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A  TecHNICAL LEMMAS

Lemma 1. Let Z; be a sequence of random variables, where each Z; may depend on the previous
observations Si_1 = [Zi,...,Z;—1] € Z'"\. Furthermore, we define a filtration {F; = o(S;)},
which is also the natural filtration of {Z, }. Consider a sequence of real-valued random (measurable)
Sfunctions £1(81), ..., é7(St). Let T < T be a stopping time so that 1(t < ) is measurable in S;. We

have
T T
Es, exp (Z & — Z ln]EZt|3,_le‘f’) =1.
t=1 t=1

Proof. This proof is a revised version of Lemma 13.1 in|Zhang|(2023). We prove this lemma by
induction. When T = 0, the equality apparently holds. We then assume that the claim holds at 7 — 1
for some 7' > 1. Now we will prove the equation at time 7" using the induction hypothesis.

First we define & = &1(¢ < 7) and notice that £; is measurable in S; so we have

T T
Es, exp (Z & — Z InEz, s, ef')
1=l i=1
T T i
=Es, exp (Z & - Z In ]EZI|3t_le§’)
= i=1

T-1 T-1

:EST" exp Z & = ZlnEZt|3r 1e§t)EZT|ST—1 exp (‘fT_lnEZzlSr—legT)l
L t=1 i=1

[ T-1 -1
=Bs,, [exp| D). & = > InEys, e )

t=1 i=1

min(7,T-1) min(7,T-1)
=Es, , |exp & — Z lnEZ“g”ef’)l

t=1 i=1

=1,

where the third equality exploits the fact that E ) exp (g?r —InEz, SHEST) = 1; and the last
T

equality is because we could treat min(7, 7 — 1) as a stopping time no more than 7' — 1 and we could
use the induction hypothesis. m

Lemma 2 (Martingale exponential inequality). For a sequence of real-valued random variables
{X;}i<T adapted to a filtration {F;},<r, the following holds with probability at least 1 — 6, for

Vt € [T],
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[e_X" |5L§,1] +1In %
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Xs [X|7:S ]+1né.
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Proof. Tt only suffices to show the case when {&;}7 ;— 1s a finite case. The statement implies the
original lemma by pushing 7 — +c0. Let

= ZT: X, — ZT:lnEste_Xs,
s=1 s=1

where 7 is some stopping time. By Lemma we have E(expU7) = 1. (In this case, we apply
Zs =& =—-Xsin Lemma. Now we define the stopping time 7 as

7 =min (7, min (n : U, > —1nd)).
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Then it follows that
P(3n:U; > —-Inéd) <E [V =6E [eV] =0,
where the first inequality is by the famous Markov Inequality.

By considering the complementary event, we know with probability at least 1 — ¢, the following
inequality holds for any 7 € [T]

t
—SZ:XS < > InE [ |7 ] +ln%.

]

Lemma 3 (Freedman’s inequality). Let {X;};<1 be any sequence of real- valued random variables
adapted to filtration {F; }:<7. If |X;| < R almost surely, then for any n € (0, 5] it holds that with
probability at least 1 — 6,

T T T Inl
D X < )BT+ ) Var [Xi|Fioa] + —2.
t=1 t=1 =1 n

Furtheremore, we have
T T T
DUBXIF1) < ) Xy 40 ) Var [X|Fa] + —
t=1 s=1 s=1

Proof. For any random variable X we assume |X| < R almost surely, and let X’ = X — EX. We then
get |X’| < 2R almost surely, and we have

> 2R

InE [e/lx] = AEX + InEe™

< AEX +Ee™X — 1
AX' -aX' -1

"2
axyz X }
< AEX + A2¢(A2R)Var [X],

= AEX + A’E [

where ¢(x) = & = =L the first inequality uses Inx < x — 1; the second inequality exploits the fact

(e8]

that ¢(x) is non-decreasing. Then, we consider the Taylor expansion: e* = ), and we have

nOn"
xn- 2 1 0
(x)—z;( n! ) EHZ( )
For any A € (0, 2R] we could get a finite upper bound for lnE[e’lX]:
1 © A?Var [X]
InE [e™X] <AEX + %2 ) (AR)" Var [X] = ABX + —— . Al
nE [e*X] < AEX + 2;)( )" Var [X] T (A1)

Similar to Lemma 2] we let

Ve(d)=2A ZT: X — i InEg, e,

where 7 is some stopping time. By Lemmawe have E(exp"=) = 1. (In this case, we apply
Zs =&s = X5 in Lemma. Now we define the stopping time 7 as

7 =min (7, min (n : V,(1) > —1nd)).
Then it follows that
P(3n:Ve(d) 2 -Ing) <E[eV"WMO] =GB [V, (1)] =6

where the first inequality is by the famous Markov Inequality.
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By considering the complementary event, we know with probability at least 1 — ¢, the following
inequality holds
T

=1

X

¢ 1
D mE[e™|F ] +In].
é
K s=1
Then we take 1 =7 € (0, #] and use equation 1» to prove the original statement:

T T 1
Qg Var [Xs|Fs—1]  Ing
ZX SZE(X”?"I)JFU BT l e

M'ﬂ 1l

In L
E(X,|%:- ])+nZVar [X,|F5-1] + Tﬁ

s=1

I
—_

t

By letting X] = —X,, we could easily get

T T T
1
DLEXIFi) < 3 Xokn ) Var [Xo|Foa] + =2
t=1 s=1 s=1

]

Lemma 4 (Elliptical Potential Lemma). Let {xs}se[x] be a sequence of vectors with xs € V for
some Hilbert space V. Let Ay be a positive definite matrix and define Ay = Ao + Zle xsxy. Then

it holds that k
' 2 det(Ag+1)
;mln{l,”xs”/\sl} Szm(m .

