θ. By Lemma 2,
w.p. at least 1 − 𝛿, for a fixed 𝜃 ∈ Θ𝜖 and a fixed ℎ ∈ [𝐻], we have

𝑡−1∑︁
𝑡=1

𝑋ℎ𝑡 =
1
2
(𝐿𝑡ℎ,1 (𝜃

★) − 𝐿𝑡ℎ,1 (𝜃))

(𝑎)
≤

𝑡−1∑︁
𝑡=1

logE(𝑒𝑋𝑡 |F𝑡−1) +
1
𝛿

(𝑏)
=

𝑡−1∑︁
𝑖=1

logE𝜋
𝑖

[√︄
𝜐𝜋𝑖 , 𝜃 (·|𝑠ℎ)
𝜐𝜋𝑖 , 𝜃

★ (·|𝑠ℎ)

]
+ 1
𝛿

(𝑐)
≤ −

𝑡−1∑︁
𝑖=1

E𝜋
𝑖
[
D2
H

(
𝜐𝜋𝑖 , 𝜃 (·|𝑠ℎ), 𝜐𝜋𝑖 , 𝜃

★ (·|𝑠ℎ)
)]

+ 1
𝛿
,

where the first equality is by the definition of 𝐿𝑡
ℎ,1; (a) is by Lemma 2; (b) is by the definition of 𝑋𝑡 ;

(c) is by the fact that log(𝑥) ≤ 𝑥 − 1 and the definition of Hellinger distance.

By taking union bound on 𝜃 ∈ Θ𝜖 and ℎ ∈ [𝐻], we have for any 𝜃 ∈ Θ, any ℎ ∈ [𝐻], with probability
at least 1 − 𝛿, for ∀𝑡 ∈ [𝑇]

1
2
(𝐿𝑡ℎ,1 (𝜃

★) − 𝐿𝑡ℎ,1 (𝜃)) ≤ −
𝑡−1∑︁
𝑖=1

E𝜋
𝑖
[
D2
H

(
𝜐𝜋𝑖 , 𝜃 (·|𝑠ℎ), 𝜐𝜋𝑖 , 𝜃

★ (·|𝑠ℎ)
)]

+
log

(
𝐻N𝜌 (Θ, 𝜖)

)
𝛿

. (A.5)

On the other hand, by the definition of 𝜌1 in equation (A.4), for any 𝜃, 𝜃 ∈ Θ, we have���D2
H

(
𝜐
𝜋,𝜃

ℎ
, 𝜐
𝜋,𝜃★

ℎ

)
− D2

H

(
𝜐
𝜋,𝜃

ℎ
, 𝜐
𝜋,𝜃★

ℎ

)���
(𝑎)
=

���DH (
𝜐
𝜋,𝜃

ℎ
, 𝜐
𝜋,𝜃★

ℎ

)
+ DH

(
𝜐
𝜋,𝜃

ℎ
, 𝜐
𝜋,𝜃★

ℎ

)��� · ���DH (
𝜐
𝜋,𝜃

ℎ
, 𝜐
𝜋,𝜃★

ℎ

)
− DH

(
𝜐
𝜋,𝜃

ℎ
, 𝜐
𝜋,𝜃★

ℎ

)���
(𝑏)
≤ 2DH

(
𝜐
𝜋,𝜃

ℎ
, 𝜐
𝜋,𝜃

ℎ

)
(𝑐)
≤ 2𝜌1 (𝜃, 𝜃),

where (a) is by the fact that 𝑎2−𝑏2 = (𝑎+𝑏) (𝑎−𝑏) ≤ |𝑎+𝑏 | |𝑎−𝑏 |; (b) is by the fact that DH (·, ·) ≤ 1;
(c) is by the definition of 𝜌1. Then noting that 𝐿𝑡

ℎ,1 (𝜃) = −∑𝑡
𝑖=1 𝜂𝐴

𝜋𝑖 , 𝜃

ℎ
(𝑠𝑖
ℎ
, 𝑏𝑖
ℎ
), for any 𝜃, 𝜃 ∈ Θ,

we have ���𝐿𝑡ℎ,1 (𝜃) − 𝐿𝑡ℎ,1 (𝜃)
��� ≤ 𝜂𝑇 max

𝑖∈[𝑡−1]

���𝐴𝜋𝑖 , 𝜃
ℎ

(𝑠𝑖ℎ, 𝑏
𝑖
ℎ) − 𝐴

𝜋𝑖 , 𝜃

ℎ
(𝑠𝑖ℎ, 𝑏

𝑖
ℎ)

���
≤ 2𝜂𝑇 max

𝑖∈[𝑡−1]




𝑟 𝜋𝑖 , 𝜃
ℎ

− 𝑟
𝜋𝑖 , 𝜃

ℎ





∞

≤ 2𝑇 · 𝜌1 (𝜃, 𝜃),

where the second inequality uses the fact that
���(𝑉 𝜋,𝜃

ℎ
−𝑉

𝜋,𝜃

ℎ

)
(𝑠ℎ)

��� ≤ 


𝑟 𝜋,𝜃
ℎ

− 𝑟
𝜋,𝜃

ℎ





∞

; and the last
inequality is by the definition of 𝜌1. Therefore, all the error terms in D2

H (·, ·), 𝐿𝑡ℎ,1 (𝜃
★) and 𝐿𝑡

ℎ,1 (𝜃)
induced by 𝜖-net could be bounded by 2𝑇𝜖 . By adding an extra 4𝑇𝜖 in equation (A.5), we have for
all 𝜃 ∈ Θ, ℎ ∈ [𝐻], 𝑡 ∈ [𝑇], w.p. 1 − 𝛿,

1
2
(𝐿𝑡ℎ,1 (𝜃

★) − 𝐿𝑡ℎ,1 (𝜃)) ≤ −
𝑡−1∑︁
𝑖=1

E𝜋
𝑖
[
D2
H

(
𝜐𝜋𝑖 , 𝜃 (·|𝑠ℎ), 𝜐𝜋𝑖 , 𝜃

★ (·|𝑠ℎ)
)]

+
log

(
𝐻N𝜌 (Θ, 𝜖)

)
𝛿

+ 4𝑇𝜖.

(A.6)
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In the rest of the proof we take 𝜖 = 1
𝑇

and let 𝛽1 = 2 log(𝐻N𝜌 (Θ, 𝑇−1)/𝛿) + 8. By Lemma 5, we
have

8D2
H

(
𝜐𝜋𝑖 , 𝜃 (·|𝑠ℎ), 𝜐𝜋𝑖 , 𝜃

★ (·|𝑠ℎ)
)
≥

(
𝜂

1 + 𝜂𝐵𝐴

)2
·
〈
𝜐
𝜋,𝜃★

ℎ
, (𝐴𝜋,𝜃

ℎ
− 𝐴

𝜋,𝜃★

ℎ
)2

〉
≥

(
𝜂

1 + 𝜂𝐵𝐴

)2
· E𝜋,𝜃★𝑠ℎ

(
𝐴
𝜋,𝜃

ℎ
− 𝐴

𝜋,𝜃★

ℎ

)2

≥
(

𝜂

1 + 𝜂𝐵𝐴

)2
· E𝜋,𝜃★𝑠ℎ

(
(E𝜋,𝜃

★

𝑠ℎ ,𝑏ℎ
− E𝜋,𝜃

★

𝑠ℎ
) [𝑟 𝜋,𝜃

ℎ
− 𝑟

𝜋,𝜃★

ℎ
]
)2

=

(
𝜂

1 + 𝜂𝐵𝐴

)2
· Var𝜋

𝑖 , 𝜃★

𝑠ℎ
[𝑟 𝜋,𝜃
ℎ

(𝑠ℎ, 𝑏ℎ) − 𝑟
𝜋,𝜃★

ℎ
(𝑠ℎ, 𝑏ℎ)],

where the second inequality is by Jensen’s inequality of 𝑥2; the last inequality is by Lemma 6; the
last equality is by the definition of Var𝜋

𝑖 , 𝜃
𝑠ℎ (·). Therefore, by letting 𝐶𝜂 = 1

𝜂
+ 𝐵𝐴 and insert the

above result back to equation (A.6), we have
𝑡−1∑︁
𝑖=1

E𝜋
𝑖

Var𝜋
𝑖 , 𝜃★

𝑠ℎ

[
𝑟
𝜋𝑖 , 𝜃

ℎ
(𝑠ℎ, 𝑏ℎ) − 𝑟

𝜋𝑖 , 𝜃★

ℎ
(𝑠ℎ, 𝑏ℎ)

]
≤ 4𝐶2

𝜂 (𝐿𝑡ℎ,1 (𝜃) − 𝐿𝑡ℎ,1 (𝜃
★)) + 𝛽.

□

Lemma 8. Let Fℎ = 𝑈ℎ ×𝑈ℎ+1 × Θ, we define the following distance on for 𝑓 , 𝑓 ∈ Fℎ:

𝜌2 ( 𝑓 , 𝑓 ) := max
ℎ∈[𝐻 ]

{

𝑈ℎ −𝑈ℎ



∞ ,




𝑇★,𝜃
ℎ+1𝑈 (ℎ + 1) (·) − 𝑇

★,𝜃

ℎ+1 𝑈̃ (ℎ + 1) (·)




∞

}
. (A.7)

Let N𝜌2 (𝜃, 𝜖) be the 𝜖-covering number of F with respect to the distance 𝜌2. For any 𝛿 ∈ (0, 1), we
set 𝛽2 = 4𝐻2 ln( 𝐻N𝜌2 (F, 𝜖 )

𝛿
) + 5. For ∀{ 𝑓 𝑡

ℎ
}ℎ∈[𝐻 ],𝑡∈[𝑇 ] ⊆ F

𝐿𝑡−1
ℎ,2 ( 𝑓

★
ℎ ) − 𝐿𝑡−1

ℎ,2 ( 𝑓
𝑡
ℎ) ≤ −1

2

𝑡−1∑︁
𝑖=1

E𝜋
𝑖
[(
𝑈ℎ − T∗, 𝜃 𝑡

ℎ+1 𝑈ℎ+1

)
(𝑠ℎ, 𝑎ℎ, 𝑏ℎ)2

]
+ 𝛽2.

