A Proofs

In this section, we provide complete proofs for each lemma and theorem.

A.1 Proof of Lemma 1

Notice that $|\mathcal{I}(t)| = |\mathcal{M}(t) \cap \mathcal{C}(t)| \leq |\mathcal{M}(t)|$. By definition of $\mathcal{M}(t)$ in (6), we have $\mathcal{M}(t) = \mathcal{V} \setminus (\mathcal{T}^{\mu}_{\max}(t) \bigcup \mathcal{T}^{\mu}_{\min}(t))$. Definitions of $\mathcal{T}^{\mu}_{\max}(t)$ and $\mathcal{T}^{\mu}_{\min}(t)$ give $|\mathcal{T}^{\mu}_{\max}(t)| = |\mathcal{T}^{\mu}_{\min}(t)| = \lfloor \beta n \rfloor$. Then we have $|\mathcal{M}(t)| = |\mathcal{V} \setminus (\mathcal{T}^{\mu}_{\max}(t) \bigcup \mathcal{T}^{\mu}_{\min}(t))| = n - 2\lfloor \beta n \rfloor$, which indicates that $|\mathcal{I}(t)| \leq n - 2\lfloor \beta n \rfloor$. Since $\mathcal{M}(t) \bigcup \mathcal{C}(t) \subseteq \mathcal{V}$, then it holds that $|\mathcal{M}(t) \bigcup \mathcal{C}(t)| \leq n$. By definition of $\mathcal{C}(t)$ in (6), we have $|\mathcal{C}(t)| = n - 2\lfloor \beta n \rfloor$. Therefore, we have $|\mathcal{I}(t)| = |\mathcal{M}(t) \cap \mathcal{C}(t)| = |\mathcal{M}(t)| + |\mathcal{C}(t)| - |\mathcal{M}(t) \bigcup \mathcal{C}(t)| \geq n - 4\lfloor \beta n \rfloor$. Since $\beta < \frac{1}{4}$, we have $|\mathcal{I}(t)| > 0$, i.e., $\mathcal{I}(t) \neq \emptyset$.

A.2 Proof of Lemma 2

Notice that $\mathcal{I}(t) = \mathcal{M}(t) \cap \mathcal{C}(t)$. Recall that in Step 2 of Section 3.2, $\check{\mu}'_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)}$ is sorted in non-descending order. Without loss of generality, agent 1 has the smallest value and agent n has the largest value, i.e., $\check{\mu}'_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)} \leq \check{\mu}'_{\boldsymbol{z}_*|\mathcal{D}^{[i+1]}(t)}$ for $i=1,2,\ldots,n-1$. Recall that $\mathcal{T}^{\mu}_{\max}(t)$ contains $\lfloor \beta n \rfloor$ agents with the largest local predictive means. For any $q \in \mathcal{T}^{\mu}_{\max}(t)$ and $q' \in \mathcal{M}(t)$, we have $\check{\mu}'_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)} \geq \check{\mu}'_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)}$. Suppose that there exists $i \in \mathcal{M}(t)$ such that $\check{\mu}'_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)} > \max_{j \in \mathcal{V} \setminus \mathcal{B}} \left\{ \check{\mu}_{\boldsymbol{z}_*|\mathcal{D}^{[j]}(t)} \right\}$, then we have $i \in \mathcal{B}$. For all $q \in \mathcal{T}^{\mu}_{\max}(t)$, we have $\check{\mu}'_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)} \geq \check{\mu}'_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)} > \max_{j \in \mathcal{V} \setminus \mathcal{B}} \left\{ \check{\mu}_{\boldsymbol{z}_*|\mathcal{D}^{[j]}(t)} \right\}$. Since $|\mathcal{T}^{\mu}_{\max}(t)| = \lfloor \beta n \rfloor$, then we have $\lfloor \alpha n \rfloor \geq \lfloor \beta n \rfloor + 1$. It contradicts with $\alpha \leq \beta$. Therefore, we have $\check{\mu}'_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)} \leq \max_{j \in \mathcal{V} \setminus \mathcal{B}} \left\{ \check{\mu}_{\boldsymbol{z}_*|\mathcal{D}^{[j]}(t)} \right\}$ for all $i \in \mathcal{M}(t)$. Likewise, we have $\min_{j \in \mathcal{V} \setminus \mathcal{B}} \left\{ \check{\mu}_{\boldsymbol{z}_*|\mathcal{D}^{[j]}(t)} \right\} \leq \check{\mu}'_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)}$ for all $i \in \mathcal{M}(t)$.

Analogous to the proof of $\check{\mu}'_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)}$, we conclude that $\min_{j\in\mathcal{V}\setminus\mathcal{B}}\left\{\check{\sigma}^2_{\boldsymbol{z}_*|\mathcal{D}^{[j]}(t)}\right\} \leq \check{\sigma}'^2_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)} \leq \max_{j\in\mathcal{V}\setminus\mathcal{B}}\left\{\check{\sigma}^2_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)}\right\}$ for all $i\in\mathcal{C}(t)$.