Proof. This proof mainly follows Lemma 11 in|Abbasi-Yadkori et al.|(2011). By simple calculation,
we have

1 _1
det(Ag) = det(Ag_q +xkx,1—) = det(Ag—1) det({ + Ak_zlxk(Ak_zlxk)T)
k
— 2 _ 2
= det(Au) (1 + lalfy,) = det(ho) [ | (145,020 )

where we use the fact that all eigenvalues of a matrix of the form I +xxT are 1 except one eigenvalue,

which is 1 + ||x||? and which corresponds to the eigenvector x. Using log(1 +7) < ¢, we can bound
log(det(Ag)) by

log det(Ay) < logdet(Ag) + Z ”-xs“/\ 1

s=1
Combining x < 2log(1+x) when x € [0, 1], we get

k n
. det(Ag)
1, YZ_)sz ] (1 YZ_)=21 .
S 25 va(1 110 ) -2

]

Lemma 5. (Lemma G.2 of Chen et al.||2023)) We consider a fixed policy m and Let O be an estimate
of Q7. We define a V-function V and an advantage function A by letting

_ 1 ~ - ~ ~
Vi(s) = —log (Z exp(17 - Qn(s, b))) . An(s,a) = On(s. b) = Vi(s).
d beB
Furthermore, we define a follower’s policy © be letting Uy, (b|s) = exp(n - Ay (s, b)). Then we have
2

DH (Uﬂ,ﬁ) 2 d

T

where Bx =2 (77! log |B]| +1).
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Lemma 6. Forany h € [H] and (s, b)) € S X B, using the same notation as in Lemma we have

- ~ 1
AJ (spobn) = Ap(sn, bp) = By, — Esp) [Qn (5o bn)™ = On(sn, bn)| + EKL (v 11Tn) -

Proof. This proof mainly follows Lemma G.4 in|/Chen et al.|(2023). At first,we notice the fact that
1 1
E?—((u{f) = —E (U;f,log v;lr)ﬂ =- <UZ, 07 (sp.bp) = V,f(sh)>$ , (A2)

%W(fzh) = —% (07,1080 ) 5 = = (O On(sn, bn) = Vi(sn)) 5 - (A3)
Then we could write the difference of V-functions as
Vi (sn) = Vin(sn)
= (v,’f,V,f(sh»B - <ﬁh’ Vh(sh)>3
= (V1 07 (510 bu) )+ HV7) = (51 o)y = H()

= (U, Qf (shsbn) = On(sn.bn)) g + (U — 02 On(sna bn))
— (v OF (shabi) = Vi (s1)) g + (Tns On(sis bi) = Vi(sn)) 5 »

where the first equality exploits the fact that Vj(sy) is constant w.r.t. b, € B and v}’f , Uy are
probability distributions on B; the second equality is by equation (A.2); the last equality is by simple
algebraic tricks.

Then, by direct calculation and omitting (s, by) for QF, Oy, and (sp,) for Vy, Vi, we have
(U Of = VI = (On=V)) g = (Vff =01 On) g = (V- O = V) g+ {00 On = Vi) 5 »
where we use the fact <UZ, \7;,>B = (ﬁh, Vh)B’ since V), is a constant w.r.t. b;, € B. Therefore, we

can write V7 (sy) — Vi (sp) as
Vi (sn) = Vi(sn)
=(up. Of (sn»bn) = On(sn>bn)) g = (Vi Qff (s1s b)) = Vi (sn) = (Qn(sns bn) = Vi(sn)))
=(vp, O (sn.bn) = On(sn, bn)) g = (Vs Af (s> bn) = An(sn b)) g
~ 1
= (vl OF (sn,bn) = On(snsbn)) 5 = ;KL (rllon) g -

We notice the fact that KL (v7[|5) = n (vX, AT (s, bn) = An(sn, b)) At last, we could get

beB’

- ~ 1
AJ(snbn) = Ap(sn. bi) = (B, 0y, — Es,) [OF (sh, bn) — On(sn, bi) | + EKL (villon) .