Proof. At first we verify our loss 𝑙𝑡
ℎ

satisfies generalized Bellman completeness and boundedness,
which is defined as follows:

Assumption 4. The function 𝑙 : Uℎ ×Uℎ+1 × Θ × (S × A × B × R × S) → R satisfies:

1. (Generalized Bellman Completeness) There exists a functional operator Pℎ : Hℎ+1 → Hℎ such
that for any (𝑈ℎ,𝑈ℎ+1, 𝜃) ∈ Hℎ ×Hℎ+1 × Θ and 𝐷ℎ = (𝑠ℎ, 𝑎ℎ, 𝑏ℎ, 𝑠ℎ+1) ∈ (S × A × B × R × S).

𝑙 (𝑈ℎ,𝑈ℎ+1, 𝜃; 𝐷ℎ) − 𝑙 (Pℎ𝑈ℎ+1,𝑈ℎ+1, 𝜃; 𝐷ℎ) = E𝑠ℎ+1∼Pℎ ( · |𝑠ℎ ,𝑎ℎ ,𝑏ℎ ) [𝑙 (𝑈ℎ,𝑈ℎ+1, 𝜃; 𝐷ℎ)] ,

where we require Pℎ𝑈★ℎ+1 = 𝑈★
ℎ

and that Pℎ𝑈ℎ+1 ∈ Hℎ for any 𝑈ℎ+1 ∈ Uℎ+1 and ℎ ∈ [𝐻];
2. (Boundedness) It holds that |𝑙 (𝑈ℎ,𝑈ℎ+1, 𝜃; 𝐷ℎ) | ≤ 𝐵𝑙 for some 𝐵𝑙 > 0 and for any (𝑈ℎ,𝑈ℎ+1, 𝜃) ∈
Hℎ ×Hℎ+1 × Θ and 𝐷ℎ = (𝑠ℎ, 𝑎ℎ, 𝑏ℎ, 𝑠ℎ+1) ∈ (S × A × B × R × S).

First we verify the Generalized Bellman Completeness:

𝑙𝑡ℎ (𝑈ℎ,𝑈ℎ+1, 𝜃; 𝐷𝑡ℎ) − E𝑠ℎ+1∼Pℎ ( · |𝑠ℎ ,𝑎ℎ ,𝑏ℎ )
[
𝑙𝑡ℎ (𝑈ℎ,𝑈ℎ+1, 𝜃; 𝐷ℎ)

]
= [(𝑈ℎ − 𝑢ℎ) (𝑠ℎ, 𝑎ℎ, 𝑏ℎ) − 𝑇★,𝜃 (𝑠ℎ+1)] − [𝑈ℎ (𝑠ℎ, 𝑎ℎ, 𝑏ℎ) − T★,𝜃

ℎ+1 (𝑈ℎ+1)]
= T★,𝜃

ℎ+1 (𝑈ℎ+1) − 𝑇★,𝜃 (𝑈ℎ+1) (𝑠ℎ+1)
= (E𝑠ℎ+1∼P( · |𝑠ℎ ,𝑎ℎ ,𝑏ℎ ) [𝑇★,𝜃 (𝑈ℎ+1) (𝑠ℎ+1)] − 𝑢ℎ) (𝑠ℎ, 𝑎ℎ, 𝑏ℎ) − 𝑇★,𝜃 (𝑈ℎ+1) (𝑠ℎ+1).

Therefore, the operator Pℎ is E𝑠ℎ+1∼P( · |𝑠ℎ ,𝑎ℎ ,𝑏ℎ ) [𝑇★,𝜃 (·) (𝑠ℎ+1)] and the generalized Bellman com-
pleteness holds. To check boundedness, we only need to notice that 𝑢ℎ ∈ [0, 1],∀ℎ ∈ [𝐻], so
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|𝑙𝑡
ℎ
(𝑈ℎ,𝑈ℎ+1, 𝜃; 𝐷𝑡

ℎ
) | ≤ 𝐻,∀ℎ ∈ [𝐻]. Then we generalize the proof of Proposition 5.1 in Liu et al.

(2024a) to show our wanted result.

We define the random variables 𝑋 𝑡
ℎ, 𝑓

as

𝑋 𝑡ℎ, 𝑓 = 𝑙𝑡ℎ (𝑈ℎ,𝑈ℎ+1, 𝜃; 𝐷𝑡ℎ)
2 − 𝑙𝑡ℎ (Pℎ𝑈ℎ+1,𝑈ℎ+1, 𝜃; 𝐷𝑡ℎ)

2. (A.8)

For any 𝑓 = (𝑈ℎ,𝑈ℎ+1, 𝜃) ∈ Uℎ ×Uℎ+1 ×Θ and the operator Pℎ is defined as above. We first show
𝑋 𝑡
ℎ, 𝑓

is an unbiased estimator of the discrepancy function 𝑑𝑡
ℎ
(𝑈ℎ,𝑈ℎ+1; 𝐷𝑡

ℎ
)2, which is defined as

𝑑𝑡ℎ ( 𝑓 ; 𝐷𝑡ℎ) = E𝑠ℎ+1∼Pℎ ( · |𝑠ℎ ,𝑎ℎ ,𝑏ℎ ) [𝑙𝑡ℎ ( 𝑓 ; 𝐷𝑡ℎ)] = 𝑈ℎ − T★,𝜃
ℎ

(𝑈ℎ+1).

For simplicity we also let 𝑓P = (Pℎ𝑈ℎ+1,𝑈ℎ+1, 𝜃)Consider that

𝑙𝑡ℎ ( 𝑓 ; 𝐷𝑡ℎ)
2 =

(
𝑙𝑡ℎ ( 𝑓 ; 𝐷𝑡ℎ) − 𝑙𝑡ℎ ( 𝑓P ; 𝐷𝑡ℎ) + 𝑙𝑡ℎ (Pℎ𝑈ℎ+1,𝑈ℎ+1, 𝜃; 𝐷𝑡ℎ)

)2

=
(
𝑑𝑡ℎ ( 𝑓 ; 𝐷𝑡ℎ) + 𝑙𝑡ℎ ( 𝑓P ; 𝐷𝑡ℎ)

)2

= (𝑑𝑡ℎ ( 𝑓 ; 𝐷𝑡ℎ))
2 + 𝑙𝑡ℎ ( 𝑓P ; 𝐷𝑡ℎ)

2 + 2𝑑𝑡ℎ ( 𝑓 ; 𝐷𝑡ℎ) · 𝑙
𝑡
ℎ ( 𝑓P , 𝜃; 𝐷𝑡ℎ), (A.9)

where the second equality is by the generalized Bellman completeness. Exploiting the completeness
again, we have

E𝑠ℎ+1∼Pℎ ( · |𝑠ℎ ,𝑎ℎ ,𝑏ℎ )
[
𝑑𝑡ℎ ( 𝑓 ; 𝐷𝑡ℎ) · 𝑙

𝑡
ℎ ( 𝑓P ; 𝐷𝑡ℎ)

]
=𝑑𝑡ℎ ( 𝑓 ; 𝐷𝑡ℎ) · E𝑠ℎ+1∼Pℎ ( · |𝑠ℎ ,𝑎ℎ ,𝑏ℎ )

[
𝑙𝑡ℎ (Pℎ𝑈ℎ+1,𝑈ℎ+1, 𝜃; 𝐷𝑡ℎ)

]
=𝑑𝑡ℎ ( 𝑓 ; 𝐷𝑡ℎ) · E𝑠ℎ+1∼Pℎ ( · |𝑠ℎ ,𝑎ℎ ,𝑏ℎ )

[
𝑑𝑡ℎ ( 𝑓 ; 𝐷𝑡ℎ) − 𝑙𝑡ℎ ( 𝑓 ; 𝐷𝑡ℎ)

]
=0.

Inserting the result back to A.9, we have

E𝑠ℎ+1∼Pℎ ( · |𝑠ℎ ,𝑎ℎ ,𝑏ℎ ) [𝑋 𝑡ℎ, 𝑓 ] = 𝑑𝑡ℎ ( 𝑓 ; 𝐷𝑡ℎ)
2. (A.10)

Then for each time step ℎ, we define the filtration {Fℎ,𝑡 }𝑇𝑡=1 with

Fℎ,𝑡 = 𝜎

(
𝑘∑︁
𝑠=1

𝐻∑︁
ℎ=1

𝐷𝑠ℎ

)
,

where 𝐷𝑡
ℎ
= {𝑠𝑡

ℎ
, 𝑎𝑡
ℎ
, 𝑏𝑡
ℎ
, 𝑢𝑡
ℎ
, 𝑠𝑡
ℎ+1}. From the previous arguments, we can derive that

E[𝑋 𝑡ℎ, 𝑓 | Fℎ,𝑡−1] = E
[
E𝑠ℎ+1∼Pℎ ( · |𝑠ℎ ,𝑎ℎ ,𝑏ℎ ) [𝑋 𝑡ℎ, 𝑓 ] |Fℎ,𝑡−1

]
= E𝜋

𝑡 [𝑑𝑡ℎ ( 𝑓 ; 𝐷𝑡ℎ)
2], (A.11)

Var
[
𝑋 𝑡ℎ, 𝑓 | Fℎ,𝑡−1

]
≤ E[𝑋 (𝑡ℎ, 𝑓 )

2 | Fℎ,𝑡−1] ≤ 𝐵2
𝑙 E[𝑋

𝑡
ℎ, 𝑓 | Fℎ,𝑡−1] = 𝐵2

𝑙 E
𝜋𝑡 [𝑑𝑡ℎ ( 𝑓 ; 𝐷𝑡ℎ)

2], (A.12)

where E𝜋
𝑡 means the data 𝐷𝑡

ℎ
is generated by measure (𝜋𝑡 , 𝜐𝜋𝑡

ℎ
, 𝑃ℎ). By Lemma 3, (|𝑋 𝑡

ℎ, 𝑓
| ≤ 𝐵2

𝑙

and we set 𝜂 = 1
2𝐵2

𝑙

), for any fixed ℎ ∈ [𝐻], 𝑡 ∈ [𝑇],𝑈 ∈ U, we have����� 𝑡−1∑︁
𝑠=1

E[𝑋𝑠ℎ, 𝑓 | Fℎ,𝑡−1] −
𝑡−1∑︁
𝑠=1

𝑋𝑠ℎ, 𝑓

����� ≤ 1
2𝐵2

𝑙

𝑡−1∑︁
𝑠=1

Var
[
𝑋𝑠ℎ, 𝑓 | Fℎ,𝑠−1

]
+ 2𝐵2

𝑙 log( 1
𝛿
)

≤ 1
2

𝑡−1∑︁
𝑠=1

E𝜋
𝑠 [𝑑𝑠ℎ ( 𝑓 ; 𝐷𝑠ℎ)

2] + 2𝐵2
𝑙 log( 1

𝛿
).

Rearranging the above terms, we can get

−
𝑡−1∑︁
𝑠=1

𝑋𝑠ℎ, 𝑓 ≤ −1
2
E𝜋

𝑡 [𝑑𝑡ℎ ( 𝑓 ; 𝐷𝑡ℎ)
2] + 2𝐵2

𝑙 log( 1
𝛿
).
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By the definition of 𝑋 𝑡
ℎ, 𝑓

and the loss function 𝐿𝑡
ℎ,2 in (4.8), we have

𝑡−1∑︁
𝑠=1

𝑋𝑠ℎ, 𝑓 =

𝑘−1∑︁
𝑠=1

𝑙𝑠ℎ ( 𝑓 ; 𝐷𝑠ℎ)
2 −

𝑘−1∑︁
𝑠=1

𝑙𝑠ℎ (Pℎ𝑈ℎ+1,𝑈ℎ+1, 𝜃; 𝐷𝑠ℎ)
2

≤
𝑘−1∑︁
𝑠=1

𝑙𝑠ℎ ( 𝑓 ; 𝐷𝑠ℎ)
2 − inf

𝑈′
ℎ
∈Uℎ

𝑙𝑠ℎ (𝑈
′
ℎ,𝑈ℎ+1, 𝜃; 𝐷𝑠ℎ)

2

= 𝐿𝑡ℎ,2 ( 𝑓 ).

Then we can derive that, for any fixed ℎ ∈ [𝐻], 𝑡 ∈ [𝑇], 𝑓 ∈ Uℎ ×Uℎ+1 × Θ.

−𝐿𝑡ℎ,2 ( 𝑓 ) ≤ −1
2
E𝜋

𝑡 [𝑑𝑡ℎ ( 𝑓 ; 𝐷𝑡ℎ)
2] + 2𝐻2 log( 1

𝛿
). (A.13)

Then we consider 𝐿𝑡
ℎ,2 ( 𝑓

★). We first define the random variables 𝑌 𝑡
ℎ, 𝑓

as

𝑌 𝑡ℎ, 𝑓 = 𝑙𝑡ℎ (𝑈ℎ,𝑈
★
ℎ+1, 𝜃

★; 𝐷𝑡ℎ)
2 − 𝑙𝑡ℎ ( 𝑓

★; 𝐷𝑡ℎ)
2.

Similarly, we could show

E𝑠ℎ+1∼Pℎ ( · |𝑠ℎ ,𝑎ℎ ,𝑏ℎ ) [𝑌 𝑡ℎ, 𝑓 ] = (𝑑𝑡ℎ (𝑈ℎ,𝑈
★
ℎ+1, 𝜃

★; 𝐷𝑡ℎ))
2.

Under the filtration {Fℎ,𝑡 }𝑇𝑡=1, we can derive that

E[𝑌 𝑡ℎ, 𝑓 | Fℎ,𝑡−1] = E𝜋
𝑡 [𝑑𝑡ℎ (𝑈ℎ,𝑈

★
ℎ+1, 𝜃

★; 𝐷𝑡ℎ)
2],

Var
[
𝑌 𝑡ℎ, 𝑓 | Fℎ,𝑡−1

]
≤ 𝐵2

𝑙 E
𝜋𝑡 [𝑑𝑡ℎ (𝑈ℎ,𝑈

★
ℎ+1, 𝜃

★; 𝐷𝑡ℎ)
2] .

By Lemma 3, (|𝑌 𝑡
ℎ, 𝑓

| ≤ 𝐵2
𝑙

and we set 𝜂 = 1
2𝐵2

𝑙

), for any fixed ℎ ∈ [𝐻], 𝑡 ∈ [𝑇], 𝑓 ∈ F , we have

−
𝑡−1∑︁
𝑠=1

𝑌 𝑠ℎ, 𝑓 ≤ −1
2

𝑡−1∑︁
𝑠=1

E𝜋
𝑠 [𝑑𝑠ℎ (𝑈ℎ,𝑈

★
ℎ+1, 𝜃

★; 𝐷𝑡ℎ)
2] + 2𝐵2

𝑙 log( 1
𝛿
) ≤ 2𝐵2

𝑙 log( 1
𝛿
).

By the definition of 𝑌 𝑡
ℎ, 𝑓

and the loss function 𝐿𝑡
ℎ,2 in (4.8), we have

−
𝑡−1∑︁
𝑠=1

𝑌 𝑠ℎ, 𝑓 =

𝑘−1∑︁
𝑠=1

𝑙𝑠ℎ ( 𝑓
★; 𝐷𝑠ℎ)

2 −
𝑘−1∑︁
𝑠=1

𝑙𝑠ℎ (𝑈ℎ,𝑈
★
ℎ+1, 𝜃

★; 𝐷𝑠ℎ)
2.

Since such inequality holds for any 𝑈ℎ ∈ Uℎ, we have

𝐿𝑡ℎ,2 ( 𝑓
★) = sup

𝑈ℎ∈Uℎ

(−
𝑡−1∑︁
𝑠=1

𝑌 𝑠ℎ, 𝑓 ) ≤ 2𝐵2
𝑙 log( 1

𝛿
).

Combining the above result with (A.13), for any fixed ℎ ∈ [𝐻], 𝑡 ∈ [𝑇], 𝑓 ∈ F , we have

𝐿𝑡ℎ,2 ( 𝑓
★)−𝐿𝑡ℎ,2 ( 𝑓 ) ≤ −1

2

𝑡−1∑︁
𝑠=1

E𝜋
𝑠 [𝑈𝑠ℎ (𝑠ℎ, 𝑎ℎ, 𝑏ℎ)−T

★,𝜃𝑠 (𝑈𝑠ℎ+1) (𝑠ℎ, 𝑎ℎ, 𝑏ℎ)]+4𝐻2 log( 1
𝛿
). (A.14)

Then we generalize this result on a 𝜖-net F𝜖 of F . By taking union bound over all ℎ ∈ [𝐻], 𝑓 ∈ F𝜖
and a 𝑓★ ∈ Θ𝜖 such that 𝜌2 ( 𝑓★, 𝑓★) ≤ 𝜖 , with probability 1 − 𝛿 we have for any 𝑡 ∈ [𝑇]

𝐿𝑡ℎ,2 ( 𝑓
★) − 𝐿𝑡ℎ,2 ( 𝑓 )

≤ − 1
2

𝑡−1∑︁
𝑠=1

E𝜋
𝑠 [𝑈̃𝑠ℎ (𝑠ℎ, 𝑎ℎ, 𝑏ℎ) − T★,𝜃

𝑠 (𝑈̃𝑠ℎ+1) (𝑠ℎ, 𝑎ℎ, 𝑏ℎ)] + 4𝐻2 log(
𝐻N𝜌2 (F , 𝜖)

𝛿
). (A.15)
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By the definition of 𝜌2, we know���𝐿𝑡ℎ,2 ( 𝑓★) − 𝐿𝑡ℎ,2 ( 𝑓
★)

���
=

����� 𝑡∑︁
𝑠=1

[(𝑈̃ℎ − 𝑢𝑠ℎ) (𝑠
𝑠
ℎ, 𝑎

𝑠
ℎ, 𝑏

𝑠
ℎ) − 𝑇

★,𝜃

ℎ+1 (𝑠
𝑠
ℎ+1)] − [𝑈ℎ (𝑠𝑠ℎ, 𝑎

𝑠
ℎ, 𝑏

𝑠
ℎ) − 𝑇

★,𝜃

ℎ+1 (𝑈ℎ+1)]
�����

≤
����� 𝑡∑︁
𝑠=1

[(𝑈̃ℎ −𝑈ℎ) (𝑠𝑠ℎ, 𝑎
𝑠
ℎ, 𝑏

𝑠
ℎ) − (𝑇★,𝜃

ℎ+1 − 𝑇
★,𝜃

ℎ+1 ) (𝑠
𝑠
ℎ+1)]

�����
≤𝑡 (



𝑈̃ℎ −𝑈ℎ



∞ +




𝑇★,𝜃
ℎ+1 − 𝑇

★,𝜃

ℎ+1





∞
)

≤2𝑇𝜌2 ( 𝑓 , 𝑓 ).
Similarly we could get���𝐿𝑡ℎ,2 ( 𝑓 ) − 𝐿𝑡ℎ,2 ( 𝑓 )

��� ≤ 2𝑇𝜌2 ( 𝑓 , 𝑓 ),���[𝑈̃𝑠ℎ − T★,𝜃
𝑠 (𝑈̃𝑠ℎ+1)] (𝑠ℎ, 𝑎ℎ, 𝑏ℎ) − [𝑈𝑠ℎ − T★,𝜃

𝑠 (𝑈𝑠ℎ+1)] (𝑠ℎ, 𝑎ℎ, 𝑏ℎ)
��� ≤ 2𝜌2𝑇 ( 𝑓 , 𝑓 ).