Lemma 7. We define a distance p; on © by letting

0.0) = {Dr (v Clom. v o)) (14
p1(6,6) . A Clsn)s vy, " Clsn) ) (1 +1)

rZ’H—rZ’éH } (Ad)

Let N, (6, €) be the e-covering number of © with respect to the distance py. For any ¢ € (0, 1), we
set B1 =21In(H - N(©,T~1)/6) + 8. ForV0 € ®,Vh € [H],

t—1 . .
ZE”‘Var;;‘ﬂ* [r;""(sh,bh) —r? (sh,bh)] <4CH(LY, ,(0) — L}, ,(6%)) +B.
i=1

where we define
VarZ:? [Z] = Va0 [ Z|s;] = B [(Z — BV [ Z)5])2 5]

Sh

1
Cy=—+Ba,Ba=2("log|B|+1).
n
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Proof. We first exploit Lemmawith X,h = %(log UZi’e(SZ|b;l) — log U (sh|b )). We choose
filtration to be ﬁ;,_l{Xih 11 e [t—=1]}. Let N, (®, €) be the covering number for the e-covering
net of ® with respect to norm p; defined in Let O be the e-covering net of ®. By Lemma|2]
w.p. at least 1 — ¢, for a fixed 6 € O, and a fixed i € [H], we have
—1 |
X{'= 2 (L, (6%) = L, 1(9))

t=1

(a) 'S 1

< D logE(eX|Fi) + 5
t=1

(b) vis0(-|sp)
Zk’ = \om o 5

() i *
2 S [02 (27 Clsw), o™ Clsw) )| + =
i=1

where the first equality is by the definition of L! w1 @ is by Lemma (b) is by the definition of X;;
(c) is by the fact that log(x) < x — 1 and the definition of Hellinger distance.

By taking union bound on § € ®, and i € [H], we have for any § € ©, any h € [H], with probability
at least 1 — §, for Vt € [T]

log (HN, (0, €))

5 (AS5)

-1
é(Lz,l(e*) =L}, (0) < _ZlE |03 (677 Clsw), v Clsw) | +

On the other hand, by the definition of p; in equation (A.4), for any 6, 6 € ©, we have
* 0 *

of (v o) = o (o)

(a )’ ( n, Q’U;lr,é)*) +Dy (UZ,Q,UZ,G*) .

(b)
< 2Dy (UZ’H, UZ’H)

7,0  m,0* 7,0 _ 7w,0*
DH(Uh Uy, )—DH(Uh Uy, )

(c) -
<2p1(0,90),

where (a) is by the fact that a> —b? = (a+b)(a—b) < |a+b||la—b|; (b) 1sbythefactthatDH( )<,
(c) is by the definition of p;. Then noting that L} | (6) = -X 7]A}7lr 6'(sh, h), for any 6,0 € ©,
we have

L, (6) - L} 1(e)| < T, max ATSO(si by = ATO (s b

-1]

< 2T max [r™? - ”.’éH
g ier-1] "n "l
< 2T - p1(6,6),
where the second inequality uses the fact that |(V;’6 - V:’é) (sh)) < r;:’e - r”’é” ; and the last

inequality is by the definition of p;. Therefore, all the error terms in D2 (-, -), L} (6*)and L} ,(6)

induced by e-net could be bounded by 2Te. By adding an extra 4Te in equation (A.5), we have for
allg € ©,h e [H],1 € [T], wp. 1 -6,

log (HN, (0, €))
0

1 -1 ; 4 .
S (L1 (6%) =L, (9)) < = ) B [Dﬁ (u”"g(.|sh),l}”"9 (.|sh))] + +4Te.
i=1

(A.6)
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In the rest of the proof we take € = T and let 81 = 2log(HN,(©,T~ 1/6) +8. By Lemmal we
have

* * * * 2
.7 ((En,e _E;rh,e )[rn,e _ 70 ])

Sh>bn

2
802 (67 Clsn), u™ " (lsw)) (1 +'Z73A) (o ap? - art?)
n 2 * "
2(1+773A) (A7 - A7)
el

VarZ O [0 (s, by) = 0 (s b))

where the second inequality is by Jensen’s inequality of x%; the last inequality is by Lemma@ the
last equality is by the definition of Var;;'"’(-). Therefore, by letting C,, = % + B4 and insert the
above result back to equation , we have

> B VarZ [ 70 (5 by) — 17 (sh,bh)] <4C2(LL (0) = Ly (6%)) +B.

O
Lemma 8. Let 7, = Uy X Upy1 X ©, we define the following distance on for f, f € Fp:
pa(f.f) = max {[Un = Gl [rfvne no - mrfomeno| . @

Let Ny, (8, €) be the e-covering number of F with respect to the distance p;. For any 6 € (0, 1), we
HN,, (F,
set By = 4H2 In(222 )y 5 Fop V{f;}he[,ﬂ,tem cF

LU - < -1 S e [ (0= T3 5 07] 4

ML

1
24
Proof. At first we verify our loss [} satisfies generalized Bellman completeness and boundedness,
which is defined as follows:

Assumption 4. The function | : Uy X Upy1 X O X (S X A X B XR X S) — R satisfies:

1. (Generalized Bellman Completeness) There exists a functional operator Py, : Hp+1 — Hy, such
that for any (Up, Upy1,0) € Hy X Hpp1 X O and Dy, = (sp, ap, b, Spe1) € (SX A X B XR X S).