Then we could generate equation (A.15) from F𝜖 to F only paying an extra cost of 5𝑇𝜖 . By setting
𝜖 = 1/𝑇 , for any ℎ ∈ [𝐻], 𝑡 ∈ [𝑇], 𝑓 ∈ F , with probability 1 − 𝛿 we have

𝐿𝑡ℎ,2 ( 𝑓
★) − 𝐿𝑡ℎ,2

≤ − 1
2

𝑡−1∑︁
𝑠=1

E𝜋
𝑠 [(𝑈𝑠ℎ − T★,𝜃

𝑠 (𝑈𝑠ℎ+1)) (𝑠
𝑠
ℎ, 𝑎

𝑠
ℎ, 𝑏

𝑠
ℎ)] + 4𝐻2 ln(

𝐻𝑇N𝜌2 (F , 𝜖)
𝛿

) + 5.

Let 𝛽2 = 4𝐻2 ln(
𝐻𝑇N

𝜌2 (F, 𝜖 )
𝛿

) + 5, then we are done. □

Lemma 9. (Lemma B.2 in (Chen et al., 2023)) For any fixed policy 𝜋 and a fixed 𝑠1, let 𝜐̃ be an
estimate of the quantal response 𝜐𝜋 and let 𝑈̃ and 𝑊̃ be estimates of𝑈 𝜋 and𝑊 𝜋 respectively. Based
on 𝑈̃ and 𝑊̃ , we can estimate 𝐽 (𝜋) by 𝑊̃ (𝑠1). Then the error of these estimators can be bounded as
follows:

𝑊̃ (𝑠1) − 𝐽 (𝜋) ≤
𝐻∑︁
ℎ=1

E
[
𝑈̃ℎ (𝑠ℎ, 𝑎ℎ, 𝑏ℎ) − (T𝜋, 𝜐̃

ℎ
𝑈̃ℎ+1)

]
+ 𝐻

𝐻∑︁
ℎ=1

E
[

(𝜐𝜋ℎ − 𝜐̃) (·|𝑠ℎ)




1
]
.

where we define

T𝜋,𝜃
ℎ

𝑈 (𝑠ℎ, 𝑎ℎ, 𝑏ℎ) = 𝑢ℎ (𝑠ℎ, 𝑎ℎ, 𝑏ℎ) + E𝑠ℎ+1∼𝑃ℎ ( · |𝑠ℎ ,𝑎ℎ ,𝑏ℎ ) [(𝑇
𝜋,𝜃

ℎ+1 𝑈ℎ+1) (𝑠ℎ+1)],
𝑇
𝜋,𝜃

ℎ
(𝑈ℎ) (𝑠ℎ) =

〈
𝑈ℎ (𝑠ℎ, ·, ·), 𝜋ℎ ⊗ 𝜐

𝜋,𝜃

ℎ
(·, · | 𝑠ℎ)

〉
.

Furthermore, by T𝜋, 𝜐̃
ℎ

𝑈̃ℎ+1) ≤ T★,𝜐̃
ℎ

𝑈̃ℎ+1), we have

𝑊̃ (𝑠1) − 𝐽 (𝜋) ≤
𝐻∑︁
ℎ=1

E
[
𝑈̃ℎ (𝑠ℎ, 𝑎ℎ, 𝑏ℎ) − (T★,𝜐̃

ℎ
𝑈̃ℎ+1)

]
+ 𝐻

𝐻∑︁
ℎ=1

E
[

(𝜐𝜋ℎ − 𝜐̃) (·|𝑠ℎ)




1
]
.

Lemma 10. (Lemma B.1 in (Chen et al., 2023)) We consider a fixed policy 𝜋 and let 𝑟 be an estimate
of 𝑟 . We define a V-function 𝑉̃ and an advantage function 𝐴̃ by letting

𝑉̃ℎ (𝑠) =
1
𝜂

log

(∑︁
𝑏∈B

exp(𝜂 · 𝑟 𝜋ℎ (𝑠, 𝑏))
)
, 𝐴̃ℎ (𝑠, 𝑎) = 𝑟 𝜋ℎ (𝑠, 𝑏) − 𝑉̃ℎ (𝑠).

Furthermore, we define a follower’s policy 𝜐̃ be letting 𝜐̃ℎ (𝑏 |𝑠) = exp(𝜂 · 𝐴̃ℎ (𝑠, 𝑏)). Then the
difference between 𝜐̃ and 𝜐𝜋 can be bounded by

𝐻

𝐻∑︁
ℎ=1

E
[

𝜐𝜋ℎ − 𝜐̃(·|𝑠ℎ)




1
]

≤ 𝐶0

𝐻∑︁
ℎ=1

E
[��T 𝜋
ℎ (𝑟ℎ − 𝑟ℎ)

��] + 𝐶1

𝐻∑︁
ℎ=1

E
[
T 𝜋
ℎ (𝑟ℎ − 𝑟ℎ)2] ,
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where 𝐶1 is defined as

𝐶1 =
𝜂2 exp(2𝜂𝐵𝐴)

2
(2 + 𝜂𝐵𝐴 · 2𝜂𝐵𝐴) ,

and T 𝜋
ℎ

has been defined in equation (5.1).

B Proof of Theorem 1

At first, we could decompose the regret into two terms:

Reg(𝑇) =
𝑇∑︁
𝑡=1

𝑊
𝑈∗ , 𝜃∗

1 (𝑠1) −𝑊 𝜋𝑡

1 (𝑠1)

≤
𝑇∑︁
𝑡=1

(
𝑊
𝑈∗ , 𝜃∗

1 (𝑠1) −𝑊
𝑈𝑡 , 𝜃 𝑡

1 (𝑠1)
)

︸                                   ︷︷                                   ︸
𝐼1

+
𝑇∑︁
𝑡=1

(
𝑊
𝑈𝑡 , 𝜃 𝑡

1 (𝑠1) −𝑊 𝜋𝑡

1 (𝑠1)
)

︸                               ︷︷                               ︸
𝐼2

.

By the definition of 𝑈𝑡 , 𝜃𝑡 in algorithm 1, we have

𝑊
𝑈𝑡 , 𝜃 𝑡

1 (𝑠1) − 𝜂1

𝐻∑︁
ℎ=1

𝐿𝑡ℎ,1 (𝜃
𝑡
ℎ) − 𝜂2

𝐻∑︁
ℎ=1

𝐿𝑡ℎ,2 (𝑈
𝑡
ℎ, 𝜃

𝑡
ℎ)

≥ 𝑊
𝑈∗ , 𝜃∗

1 (𝑠1) − 𝜂1

𝐻∑︁
ℎ=1

𝐿𝑡ℎ,1 (𝜃
∗
ℎ) − 𝜂2

𝐻∑︁
ℎ=1

𝐿𝑡ℎ,2 (𝑈
∗
ℎ, 𝜃

∗
ℎ),

which implies that

𝑊
𝑈∗ , 𝜃∗

1 (𝑠1) −𝑊
𝑈𝑡 , 𝜃 𝑡

1 (𝑠1) ≤ 𝜂1

𝐻∑︁
ℎ=1

(𝐿𝑡ℎ,1 (𝜃
∗
ℎ) − 𝐿𝑡ℎ,1 (𝜃

𝑡
ℎ)) + 𝜂2

𝐻∑︁
ℎ=1

(𝐿𝑡ℎ,2 (𝑈
∗
ℎ, 𝜃

∗
ℎ) − 𝐿𝑡ℎ,1 (𝑈

𝑡
ℎ, 𝜃

𝑡
ℎ)).

By the lemma 7, set 𝛽1 = 2 lnN𝜌 (Θ, 1/𝑇)/𝛿 + 8 with the distance 𝜌 defined in Lemma 7, and let
𝐶𝜂 = 𝜂−1 + 𝐵𝐴, 𝐵𝐴 = 2(𝜂−1 log |B| + 1), then with probability at least 1 − 𝛿,

𝐻∑︁
ℎ=1

(𝐿𝑡ℎ,1 (𝜃
∗
ℎ) − 𝐿𝑡ℎ,1 (𝜃

𝑡
ℎ))

≤ −1
4𝐶2

𝜂

𝐻∑︁
ℎ=1

𝑡∑︁
𝑖=1

E𝜋
𝑖

Var𝜋
𝑖 , 𝜃∗
𝑠ℎ

[
𝑟
𝜋𝑖 , 𝜃 𝑡

ℎ
(𝑠ℎ, 𝑏ℎ) − 𝑟

𝜋𝑖 , 𝜃∗

ℎ
(𝑠ℎ, 𝑏ℎ)

]
+ 𝐻𝛽1. (B.1)

For the variance term, we have:

E𝜋
𝑖

Var𝜋
𝑖 , 𝜃∗
𝑠ℎ

[
𝑟
𝜋𝑖 , 𝜃 𝑡

ℎ
(𝑠ℎ, 𝑏ℎ) − 𝑟

𝜋𝑖 , 𝜃∗

ℎ
(𝑠ℎ, 𝑏ℎ)

]
=E𝜋

𝑖

Var𝜋
𝑖 , 𝜃∗

[
𝑟
𝜋𝑖 , 𝜃 𝑡

ℎ
(𝑠ℎ, 𝑏ℎ) − 𝑟

𝜋𝑖 , 𝜃∗

ℎ
(𝑠ℎ, 𝑏ℎ) |𝑠ℎ

]
(𝑎)
= E𝜋

𝑖

E𝜋
𝑖 , 𝜃∗

[(
(𝑟 𝜋

𝑖 , 𝜃 𝑡

ℎ
− 𝑟ℎ) 𝜋

𝑖 , 𝜃∗ (𝑠ℎ, 𝑏ℎ) − E𝜋
𝑖 , 𝜃∗

[
(𝑟 𝜋

𝑖 , 𝜃 𝑡

ℎ
− 𝑟

𝜋𝑖 , 𝜃∗

ℎ
) (𝑠ℎ, 𝑏ℎ) | 𝑠ℎ

] )2
|𝑠ℎ

]
(𝑏)
= E𝜋

𝑖

[(
T 𝜋𝑖

ℎ (𝑟 𝜃 𝑡ℎ − 𝑟∗ℎ)
)2

(𝑠ℎ, 𝑏ℎ)
]
,

where (a) follows from the definition of Var𝜋,𝜃𝑠ℎ (·), and (b) follows from the definition of T 𝜋
ℎ
(·).

Insert the last term back to equation (B.1), we have:

𝐻∑︁
ℎ=1

(𝐿𝑡ℎ,1 (𝜃
∗
ℎ) − 𝐿𝑡ℎ,1 (𝜃

𝑡
ℎ)) ≤

−1
4𝐶2

𝜂

𝐻∑︁
ℎ=1

𝑡−1∑︁
𝑖=1

E𝜋
𝑖 [T 𝜋𝑖

ℎ (𝑟 𝜃 𝑡ℎ − 𝑟∗ℎ)
2] + 𝐻𝛽1.
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By Lemma 8, set 𝛽2 = 4𝐻2 ln( 𝐻N𝜌2 (F, 𝜖 )
𝛿

) + 5 with the distance 𝜌2 defined in Lemma 8, we have

𝐻∑︁
ℎ=1

(𝐿𝑡ℎ,2 (𝑈
∗
ℎ, 𝜃

∗
ℎ)−𝐿

𝑡
ℎ,2 (𝑈

𝑡
ℎ, 𝜃

𝑡
ℎ)) ≤ −1

2

𝐻∑︁
ℎ=1

𝑡−1∑︁
𝑖=1

E𝜋
𝑖
[(
𝑈ℎ − T∗, 𝜃 𝑡

ℎ+1 𝑈ℎ+1

)
(𝑠ℎ, 𝑎ℎ, 𝑏ℎ)2

]
+𝐻𝛽2. (B.2)

We then have

𝐼1 ≤
𝑇∑︁
𝑡=1

(
𝜂1

𝐻∑︁
ℎ=1

(𝐿𝑡ℎ,1 (𝜃
∗
ℎ) − 𝐿𝑡ℎ,1 (𝜃

𝑡
ℎ)) + 𝜂2

𝐻∑︁
ℎ=1

(𝐿𝑡ℎ,2 (𝑈
∗
ℎ, 𝜃

∗
ℎ) − 𝐿𝑡ℎ,2 (𝑈

𝑡
ℎ, 𝜃

𝑡
ℎ))

)
≤ 𝜂1 ·

(
− 1

4𝐶2
𝜂

𝑇∑︁
𝑡=1

𝐻∑︁
ℎ=1

𝑡−1∑︁
𝑖=1

E𝜋
𝑖 [T 𝜋𝑖

ℎ (𝑟 𝜃 𝑡ℎ − 𝑟∗ℎ)
2] + 𝐻𝑇𝛽1

)
+ 𝜂2 ·

(
− 1

2

𝑇∑︁
𝑡=1

𝐻∑︁
ℎ=1

𝑡−1∑︁
𝑖=1

E𝜋
𝑖
[(
𝑈ℎ − T∗, 𝜃 𝑡

ℎ+1 𝑈ℎ+1

)
(𝑠ℎ, 𝑎ℎ, 𝑏ℎ)2

]
+ 𝐻𝑇𝛽2

)
(B.3)

To bound 𝐼2, we exploit Lemma 9 and Lemma 10,

𝐼2
(𝑎)
≤

𝑇∑︁
𝑡=1

𝐻∑︁
ℎ=1

E𝜋
𝑡
[
(𝑈𝑡ℎ) (𝑠ℎ, 𝑎ℎ, 𝑏ℎ) − T∗, 𝜃 𝑡

ℎ+1 𝑈
𝑡
ℎ+1 (𝑠ℎ+1)

]
+ 𝐻

𝐻∑︁
ℎ=1

E𝜋𝑡
[

(𝜐̃ℎ − 𝜐𝜋ℎ ) (·|𝑠ℎ)




1
]

(B.4)

(𝑏)
≤

𝑇∑︁
𝑡=1

𝐻∑︁
ℎ=1

E𝜋
𝑡
[
(𝑈𝑡ℎ) (𝑠ℎ, 𝑎ℎ, 𝑏ℎ) − T∗, 𝜃 𝑡

ℎ+1 𝑈
𝑡
ℎ+1 (𝑠ℎ+1)

]
+

𝑇∑︁
𝑡=1

𝐻∑︁
ℎ=1

𝐶0 · E𝜋
𝑡
[
|T 𝜋𝑡

ℎ (𝑟 𝜃 𝑡ℎ − 𝑟∗ℎ) (𝑠
𝑡
ℎ, 𝑏

𝑡
ℎ) |

]
+

𝑇∑︁
𝑡=1

𝐻∑︁
ℎ=1

𝐶1 · E𝜋
𝑡
[
T 𝜋𝑡

ℎ (𝑟 𝜃 𝑡ℎ − 𝑟∗ℎ)
2 (𝑠𝑡ℎ, 𝑏

𝑡
ℎ)

]
(B.5)

Where (a) is from Lemma 9, (b) is by Lemma 10, and Notice that 𝑋ℎ𝑡 = |T 𝜋𝑡

ℎ
(𝑟 𝜃 𝑡
ℎ

− 𝑟∗
ℎ
) (𝑠𝑡

ℎ
, 𝑏𝑡
ℎ
) | ≤ 1,

by Lemma 3 (setting 𝜂 = 1
2 ), we have

𝑇∑︁
𝑡=1

E𝜋
𝑡 [

𝑋ℎ𝑡
]
≤

𝑇∑︁
𝑡=1

𝑋𝑡 +
1
2

Var𝜋
𝑡 [

𝑋ℎ𝑡 |F𝑡−1
]
+ 2 log

1
𝛿

(𝑎)
≤

𝑇∑︁
𝑡=1

𝑋ℎ𝑡 + 1
2

Var𝜋
𝑡 [

𝑋ℎ𝑡
]
+ 2 log

1
𝛿

(𝑏)
≤

𝑇∑︁
𝑡=1

𝑋ℎ𝑡 + 1
2
E𝜋

𝑡 [
(𝑋ℎ𝑡 )2] + 2 log

1
𝛿

(𝑐)
≤

𝑇∑︁
𝑡=1

𝑋ℎ𝑡 + 1
2
E𝜋

𝑡 [
𝑋ℎ𝑡

]
+ 2 log

1
𝛿
,

where (a) is by the property of conditional variance; (b) is by Var[𝑋] = E[𝑋2] −E[𝑋]2; (c) is by the
fact that 0 ≤ 𝑋𝑡 ≤ 1. Hence, we get

𝑇∑︁
𝑡=1

E𝜋
𝑡 [

𝑋ℎ𝑡
]
≤ 2

𝑇∑︁
𝑡=1

𝑋ℎ𝑡 + 4 log
1
𝛿
.

By taking a union bound over all ℎ ∈ [𝐻], we know for any ℎ ∈ [𝐻], with probability 1 − 𝛿,

𝑇∑︁
𝑡=1

E𝜋
𝑡 [

𝑋ℎ𝑡
]
≤ 2

𝑇∑︁
𝑡=1

𝑋ℎ𝑡 + 4 log
𝐻

𝛿
.
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Summing over ℎ ∈ [𝐻] and considering 𝑋ℎ𝑡 = |T 𝜋𝑡

ℎ
(𝑟 𝜃 𝑡
ℎ

− 𝑟∗
ℎ
) (𝑠𝑡

ℎ
, 𝑏𝑡
ℎ
) |, we get

𝑇∑︁
𝑡=1

𝐻∑︁
ℎ=1

E𝜋
𝑡
[
|T 𝜋𝑡

ℎ (𝑟 𝜃 𝑡ℎ − 𝑟∗ℎ) (𝑠
𝑡
ℎ, 𝑏

𝑡
ℎ) |

]
≤ 2

𝑇∑︁
𝑡=1

𝐻∑︁
ℎ=1

|T 𝜋𝑡

ℎ (𝑟 𝜃 𝑡ℎ − 𝑟∗ℎ) (𝑠
𝑡
ℎ, 𝑏

𝑡
ℎ) | + 4𝐻 log

𝐻

𝛿
.

Similarly, we could also get
𝑇∑︁
𝑡=1

𝐻∑︁
ℎ=1

E𝜋
𝑡
[
|T 𝜋𝑡

ℎ (𝑟 𝜃 𝑡ℎ − 𝑟∗ℎ) (𝑠
𝑡
ℎ, 𝑏

𝑡
ℎ) |

2
]
≤ 2

𝑇∑︁
𝑡=1

𝐻∑︁
ℎ=1

|T 𝜋𝑡

ℎ (𝑟 𝜃 𝑡ℎ − 𝑟∗ℎ) (𝑠
𝑡
ℎ, 𝑏

𝑡
ℎ) |

2 + 4𝐻 log
𝐻

𝛿
.

Inserting the above result beck to equation (B.5), we have

𝐼2 ≤
𝑇∑︁
𝑡=1

𝐻∑︁
ℎ=1

E𝜋
𝑡
[
(𝑈𝑡ℎ) (𝑠

𝑡
ℎ, 𝑎

𝑡
ℎ, 𝑏

𝑡
ℎ) − T∗, 𝜃 𝑡

ℎ+1 𝑈
𝑡
ℎ+1 (𝑠

𝑡
ℎ+1)

]
+

𝑇∑︁
𝑡=1

𝐻∑︁
ℎ=1

2𝐶0 ·
[
|T 𝜋𝑡

ℎ (𝑟 𝜃 𝑡ℎ − 𝑟∗ℎ) (𝑠
𝑡
ℎ, 𝑏

𝑡
ℎ) |

]
+

𝑇∑︁
𝑡=1

𝐻∑︁
ℎ=1

2𝐶1 ·
[
T 𝜋𝑡

ℎ (𝑟 𝜃 𝑡ℎ − 𝑟∗ℎ)
2 (𝑠𝑡ℎ, 𝑏

𝑡
ℎ)

]
+ O(𝐻 log(𝐻/𝛿)).