H(Un, Ups1,6; D) = L(PLUn+1, Unst, 03 Dn) = By <y Clsioan b)) LUy Unst1, 05 Dp)]
where we require PyU, | = U and that PpUpy € Hy, for any Upy € Upyy and h € [H];
2. (Boundedness) It holds that |l(Uy, Up+1,0; Dy)| < B; for some By > 0 and for any (Uy, Up41,0) €
Hp X Hpey X O and Dy, = (sp,apn, by, Spe1) € (S XA X B XR X S).

First we verify the Generalized Bellman Completeness:
1, (Un, Uns1,0; DY) = By, <2 lsmoansbn) [y (Uns Une1,0: Dyy) |
= [(Un = un) (sns an, bw) = T (sn)] = [Un (s ans bn) = T (Una)]
= T3 Une)) =T Upat) (s101)
= (Bapor~BClsnanbm [T Une) (sns1)] = wn) (sps ans bi) = T (Unsr) (she1).

Therefore, the operator Py, is Eg,,, ~B(.|sn,an.bn) [T*9(-)(sp+1)] and the generalized Bellman com-
pleteness holds. To check boundedness, we only need to notice that u, € [0,1],Yh € [H], so
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|1, (Un, Up+1,6; D})| < H,Vh € [H]. Then we generalize the proof of Proposition 5.1 in|Liu et al.
(2024a) to show our wanted result.

We define the random variables X by d

X, 5 = 1,(Un, Ups1,6; D})? = 14 (PrUpns1, Upat, 0; D). (A.8)
For any f = (Up, Up41,0) € Up X Up41 X O and the operator Py, is defined as above. We first show
X, P is an unbiased estimator of the discrepancy function dj, (Up, Up+1; D;)z, which is defined as
d},(f3D}) = By, <2y Clspan.b) L, (Fs D)1 = Up = T3 (Upa).

For simplicity we also let fp = (PpUp+1, Un+1, 0)Consider that

I (f; D)2 = (I (f; D) =1 (fp; DY) + 1 (PrUpst, Unsr, 0; DY)
= (d!(f; D) + 11 (fp: DL))’
= (d}(f:D}))* + 1}, (fp; D)* +2di,(f; DY) - 14, (fp,6; D)), (A.9)

where the second equality is by the generalized Bellman completeness. Exploiting the completeness
again, we have

Espa1~Bh (-Isnoansbn) [dl (f:Dj - lt (fps D h)]
:dt (f Dh) : Esh+1~Ph(~|Sh ap, bh) [l (PhUh+l Uh+l’ 9 D;l)]

_dt (f D) EY/,+1~P1,(|Yh an,by) [d (f DZ)_lt (f D )]
=0.

Inserting the result back to we have
By~ (lswoanb) [Xh 1 = d (3 D)), (A.10)

Then for each time step &, we define the filtration {ﬁ,t}tT=1 with

k H
o[22

s

s=1 h=1
where D’ {s! e h, b’ ;l o }. From the previous arguments, we can derive that
BLX | Tl =B [Esm.wh<-|Sh,a,,,b,,> X, i1 | = B 1} (£ D)1, (A1)

Var [X,i, 5l ﬁl] <B[X(, )* | Faio1] < BIE[X}, | Faii] = BIE™ [d},(£: D})’], (A.12)

where E™ means the data Dj, is generated by measure (7', v} " Pp). By Lemmal (| | < Bl2
and we setn = Bz) for any fixed h € [H],t € [T],U € U, we have

t—1

t—1
DB | Faal = DX
s=1

I/\

2 [ Xz | 7’7,,s_1] +2B7 log(é)

t—1

IN
| —

2

s=

E™ [d5(f; D35)*] +2B7 log(~< )
1

Rearranging the above terms, we can get

1
ngf ——E” [d},(f: D)) + 2B} log(5).
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By the definition of X} . and the loss function L} , in (4.8), we have

-1 k-1 k-1
DX = LD = Y 1 (PaUner, Uni, 6 D)
s=1 s=1 s=1
k-1
D)2 — inf IS(U.,Upst,0;D5)?
. (f h) U’jrelﬂh h( ho Uh+l h)
22<f>

Then we can derive that, for any fixed & € [H],t € [T], f € Up X Ups1 X O.
Lj,(f) < ——]E” [d} (f;D})*] +2H? log(é). (A.13)
Then we consider L} 2( f*). We first define the random variables Y} s
Yy = 1,(Un, Up,,, 0% D)) = 1, (f*: D))
Similarly, we could show
Bouor~2n Clsnoan.bm) Vi 1 = (d},(Un, Uy, 6% D).

Under the filtration {#7,,}7 ,, we can derive that

t=1°
E[Y}, | Fhi-1] = B [d}(Un, Up,,, 0% D)),

Var [V} | Tt | < BYER 1dy (Un, Uy, 0% D3R,
By Lemma (v f| < 312 and we setn = #), for any fixed h € [H],t € [T], f € F, we have
’ 1

-1
Z TS ——ZE” [d5 (Up, UF,,,6*: D) ]+2B210g( ) < 2B210g( ).

By the definition of ¥} . and the loss function Lj, , in (4.8), we have

t—1 k-1 k-1
=D Vs = 2 LD = Y 1 (U Uy, 6% D).
s=1

s=1 s=1
Since such inequality holds for any U;, € U}, we have

t—1
Ly ,(f*) = sup (- ZY,ff)<2leog( ).