Then using the fact that |T 𝜋𝑡

ℎ
(𝑟 𝜃 𝑡
ℎ

− 𝑟∗
ℎ
)2 (𝑠𝑡

ℎ
, 𝑎𝑡
ℎ
, 𝑏𝑡
ℎ
) | ≤ |T 𝜋𝑡

ℎ
(𝑟 𝜃 𝑡
ℎ

− 𝑟∗
ℎ
) (𝑠𝑡

ℎ
, 𝑎𝑡
ℎ
, 𝑏𝑡
ℎ
) |, we can further

have

𝐼2 ≤
𝑇∑︁
𝑡=1

𝐻∑︁
ℎ=1

E𝜋
𝑡
[
(𝑈𝑡ℎ) (𝑠ℎ, 𝑎ℎ, 𝑏ℎ) − T∗, 𝜃 𝑡

ℎ+1 𝑈
𝑡
ℎ+1 (𝑠ℎ+1)

]
+

𝑇∑︁
𝑡=1

𝐻∑︁
ℎ=1

2(𝐶0 + 𝐶1) ·
[
|T 𝜋𝑡

ℎ (𝑟 𝜃 𝑡ℎ − 𝑟∗ℎ) (𝑠
𝑡
ℎ, 𝑏

𝑡
ℎ) |

]
+ O(𝐻 log(𝐻/𝛿)).

Furthermore, using decoupling-coefficient assumption 1 with the definition of 𝑑1 and 𝑑2, we can get

𝐼2 ≤ 𝜇1 ·
𝑇∑︁
𝑡=1

𝐻∑︁
ℎ=1

𝑡−1∑︁
𝑖=1

E𝜋
𝑖 [(𝑈ℎ − T∗, 𝜃 𝑖

ℎ+1𝑈ℎ+1) (𝑠ℎ, 𝑎ℎ, 𝑏ℎ)2] + 𝑑1
𝜇1

+ 2(𝐶0 + 𝐶1) · 𝜇2

𝑇∑︁
𝑡=1

𝐻∑︁
ℎ=1

𝑡−1∑︁
𝑖=1

[T 𝜋𝑡

ℎ ((𝑟 𝜃 𝑡ℎ − 𝑟∗ℎ) (𝑠
𝑖
ℎ, 𝑏

𝑖
ℎ))

2] + 2(𝐶0 + 𝐶1) ·
𝑑2
𝜇2

+ O(𝐻 log(𝐻/𝛿)).

At last, we exploit the Lemma 3 again, and with probability at least 1 − 𝛿, we have

𝐼2 ≤ 𝜇1 ·
𝑇∑︁
𝑡=1

𝐻∑︁
ℎ=1

𝑡−1∑︁
𝑖=1

E𝜋
𝑖 [(𝑈ℎ − T∗, 𝜃 𝑡

ℎ+1 𝑈ℎ+1) (𝑠ℎ, 𝑎ℎ, 𝑏ℎ)2] + 𝑑2
𝜇1

+ 4(𝐶0 + 𝐶1) · 𝜇2

𝑇∑︁
𝑡=1

𝐻∑︁
ℎ=1

𝑡−1∑︁
𝑖=1

E𝜋
𝑖 [T 𝜋𝑖

ℎ ((𝑟 𝜃 𝑡ℎ − 𝑟∗ℎ))
2] + 2(𝐶0 + 𝐶1) ·

𝑑1
𝜇2

+ O(𝐻 log(𝐻/𝛿)). (B.6)

Now note that 𝜂1 = 𝜂2 = 1/
√
𝑇 , and by choosing 𝜇1 =

𝜂1
4𝐶2

𝜂
, 𝜇2 =

𝜂2
8(𝐶0+𝐶1 ) , combining (B.3), and

(B.6), with probability at least 1 − 3𝛿, we can have
Reg(𝑇) = 𝐼1 + 𝐼2

≤ 1
√
𝑇

· 𝐻𝑇 · (𝛽1 + 𝛽2) +
𝑑1
𝜇1

+ 2(𝐶0 + 𝐶1) ·
𝑑2
𝜇2

+ O(𝐻 log(𝐻/𝛿))

=
√
𝑇𝐻 (𝛽1 + 𝛽2) + 4𝐶2

𝜂𝑑1
√
𝑇 + 16(𝐶0 + 𝐶1)2𝑑2

√
𝑇 + O(𝐻 log(𝐻/𝛿))

=

(
𝐻 (𝛽1 + 𝛽2) + 4𝐶2

𝜂𝑑1 + 16(𝐶0 + 𝐶1)2𝑑2

) √
𝑇 + O(𝐻 log(𝐻/𝛿))
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C Proof of Decoupling Coefficient Bounds

We mainly generalize the proof of Proposition 1-3 in Xiong et al. (2022) in this section.

Proof of Proposition 1. We first note that the completeness assumption is satisfied in linear MSG
case whose proof can be found in Huang et al. (2021); Chen et al. (2023). Now we consider two
arbitrary vector 𝜔ℎ, 𝜔ℎ+1 ∈ R𝑑 whose norms are bounded 𝐻

√
𝑑. We define a function 𝑈̃ ∈ U such

that 𝑈̃ℎ = 𝜙⊤𝜔ℎ and 𝑈̃ℎ+1 = 𝜙⊤𝜔ℎ+1. Furthermore more we take arbitrary 𝜃 = {𝜃ℎ}ℎ∈𝐻 ⊂ R𝑑

such that ∥𝜃ℎ∥ ≤
√
𝑑. Then we could find 𝑟 = {𝑟ℎ}ℎ∈[𝐻 ] ⊆ F𝑟 and 𝑟ℎ = 𝜙(𝑠, 𝑎, 𝑏)⊤𝜃ℎ,∀ℎ ∈

[𝐻], (𝑠, 𝑎, 𝑏) ∈ S ×A×B. Then by Assumption 3, we can find some𝑈 ∈ U and the corresponding
vector 𝜔ℎ (𝑈) ∈ R𝑑 such that ∥𝜔ℎ (𝑈)∥ ≤ 𝐻

√
𝑑 and T∗, 𝜃

ℎ
(𝜙(𝑠, 𝑎, 𝑏)⊤𝜔ℎ+1) = 𝜙(𝑠, 𝑎, 𝑏)⊤𝜔ℎ (𝑈) =

𝑈ℎ ∈ Uℎ. Therefore, we have

𝑙ℎ (𝑈̃, 𝜃, 𝑠, 𝑎, 𝑏) = 𝑈̃ℎ (𝑠, 𝑎, 𝑏) − T∗, 𝜃
ℎ

(𝑈̃ℎ+1) = 𝜙(𝑠, 𝑎, 𝑏)⊤ (𝜔ℎ − 𝜔ℎ (𝑈)) = 𝜙(𝑠, 𝑎, 𝑏)⊤Δℎ (𝑈, 𝑈̃)

where Δℎ (𝑈, 𝑈̃) ∈ R𝑑 and ∥Δℎ∥ ≤ 2𝐻
√
𝑑.

For any {𝜌𝑠}𝑠∈[𝑡 ] ⊂ 𝜚1, i.e. we take any sequence of the leader and follower’s joint poli-
cies {(𝜋𝑠 , 𝜐𝜋𝑠 , 𝜃𝑠 )}𝑠∈[𝑡 ] ⊂ Π, we denote as 𝜙𝑠

ℎ
= E𝜌

𝑠 [𝜙(𝑠ℎ, 𝑎ℎ, 𝑏ℎ)] and denote Φℎ𝑡 = 𝜆𝐼 +∑𝑡
𝑠=1 𝐸

𝜌𝑠 [𝜙(𝑠ℎ, 𝑎ℎ, 𝑏ℎ)𝜙(𝑠ℎ, 𝑎ℎ, 𝑏ℎ)⊤], where 𝜆 ≥ 1 is a tuning parameter. We further have

E𝜌
𝑠 [𝑙𝑡ℎ (𝑈̃

𝑡 , 𝜃𝑡 , 𝑠𝑡ℎ, 𝑎
𝑡
ℎ, 𝑏

𝑡
ℎ)] − 𝜇

𝑡−1∑︁
𝑠=1

E𝜌
𝑠 [

𝑙𝑡ℎ (𝑈̃
𝑡 , 𝜃𝑡 , 𝑠𝑡ℎ, 𝑎

𝑡
ℎ, 𝑏

𝑡
ℎ)

2]
=Δℎ (𝑈̃𝑡 ,𝑈𝑡 )⊤𝜙𝑡ℎ − 𝜇Δℎ (𝑈̃𝑡 ,𝑈𝑡 )⊤

𝑡−1∑︁
𝑠=1

E𝜌
𝑠 [

𝜙(𝑠𝑠ℎ, 𝑎
𝑠
ℎ, 𝑏

𝑠
ℎ)𝜙(𝑠

𝑠
ℎ, 𝑎

𝑠
ℎ, 𝑏

𝑠
ℎ)

⊤]
Δℎ (𝑈̃𝑡 ,𝑈𝑡 )

≤Δℎ (𝑈̃𝑡 ,𝑈𝑡 )⊤𝜙𝑡ℎ − 𝜇Δℎ (𝑈̃𝑡 ,𝑈𝑡 )⊤Φℎ𝑡−1Δℎ (𝑈̃𝑡 ,𝑈𝑡 ) + 4𝜇𝜆𝐻2𝑑

≤ 1
4𝜇

(𝜙𝑡ℎ)
⊤ (Φℎ𝑡−1)

−1𝜙𝑡ℎ + 4𝜇𝜆𝐻2𝑑

where the first inequality uses Jensen’s inequality and


Δℎ (𝑈̃𝑡 ,𝑈𝑡 )

 ≤ 2𝐻

√
𝑑 and the second

inequality exploits the fact that

𝑎⊤𝑏 ≤ (∥𝑎∥Φℎ
𝑡−1

∥𝑏∥ (Φℎ
𝑡−1 )−1 ) ≤

1
2
(∥𝑎∥2

Φℎ
𝑡−1

+ ∥𝑏∥2
(Φℎ

𝑡−1 )−1 )

Summing over 𝑡 ∈ [𝑇] and ℎ ∈ [𝐻], we have
𝑇∑︁
𝑡=1

𝐻∑︁
ℎ=1

(
E𝜌

𝑠 [𝑙ℎ (𝑈̃𝑡 , 𝜃𝑡 , 𝑠𝑡ℎ, 𝑎
𝑡
ℎ, 𝑏

𝑡
ℎ)] − 𝜇

𝑡−1∑︁
𝑠=1

E𝜌
𝑠 [

𝑙ℎ (𝑈̃𝑡 , 𝜃𝑡 , 𝑠𝑡ℎ, 𝑎
𝑡
ℎ, 𝑏

𝑡
ℎ)

2] )
≤

𝐻∑︁
ℎ=1

(
ln(det(Φℎ

𝑇
)) − 𝑑 ln𝜆

2𝜇
+ 4𝜇𝜆𝑑𝐻2𝑇

)
≤

(
𝑑𝐻 ln(1 + 𝑇

𝑑𝜆
)

2𝜇
+ 4𝜇𝜆𝑑𝐻3𝑇

)
where the first inequality exploit Lemma 4 and the second inequality uses

ln det(Φℎ𝑇 ) ≤ 𝑑 ln
tr(Φ𝑡

𝑇
)

𝑑
, where tr(Φℎ𝑇 ) ≤ 𝜆𝑑 + 𝑇

By setting 𝜆 = min{1, 1
𝜇2𝐻2𝑇

}, we have

𝑑1 ≤ 2𝑑𝐻 (2 + ln(2𝐻𝑇))

Similarly, for 𝑑2, notice we could still write

𝑚ℎ (𝜃, 𝑠, 𝑎, 𝑏) = 𝑟 𝜃ℎ (𝑠, 𝑏) − 𝑟ℎ (𝑠, 𝑏) = 𝜙(𝑠, 𝑎, 𝑏)⊤ (𝜃ℎ − 𝜃ℎ) = 𝜙(𝑠, 𝑎, 𝑏)⊤𝛿ℎ (𝜃, 𝜃)
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Then we could repeat the above process to generate the similar bound. Another way to get an upper
bound for 𝑑2 is to write 𝑟 𝜃

ℎ
(𝑠, 𝑏) − 𝑟ℎ (𝑠, 𝑏) as a bilinear form and then use the classical decoupling

coefficient results on this class. The readers could see Dann et al. (2021); Chen et al. (2023) for
reference.

Proof of Proposition 2. We first note that the completeness assumption is also satisfied in generalized
linear MSG (Huang et al., 2021; Chen et al., 2023). Similarly, we consider two arbitrary vector
𝜔ℎ, 𝜔ℎ+1 ∈ R𝑑 whose norms are bounded 𝐻

√
𝑑. We define a function 𝑈̃ ∈ U such that 𝑈̃ℎ = 𝜙⊤𝜔ℎ

and 𝑈̃ℎ+1 = 𝜙⊤𝜔ℎ+1. Furthermore more we take arbitrary 𝜃 = {𝜃ℎ}ℎ∈𝐻 ⊂ R𝑑 such that ∥𝜃ℎ∥ ≤
√
𝑑.

Then we could find 𝑟 ∈ F𝑟 and 𝑟ℎ = 𝜎(𝜙(𝑠, 𝑎, 𝑏)⊤𝜃ℎ),∀ℎ ∈ [𝐻], (𝑠, 𝑎, 𝑏) ∈ S × A × B. Then
by Assumption 3, we can find some 𝑈 ∈ U and the corresponding vector 𝜔ℎ (𝑈) ∈ R𝑑 such that
∥𝜔ℎ (𝑈)∥ ≤ 𝐻

√
𝑑 and T∗, 𝜃

ℎ
(𝜙(𝑠, 𝑎, 𝑏)⊤𝜔ℎ+1) = 𝜙(𝑠, 𝑎, 𝑏)⊤𝜔ℎ (𝑈) = 𝑈ℎ ∈ Uℎ. Therefore, we have

𝑙ℎ (𝑈̃, 𝜃, 𝑠, 𝑎, 𝑏) = 𝑈̃ℎ (𝑠, 𝑎, 𝑏) − T∗, 𝜃
ℎ

(𝑈̃ℎ+1) = 𝜎(𝜙⊤𝜔ℎ) − 𝜎(𝜙⊤𝜔ℎ (𝑈))

By the Lipschitz condition we have

𝑐1
��𝜙⊤Δℎ (𝑈, 𝑈̃)

�� ≤ ��𝑙ℎ (𝑈̃, 𝜃, 𝑠, 𝑎, 𝑏)
�� ≤ 𝑐2

��𝜙⊤Δℎ (𝑈, 𝑈̃)
��

where Δℎ (𝑈, 𝑈̃) ∈ R𝑑 and ∥Δℎ∥ ≤ 2𝐻
√
𝑑.

For any {𝜌𝑠}𝑠∈[𝑡 ] ⊂ 𝜚1, i.e. we take sequence of {𝜋𝑠}𝑠∈[𝑡 ] ⊂ Π, we let 𝜙𝑠
ℎ
= E𝜌

𝑠 [𝜙(𝑠ℎ, 𝑎ℎ, 𝑏ℎ)]
and let Φℎ𝑡 = 𝜆𝐼 + ∑𝑡

𝑠=1 𝐸
𝜌𝑠 [𝜙(𝑠ℎ, 𝑎ℎ, 𝑏ℎ)𝜙(𝑠ℎ, 𝑎ℎ, 𝑏ℎ)⊤], where 𝜆 ≥ 1 is a tuning parameter. We

further have

E𝜌
𝑠 [𝑙𝑡ℎ (𝑈̃

𝑡 , 𝜃𝑡 , 𝑠𝑡ℎ, 𝑎
𝑡
ℎ, 𝑏

𝑡
ℎ)] − 𝜇

𝑡−1∑︁
𝑠=1

E𝜌
𝑠 [

𝑙𝑡ℎ (𝑈̃
𝑡 , 𝜃𝑡 , 𝑠𝑡ℎ, 𝑎

𝑡
ℎ, 𝑏

𝑡
ℎ)

2]
≤𝑐2

��Δℎ (𝑈̃𝑡 ,𝑈𝑡 )⊤𝜙𝑡ℎ�� − 𝜇𝑐2
1Δℎ (𝑈̃

𝑡 ,𝑈𝑡 )⊤
𝑡−1∑︁
𝑠=1

E𝜌
𝑠 [

𝜙(𝑠𝑠ℎ, 𝑎
𝑠
ℎ, 𝑏

𝑠
ℎ)𝜙(𝑠

𝑠
ℎ, 𝑎

𝑠
ℎ, 𝑏

𝑠
ℎ)

⊤]
Δℎ (𝑈̃𝑡 ,𝑈𝑡 )

≤𝑐2Δℎ (𝑈̃𝑡 ,𝑈𝑡 )⊤𝜙𝑡ℎ − 𝜇𝑐2
1Δℎ (𝑈̃

𝑡 ,𝑈𝑡 )⊤Φℎ𝑡−1Δℎ (𝑈̃𝑡 ,𝑈𝑡 ) + 4𝜇𝑐2
1𝜆𝐻

2𝑑

≤
𝑐2

2

4𝜇𝑐2
1
(𝜙𝑡ℎ)

⊤ (Φℎ𝑡−1)
−1𝜙𝑡ℎ + 4𝜇𝑐2

1𝜆𝐻
2𝑑

Summing over 𝑡 ∈ [𝑇] and ℎ ∈ [𝐻], we have
𝑇∑︁
𝑡=1

𝐻∑︁
ℎ=1

(
E𝜌

𝑠 [𝑙ℎ (𝑈̃𝑡 , 𝜃𝑡 , 𝑠𝑡ℎ, 𝑎
𝑡
ℎ, 𝑏

𝑡
ℎ)] − 𝜇

𝑡−1∑︁
𝑠=1

E𝜌
𝑠 [

𝑙ℎ (𝑈̃𝑡 , 𝜃𝑡 , 𝑠𝑡ℎ, 𝑎
𝑡
ℎ, 𝑏

𝑡
ℎ)

2] )
≤

𝐻∑︁
ℎ=1

𝑐2
2

((
ln(det(Φℎ

𝑇
)) − 𝑑 ln𝜆

2𝜇𝑐2
1

+ 4𝜇𝜆𝑐2
1𝑑𝐻

2𝑇

))
≤𝑑𝐻𝑐2

2

(
ln(1 + 𝑇

𝑑𝜆
)

2𝜇𝑐2
1

+ 4𝜇𝑐2
1𝜆𝐻

2𝑇

)
By setting 𝜆 = min{1, 1

𝜇2𝑐2
1𝐻

2𝑇
}, we have

𝑑1 ≤ 2
𝑐2

2

𝑐2
1
𝑑𝐻 (2 + ln(2𝐻𝑇))

Similarly, for 𝑑2, notice we could still write

𝑚ℎ (𝜃, 𝑠, 𝑎, 𝑏) = 𝑟 𝜃ℎ (𝑠, 𝑏) − 𝑟ℎ (𝑠, 𝑏) = 𝜙(𝑠, 𝑎, 𝑏)⊤ (𝜃ℎ − 𝜃ℎ) = 𝜙(𝑠, 𝑎, 𝑏)⊤𝛿ℎ (𝜃, 𝜃)
Then we could repeat the above process to generate the upper bound. Similarly, another way to get
an upper bound for 𝑑2 is to exploit Lipschitz condition to upper and lower bound 𝑟 𝜃