UneUy s=1

Combining the above result with (A.13), for any fixed & € [H],t € [T], f € ¥, we have

—_

t—

S 1

Ly 2 (=L (f) < 52 B (U} (st ans b1) =T (Up1) (sman bi) |+4H? log(5). (A.14)
s=1

Then we generalize this result on a e-net F¢ of . By taking union bound over all & € [H], feFe
and a f* € ®, such that po(f*, f*) < €, with probability 1 — § we have for any ¢ € [T]
L, o (f*) = Lj, (/)

Noy (F, €)

). (Al5)

I/\

Z]E” [T (sn» an, by) = T (T3, ) (sn» an, bn)] +4H210g(
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By the definition of p;, we know

Lz,z(f*) - Lzsz(f*)

=D U = u) (s} b3) = T (53] = [Un (s} b)) = T2 (U]

t
=1
3

©

= Z [(Tn = Un) (s}, a3, by,) = (T, h+l - h+l)(sh+l)]'

s=1
([0 = Uil + [ -1 )

Similarly we could get

Lo (D) = Ly, ()] < 2Tpa(f. ),

105 =70 T3,V 5ms @ bw) = (U = T Uy )] (s ba)| < 2027 (S .

Then we could generate equation (A.15) from F. to F only paying an extra cost of 5Te. By setting
€ =1/T, forany h € [H],t € [T], f € ¥, with probability 1 — § we have

Ly, (f*) - Lk
1& s HTN,,(F, €)

<-3 E™ [(US — T (U, )))(s5, a3, b5)] +4H? In( - ) +5.
s=1
HTN » (7,
Let 8, = 4H? ln(#) + 5, then we are done. O

Lemma 9. (Lemma B.2 in (Chen et al.}|2023)) For any fixed policy n and a fixed s, let U be an
estimate of the quantal response v™ and let U and W be estimates of U™ and W™ respectively. Based
on U and W, we can estimate J(nt) by W(s1). Then the error of these estimators can be bounded as
follows:

H H
W(s1)=J(r) < D B [Onlsns an, bn) = (Tr " Opa) | + H Y B[ = 9)Clsw)l,] -
h=1 h=1

where we define
T, HU(Sh,ah, br) = un(sn, an, bp) + B~y lspoan.bn) [Ty O Uns1) (sna1)],
U (sn) = (Un sy ) @ U0 (- | s1))
Furthermore, by TZ’ﬁUhH) < TZ’ﬁlth), we have

H H
W(s1) = J(m) < D B [Onlsns an, bn) = (T3 O] + H Y B (|l = 9) Clsw], ]
h=1 h=1

Lemma 10. (Lemma B.1 in (Chen et al.||2023)) We consider a fixed policy m and let ¥ be an estimate
of r. We define a V-function V and an advantage function A by letting

Vi(s) = %log (Z exp( - 77 (s, b))), An(s,a) =77 (5,b) = Vi(s).

beB

Furthermore, we define a follower’s policy U be letting ,(b|s) = exp(y - Ap(s,b)). Then the
difference between U and v™ can be bounded by
H

H ) E([[vy = oCIs]]
h=1

H H
< COZE [|7,7 (7 = r)|] + C ZE [7,7 (7 = r)?]
h=1 h=1
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where C1 is defined as
_ 7 exp(2nBa)

Cr= T2 24 By 2Ba)

and 7, has been defined in equation .

B Proofr oF THEOREM/]]

At first, we could decompose the regret into two terms:

T
Reg(T) = > W/ (s1) = W[ (s1)
t=1
T T
< > (W G =W )+ ) (W 0 - Wi ).
t=1 t=1

l] 12

By the definition of U’, 6" in algorithm 1] we have
H H
w7 (s1) = m Z Ly, 1 (67) =m Z Ly ,(U},6))
h=1 h=1

H H
> W (s1) = m ) Ly 03) =m Y Ly 5 (U, 6,
h=1 h=1
which implies that
H H
WY (1) =W (s1) < D (L (65) = Ly (8) +m0 D (L o (Ur, 63) = Ly (U, 6).
h=1 h=1

By the lemma set B1 = 2In N, (0, 1/T)/6 + 8 with the distance p defined in Lemma and let
Cy, =n""+Ba, B =2(5""log|B| + 1), then with probability at least 1 — &,

H
DL (67) = Ly (6)
h=1

H 1
_1 i i * i t i *
< > S B Varz [r;; O (sny b)) = 7% (5o bn) | + HB. (B.1)
For the variance term, we have:
E”lVar;rh"B* [r;:l’g ($p, bp) — r;fl’g*(sh, bh)]

=B Var™ O [ (s, b) = 7 (s, bl

. o Do P i o% i pt i p* 2
(g)Eﬂ En’g |:( r;lr,O _rh)ﬂ,g (Sh,bh)_Eﬂ’g I:(}";:’g _71,7:.’9 )(Sh,bh) | Sh]) |Sh]
Ot [(ni o0 o)
g (7;1 (r] —rh)) (sn,bn)| >

where (a) follows from the definition of Varfh’g(~), and (b) follows from the definition of 7,7 (-).
Insert the last term back to equation (B.T), we have:

H H t-1
« —1 i i t %
DLt @) = Ly (@) < 55 D) > B ITT (3 = 7)1+ Hpy.
h=1 M h=1 i=1
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By Lemma set 8, = 4H? ln(HM’ZT((F’E)) + 5 with the distance p; defined in Lemma we have

H t-1
1

=3 2 DB [ (Un = T3 Uk ) (om0 +HB2. (B2)

h=1 i=1

Z(Lh2<U;,ez>—Lz,z<Unez>> <

We then have

T
I SZ(TII

t=1

M=

(Lj, 1(6}) = Lj, (6}, ))+nzZ(L 2(U§,,02)—L;’2(U’,9;)))

=
Il

1

1 T
( 4C2tZ

n

t—1

H . .
SN BT ¢ -+ HT,Bl)

h=1 i=1

T H -1
1 ; o
e (=5 00 20 DB |(Un =Ty Unet) (s ansbi)?| + HTB)  (B3)
=1 h=1 i=1

To bound I, we exploit Lemma@] and Lemma
H H
ZE” [(UZ)(Sh’am bp) = T30 UZ+1(S11+1)] + HZE"’ [|@n = v Cls|l,] B4
h=

h=1

T H
(b) . i
- Z;E” [(U’tl)(sh’ah’bh) _Thfl Ut+1(Sh+1)]

T H
IRl A CARTAL A (B.5)

~
1l
—_
=
1l
—_

Where (a) is from Lemma|9} (b) is by Lemma and Notice that X = |7, (rgt —rp)(sh. b < 1,
by Lemma (setting n = 3), we have

T
1
n h h -
§E [x!] sEx Var [ X/ Fi-1 ]+210g6

t

INS
M1~

1 : 1
X"+ EVar” [X,h] +2log 3

~
1l
—_

AT
MH
“‘:

S 1
+ 5B [(X)]+210g5

~
Il

INT
MH
“:‘

1
L h -
215 [x] ]+210g6

~
—_

where (a) is by the property of conditional variance; (b) is by Var[X] = E[X?] — E[X]?; (c) is by the
fact that 0 < X, < 1. Hence, we get

T T 1
a [yh h =
;E [X,]SZ;XI +4log 5.

By taking a union bound over all 4 € [H], we know for any i € [H], with probability 1 — &,

T T H
DET X <2 X! +4log .
t=1

t=1
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Summing over h € [H] and considering X" = |7, (r® — r}) (s, b )|, we get

h h h
T H T H
DI (ARG AIC RN EED N GRS ACR ARETES
1=1 h=1 r=1 h=l °

Similarly, we could also get

T H T H H
t t t % 2 t t % 2
BT I e = b <23 3 T (= ) (s} by + 4k og

t=1 h=1 t=1 h=1
Inserting the above result beck to equation (B.5), we have
T H
! ty(d 0 Pt #,0° 7t t
I < E [(Uh)(sh’ah’ by) = Ty Uh+1(sh+1)]

T H
+ 3020 (1T ol = 1) (s b |

=1 h=1
T H
+ 3320 | TE G = i) (s} bl | + O(H log(H /).
t=1 h=1
Then using the fact that |7, (r{" - i) (s, al, b)| < |77 (r?" - r;) (s} a) . b} )|, we can further

have

T H
I < Z ZEnt [(U;,)(Shaah, by) - T8 UL, (Sh+1)]

~
Il

=
Il

T OH -1 A 4,
L <y - Z E™ [(Un = Ty 8 Un) (sno an, bp)*1 + —
=1 h=1 i=1 H
T H t-1 o &
+2(Co+Cr) 2 ) D T (= i) (sh b))*] +2(Co + ) - -
=1 h=1 i=1
+ O(Hlog(H/%)).

At last, we exploit the Lemmaagain, and with probability at least 1 — §, we have
T H -1 d
L < - E™ [(Un - TZ’fltUhH)(sh,ah’ b))+ —
=1 h=l i=l M
TOH -l .~ ) d
#4(Co+ C) g2 ) D, D EF IT7 (3] = r)P] +2(Co+ C) -
=1 h=1 i=
+O(Hlog(H/¢)). (B.6)

Now note that n; = 77, = 1/VT, and by choosing | = 4'%, Uy = 8(6'(:7—iC1)’ combining (B23), and
n
(B.6), with probability at least 1 — 38, we can have
Reg(T) =L+

< L -HT - (B1+B2) + ﬂ +2(Co+Cy) - @ + O(Hlog(H/d))
T i 2
= VTH(B1 + f2) +4C2diNT + 16(Co + C1)*d2NT + O(H log(H /)

—

H(B1 + o) +4C3d1 +16(Co + C1)2da | VT + O(H log(H/5))
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C Proor or DeEcouprLING COEFFICIENT BOUNDS

We mainly generalize the proof of Proposition 1-3 in|Xiong et al.|(2022) in this section.