ℎ
(𝑠, 𝑏) − 𝑟ℎ (𝑠, 𝑏)

by two bilinear forms and then use the classical decoupling coefficient results on this class. The
readers could see Dann et al. (2021); Chen et al. (2023) for reference.
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D Proof of Theorem 2

Proof. At first, we could decompose the regret into three terms:

Reg(𝑇) =
𝑇∑︁
𝑡=1

𝐽 (𝜋∗) − 𝐽 (𝜋𝑡 )

=

𝑇∑︁
𝑡=1

(
E𝑥∼𝜌,𝑎∼𝜋∗ [𝑢∗ (𝑥, 𝑎)] − E𝑥∼𝜌,𝑎∼𝜋𝑡 [𝑢𝜃

𝑡 (𝑥, 𝑎)]
)

︸                                                             ︷︷                                                             ︸
𝐼1

+
𝑇∑︁
𝑡=1

(
E𝑥∼𝜌,𝑎∼𝜋𝑡 [𝑢𝜃

𝑡 (𝑥, 𝑎)] − E𝑥∼𝜌,𝑎∼𝜋𝑡 [𝑢∗ (𝑥, 𝑎)]
)

︸                                                             ︷︷                                                             ︸
𝐼2

−
𝑇∑︁
𝑡=1

𝛽 ·
(
DKL (𝜋∗ ∥ 𝜋ref) − (DKL (𝜋𝑡 ∥ 𝜋ref))

)
︸                                                    ︷︷                                                    ︸

𝐼3

.

First, we compute the upper bound of 𝐼1. By the definition of 𝜋𝑡 and 𝜃𝑡 , we can get
E𝑥∼𝜌,𝑎∼𝜋∗ ( · |𝑥 ) [𝑢∗ (𝑥, 𝑎)] − 𝛽DKL [𝜋∗ ∥ 𝜋ref] − 𝜂1𝐿

𝑡 (𝜃∗)
≤ E𝑥∼𝜌,𝑎∼𝜋𝑡 ( · |𝑥 ) [𝑢𝜃

𝑡 (𝑥, 𝑎)] − 𝛽DKL [𝜋𝑡 ∥ 𝜋ref] − 𝜂1𝐿
𝑡 (𝜃𝑡 ),

which is equivalent to

E𝑥∼𝜌,𝑎∼𝜋∗ [𝑢∗ (𝑥, 𝑎)] − E𝑥∼𝜌,𝑎∼𝜋𝑡 [𝑢𝜃
𝑡 (𝑥, 𝑎)]

≤ 𝛽DKL [𝜋∗ ∥ 𝜋ref] − 𝛽DKL [𝜋𝑡 ∥ 𝜋ref] + 𝜂1 ·
(
𝐿𝑡 (𝜃∗) − 𝐿𝑡 (𝜃𝑡 )

)
.

Now we introduce the Lemma 2 and Lemma 4 in Cen et al. (2024) to further bound the cross-entropy
loss:

Lemma 11 (Lemma 2 and 4 in Cen et al. (2024) when 0 ≤ 𝑅(𝑥, 𝑦) ≤ 1). The following inequality
holds with probability at least 1 − 𝛿 that

𝐿𝑡 (𝜃∗) − 𝐿𝑡 (𝜃𝑡 ) ≤ −(3 + 𝑒2)−2𝜂2
𝑡−1∑︁
𝑖=1

E𝑥∼𝜌,𝑎∼𝜋𝑖
[��𝛿∗ (𝑥𝑡 , 𝑎𝑡 ) − 𝛿𝑡 (𝑥𝑡 , 𝑎𝑡 )

��2] + 2 log
(
|R |
𝛿

)
,

where 𝛿∗ (𝑥, 𝑎) = 𝑅∗ (𝑥, 𝑦1) − 𝑅∗ (𝑥, 𝑦2), 𝛿𝑡 (𝑥, 𝑎) = 𝑅𝜃
𝑡 (𝑥, 𝑦1) − 𝑅𝜃

𝑡 (𝑥, 𝑦2).

Then, we compute the upper bound of 𝐼2.

𝐼2 =

𝑇∑︁
𝑡=1

(
E𝑥∼𝜌,𝑎∼𝜋𝑡 [𝑢𝜃

𝑡 (𝑥, 𝑎)] − E𝑥∼𝜌,𝑎∼𝜋𝑡 [𝑢∗ (𝑥, 𝑎)]
)

= 2
𝑇∑︁
𝑡=1

(
E𝑥∼𝜌,𝑦∼𝜋𝑡 [𝑅𝜃

𝑡 (𝑥, 𝑦)] − E𝑥∼𝜌,𝑦∼𝜋𝑡 [𝑅∗ (𝑥, 𝑦)]
)

− 2
𝑇∑︁
𝑡=1

(
E𝑥∼𝜌,𝑦∼𝜋base [𝑅𝜃

𝑡 (𝑥, 𝑦)] − E𝑥∼𝜌,𝑦∼𝜋base [𝑅∗ (𝑥, 𝑦)]
)

≤ 2
𝑇∑︁
𝑡=1

(
E𝑥∼𝜌,𝑦1∼𝜋𝑡 ,𝑦2∼𝜋base [𝛿𝑡 (𝑥, 𝑦1, 𝑦2) − 𝛿∗ (𝑥, 𝑦1, 𝑦2)]

)
.
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By Multi-agent Decoupling Coefficient, we can further derive

𝐼2/2 ≤ 𝜇 ·
𝑇∑︁
𝑡=1

𝑡−1∑︁
𝑖=1

(
E𝑥∼𝜌,𝑦1∼𝜋𝑖 ,𝑦2∼𝜋base [(𝛿

𝑡 (𝑥, 𝑦1, 𝑦2) − 𝛿∗ (𝑥, 𝑦1, 𝑦2))2]
)
+ 𝑑

4𝜇

≤ 𝜇 · sup
𝑥,𝑦,𝑖

𝜋base (𝑦 | 𝑥)
𝜋𝑖 (𝑦 | 𝑥) ·

𝑇∑︁
𝑡=1

𝑡−1∑︁
𝑖=1

(
E𝑥∼𝜌,𝑦1∼𝜋𝑖 ,𝑦2∼𝜋𝑖 [(𝛿

𝑡 (𝑥, 𝑦1, 𝑦2) − 𝛿∗ (𝑥, 𝑦1, 𝑦2))2]
)
+ 𝑑

4𝜇

= 𝜇 · sup
𝑥,𝑦,𝑖

𝜋base (𝑦 | 𝑥)
𝜋𝑖 (𝑦 | 𝑥) ·

𝑇∑︁
𝑡=1

𝑡−1∑︁
𝑖=1

(
E𝑥∼𝜌,𝑎∼𝜋𝑖 [(𝛿𝑡 (𝑥, 𝑎) − 𝛿∗ (𝑥, 𝑎))2]

)
+ 𝑑

4𝜇
.

Note that

𝜋base (𝑦 | 𝑥)
𝜋𝑖 (𝑦 | 𝑥) =

𝜋base (𝑦 | 𝑥)
𝜋ref (𝑦 | 𝑥) · 𝜋ref (𝑦 | 𝑥)

𝜋𝑖 (𝑦 | 𝑥) = 𝜅 · 𝜋ref (𝑦 | 𝑥)
𝜋𝑖 (𝑦 | 𝑥)

Then by 𝜋𝑖 (𝑦 | 𝑥) ∝ 𝜋ref (𝑦 | 𝑥) exp(𝑅𝑖 (𝑥, 𝑦)/𝛽) in Rafailov et al. (2024), we can derive | log 𝜋𝑖 (𝑦 |
𝑥) − log 𝜋ref (𝑦 | 𝑥) | ≤ 2∥𝑅𝑖 (𝑥, ·)/𝛽∥∞ ≤ 2/𝛽 (Cen et al. (2022), Appendix A.2), then 𝜋ref (𝑦 |𝑥 )

𝜋𝑖 (𝑦 |𝑥 ) ≤
exp(2/𝛽). Then

sup
𝑥,𝑦,𝑖

𝜋base (𝑦 | 𝑥)
𝜋𝑖 (𝑦 | 𝑥) = 𝜅 exp(2/𝛽).

Now we sum over 𝐼1, 𝐼2 and 𝐼3. Thus, we can get

Reg(𝑇) = 𝐼1 + 𝐼2 + 𝐼3

=

𝑇∑︁
𝑡=1

(
𝜂1 · (𝐿𝑡 (𝜃∗) − 𝐿𝑡 (𝜃𝑡 ))

)
+ 𝐼2

≤ −(3 + 𝑒2)−2𝜂1 · 𝜂2 ·
𝑇∑︁
𝑡=1

𝑡−1∑︁
𝑖=1

E𝑥∼𝜌,𝑎∼𝜋𝑖
[��𝛿∗ (𝑥𝑡 , 𝑎𝑡 ) − 𝛿𝑡 (𝑥𝑡 , 𝑎𝑡 )

��2] + 2𝜂1𝑇 log
(
|R |
𝛿

)
+ 2𝜇 · 𝜅 · exp(2/𝛽) ·

𝑇∑︁
𝑡=1

𝑡−1∑︁
𝑖=1

(
E𝑥∼𝜌,𝑎∼𝜋𝑖 [(𝛿𝑡 (𝑥, 𝑎) − 𝛿∗ (𝑥, 𝑎))2]

)
+ 𝑑

2𝜇
.

Now we choose 𝜂1 = 2𝜇𝜅 exp(2/𝛽) · (3 + 𝑒2)2 · 𝜂−2 = 1/
√
𝑇 , then the inequality above will become

Reg(𝑇) ≤ 2
√
𝑇 log

|R |
𝛿

+ 2 · (3 + 𝑒2)2𝜂−2𝑑𝜅 exp(2/𝛽)
√
𝑇.

□
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