Proof of Proposition|l] We first note that the completeness assumption is satisfied in linear MSG
case whose proof can be found in[Huang et al.|(2021);|Chen et al.|(2023). Now we consider two

arbitrary vector wp, Wp41 € R4 whose norms are bounded HVd. We define a function U € U such
that U, = ¢ wy, and Uy, = ¢ wpe1. Furthermore more we take arbitrary 6 = {6, }hen © R?
such that ||6|| < Vd. Then we could find r = {rn}nern) € F and ry, = ¢(s,a,b)"0,,Vh €
[H], (s,a,b) € SX AxB. Then by Assumption we can find some U € U and the corresponding

vector w, (U) € R? such that [lw,(U)]] < HVd and T} (¢(s, a,b) Twpa1) = ¢(s.a,b)Twy,(U) =
Uy, € U,,. Therefore, we have

lh(U’ 0,s,a, b) = Uh(S,a, b) - Tj’];’g(ljh+l) = ¢(S’a’ b)T(wh - U.)h(U)) = ¢(S’a’b)TAh(U’ 0)

where A, (U, U) € R? and ||Ay]| < 2HVd.

For any {p*}se[s] C 01, i.e. we take any sequence of the leader and follower’s joint poli-

cies {(75,v™ % )}ser) € T, we denote as ¢ = EP’ [¢(sn,an, by)] and denote ®" = AT +
- EP [¢(sp,an, bp)@d(sp, an, by)T], where A > 1 is a tuning parameter. We further have

t—1
B [1,(0", 0", 5}, by, i) = 1 Y B [1,(0", 6", 53, a1
s=1
-1
=040, U ¢}, = uAi (U, U)T D B [@(s}, ah b5} s 03) 7] (T, Un)
s=1

<AL (U, Un)T ¢}, = ubhn (0", U)T @ Aw(Ur, Uy) + 4udHd

1 _
s@(zp;)T(@f_l) gt +4pAH*d

where the first inequality uses Jensen’s inequality and ||Ah(U;, U,)H < 2HVd and the second
inequality exploits the fact that

1
a™b < (lallgr 1610 ) < 5 (lallyy + 161 )
- - t— t—

Summing over t € [T] and h € [H], we have

T t—1

H
> (E (0" BT~ 3 P (107,05 )

t=1 h=1 s=1
H h
In(det(® —dInA
SZ( (det(®7)) +4p/1dH2T)
2u

h=1

dHIn(1+ L
_( (+ a7 +4u/ldH3T)

2u

where the first inequality exploit Lemmaand the second inequality uses

Indet(®%) < dIn r(@7) where tr(®*) < Ad +T
T) = 4’ T) =

1

m }, we have

By setting 4 = min{1,
dy <2dH(2 +1In(2HT))
Similarly, for d», notice we could still write

mp(0,s,a,b) = rg(s, b) —rn(s,b) = ¢(s,a,b) (0), — 0r) = ¢(s,a,b)"6,(0,0)
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Then we could repeat the above process to generate the similar bound. Another way to get an upper

bound for d; is to write rg (s,b) —rp(s, b) as a bilinear form and then use the classical decoupling
coefficient results on this class. The readers could see|Dann et al.| (2021);/Chen et al.|(2023) for
reference.

Proof of Proposition|2] We first note that the completeness assumption is also satisfied in generalized
linear MSG (Huang et al.| 2021} |Chen et al.||2023). Similarly, we consider two arbitrary vector

wh, Wh+1 € R whose norms are bounded H Vd. We define a function U € U such that U, = ¢ wy

and Up4; = ¢ wpy1. Furthermore more we take arbitrary 6 = {6, } ey C R4 such that [10r]] < Vd.
Then we could find r € ¥, and r, = o (¢(s,a,b)"0;,),Yh € [H],(s,a,b) € S x A x B. Then
by Assumptlon. we can find some U € U and the corresponding vector wy,(U) € R? such that

lwn(U)|| < HVd and T, Y(@(s,a,b)Twpne1) = ¢(s,a,b)Twy(U) = Uy € Uy. Therefore, we have
Ih(U.0,5,a,b) = Uy(s.a.b) = T;° (Une1) = 0 (¢" wp) — 07 (¢T wp (V)

By the Lipschitz condition we have
cl |¢)TAh(U, U)| < |lh(U, 0, s,a,b)i < ’(])TAh(U, U)|
where A, (U, U) € R? and ||Ay|| < 2HVd.

For any {p*}sc[s] C 01, i.ff. we take sequence of {7°}sc,] C I1, we let ¢} = EP’ [¢(sn,an, bn)]
and let ® = AT + X! EP [¢(sh.an, bn)g(sn,an, by)"], where A > 1 is a tuning parameter. We
further have
|
B (10", 6", 5} aly, i) = Y B [14,(0", 6", 53, a, b1
s=1
=1
<2 |[An(0", U | = petAn (0, U)T Y B (s}, a, b3) b5 @iy b3) 7] An(Tr, Uy)
s=1
<20 (U, U)7 ¢}, = uciAn(U', Up) T @) A (T;, Uy) + 4uciAH?d
2
"7 +duciaH?d

ST
ducy

Summing over ¢ € [T] and h € [H], we have

T H -1
ZZ( (1, (0", 6", s}, a),b})] —/,tZE“’ [1n(T", 6", st al, bt)? |
t=1 h=1 s=1
H
In(det (P2 dIna
Zc (( (det(@7)) - +4,u/1c%dH2T )
h=1 2uc;

In(1 +
<dch(%+4 Z/IHQT)
1

By setting 4 = min{1, }, we have

22—HZT
2
dy <2-2dH(2+In(2HT))
C
1
Similarly, for d,, notice we could still write
mp(0,s,a,b) = rf(s, b) —ru(s,b) = ¢(s,a,b) (6, — 0,) = ¢(s,a,b)"5,(6,0)

Then we could repeat the above process to generate the upper bound. Similarly, another way to get

an upper bound for d; is to exploit Lipschitz condition to upper and lower bound rg (s,b) —ry(s,b)
by two bilinear forms and then use the classical decoupling coefficient results on this class. The
readers could see|Dann et al.|(2021);/Chen et al.|(2023) for reference.
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D Proor or THEOREM

Proof. At first, we could decompose the regret into three terms:

J(n*) = J (")

M=

Reg(T) =

~
1l
—_

M=

Expra~r [ (X, 0)] = Exepamne [1” (x,a)]
( )

1

~
I

I

T
+Z( x~pra~nt | u? (x a)] = Exep,a~nt [u"(x, a)])

t=1

L
T

= > B (Dx (" || ) = (ke || ) -

t=1

I3

First, we compute the upper bound of ;. By the definition of #” and 6, we can get
Ex~p,a~7r*(-\x) [u*(x, a)] - IBDKL [ﬂ* ” 7rref] - 771Lt (9*)
< Eavpuamnt ([ (0. @)] = BDRL[A" || meer] = mi L (61),
which is equivalent to
Exepa~n [ (6, 0)] = Bxepamt [u” (x,0)]
< BDKL[R* | mres] — BDkL [ﬂ't | mres] + - (Lt(g*) - Lt(gt)) .
Now we introduce the Lemma 2 and Lemma 4 in|Cen et al.|(2024) to further bound the cross-entropy
loss:

Lemma 11 (Lemma 2 and 4 in|Cen et al.| (2024) when O < R(x,y) < 1). The following inequality
holds with probability at least 1 — 6 that

-1
Rr
L) = L'(0") < =B +e) 7 Y Bepani [ ‘(. a) - 6t(xt’at)i2] +2log (%) ’
i=1
where §*(x,a) = R*(x,y1) = R*(x,y2), 6" (x,a) = R? (x,y1) = R? (x, ).

Then, we compute the upper bound of /5.

i( et [17 (5, @)] = B e [ (3, 0)] )

t=1

T
=2 (Baopnt [R” ()] = Bapyme [R' (5, 2)])

t=1

T
=23 (Beopormae R (6 0)] = Bacpyom [R5 )]

t=1

In
V)
M1~

(Ex~p,y1~7r’,y2~7rbase [6t (X, Y1, y2) -6 (-x7 Y1, yZ)]) .

~
I
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By Multi-agent Decoupling Coefficient, we can further derive

T
L/2<p- Z

t=11i

hase (¥ [ ) ¥
S 'Su ase
SNSRI Z]

-1

~

. d
( ~p,y1~ﬂi,y2~ﬂbase[(§t(x, )’1, YZ) - 6 (x’ )’17)’2))2]) + @

1l
—_

-1

~

% d
( X~p,y1~nt,yy~nt [(5t(x,y1,y2) -0 (x’)’l’)’Z))z]) + @

EM

—_

t—

T
= - sup ﬂbase(ylx) Z

o w10 L

(Beopran [(6 (. 0) = 6" (r, )] ) +

1

Note that

”base(y | x) _ ﬂbase(y |x) . ﬂref(y | x) —x- ﬂref(y |x)
mi(y [ x) Tt (y | x) 7wl (y [ x) m(y | x)

Then by 7 (y | x) o mer(y | x) exp(R (x, y)/B) in|Rafailov et al. (2024), we can derive | log 7' (y |
Tef (¥]X)

x) —log ™ (y | x)| < 2||R(x,-)/Bllo < 2/B (Cen et al.|(2022), Appendix A.2), then oM S
exp(2/B). Then

sup M = kexp(2/B).
X,y,0 ﬂl(y |x)
Now we sum over Iy, I and /3. Thus, we can get

Reg(T) =hi+h+1
T

(m - (L"(6") = L'(6")) + I
t=1
t—1

T
R
< _(3 + 62)—2771 ' 772 : Z ZEx~p,a~7ri [|6*(xts at) -6 (-xt, at)|2] + 27]1T10g (%)

=1 1

N
I

t—1

(Brcpaer 16" (5.0 = 5", 5

M&

+2p - k- exp(2/P) -

t=1 i=1

2ukexp(2/B) - (3+¢2)?-n~2 = 1/VT, then the inequality above will become

Reg(T) < 2VT log @ +2-(3+ e 2deexp(2/B)VT.

Now we choose 171 =
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