A.3 Proof of Theorem 1

Part I: Roadmap of the proof: We first show in Lemma 3 that at time instant t, the local predictive mean of agent $i \in \mathcal{V}$ in the attack-free scenario is a sub-Gaussian random variable. Then notice that by triangular inequality, the prediction errors under attacks can be bounded by the magnitude of attacks plus the prediction errors in the attack-free case. Therefore, for $i \in \mathcal{I}(t)$, Lemma 4 uses concentration inequalities of sub-Gaussian random variables to quantify the upper bound of the Byzantine attacks. We derive the upper bound of the prediction error in the attack-free case in Lemma 5.

Lemma 3 Let Assumptions 2 and 3 hold. For agent $i \in V$ and $z_* \in \mathcal{Z}_*$, it holds that $\check{\mu}_{z_*|\mathcal{D}^{[i]}(t)}$ is a sub-Gaussian random variable.

Proof: Pick any $i \in \mathcal{V}$. Monotonicity of Assumption 2 implies that $k(\boldsymbol{z}_*^{[i]}(t), \boldsymbol{z}_*^{[i]}(t)) = \kappa(0) = \sigma_f^2$. By Assumption 3, the prior mean is $\mu(\boldsymbol{z}_*) = \mu(\boldsymbol{z}_*^{[i]}(t)) = 0$. For notational simplicity, we denote the distance by $D_{\boldsymbol{z}_*}^{\mathcal{Z}^{[i]}(t)} \triangleq D(\boldsymbol{z}_*, \mathcal{Z}^{[i]}(t))$. Hence, by (5), the local predictive mean is computed as $\check{\mu}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)} = \frac{\kappa(D_{\boldsymbol{z}_*}^{\mathcal{Z}^{[i]}(t)})}{\sigma_f^2 + (\sigma_e^{[i]})^2} y_{\boldsymbol{z}_*^{[i]}(t)}^{[i]}$. Given the observation model (4), $y_{\boldsymbol{z}_*^{[i]}(t)}^{[i]}$ can be decomposed into a deterministic process $\eta(\boldsymbol{z}_*^{[i]}(t))$ and a zero-mean Gaussian noise $y_{\boldsymbol{z}_*^{[i]}(t)}^{[i]} - \eta(\boldsymbol{z}_*^{[i]}(t))$. For agent $i \in \mathcal{V}$, we denote the expectation and variance of $\check{\mu}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)}$ by $\mathbb{E}\left[\check{\mu}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)}\right]$ and $Var\left[\check{\mu}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)}\right]$, respectively. Notice that $y_{\boldsymbol{z}_*^{[i]}(t)}^{[i]} - \eta(\boldsymbol{z}_*^{[i]}(t))$ is the only random variable with variance $(\sigma_e^{[i]})^2$, and this implies $\check{\mu}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)} \sim \mathcal{N}\left(\frac{\kappa(D_{\boldsymbol{z}_*}^{\mathcal{Z}^{[i]}(t)})}{\sigma_f^2 + (\sigma_e^{[i]})^2}\eta(\boldsymbol{z}_*^{[i]}(t)), \left(\frac{\kappa(D_{\boldsymbol{z}_*}^{\mathcal{Z}^{[i]}(t)})}{\sigma_f^2 + (\sigma_e^{[i]})^2}\right)^2(\sigma_e^{[i]})^2\right)$. Then for $\lambda_i \in \mathbb{R}$, we

conduct the following algebraic calculations

$$\mathbb{E}\left[\exp(\lambda_i(\check{\mu}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)} - \mathbb{E}\left[\check{\mu}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)}\right]))\right]$$

$$= \int_{-\infty}^{+\infty} \frac{\exp\left(-\frac{\left(\mu - \mathbb{E}\left[\check{\mu}_{\boldsymbol{z}_{*}\mid\mathcal{D}[i]}(t)\right]\right)^{2}}{2Var\left[\check{\mu}_{\boldsymbol{z}_{*}\mid\mathcal{D}[i]}(t)\right]}\right)}{\sqrt{2\pi Var\left[\check{\mu}_{\boldsymbol{z}_{*}\mid\mathcal{D}[i]}(t)\right]}} \exp\left(\lambda_{i}\left(\mu - \mathbb{E}\left[\check{\mu}_{\boldsymbol{z}_{*}\mid\mathcal{D}[i]}(t)\right]\right)\right) d\mu$$

$$= \frac{\exp\left(-\lambda_{i}\mathbb{E}\left[\check{\mu}_{\boldsymbol{z}_{*}\mid\mathcal{D}[i]}(t)\right]\right)}{\sqrt{2\pi Var\left[\check{\mu}_{\boldsymbol{z}_{*}\mid\mathcal{D}[i]}(t)\right]}} \int_{-\infty}^{+\infty} \exp\left(\lambda_{i}\mu - \frac{\left(\mu - \mathbb{E}\left[\check{\mu}_{\boldsymbol{z}_{*}\mid\mathcal{D}[i]}(t)\right]\right)^{2}}{2Var\left[\check{\mu}_{\boldsymbol{z}_{*}\mid\mathcal{D}[i]}(t)\right]}\right) d\mu.$$

Note that

$$\begin{split} &\exp\left(-\lambda_{i}\mathbb{E}\left[\check{\mu}_{\boldsymbol{z}_{*}\mid\mathcal{D}^{[i]}(t)}\right]\right)\exp\left(\lambda_{i}\mu-\frac{\left(\mu-\mathbb{E}\left[\check{\mu}_{\boldsymbol{z}_{*}\mid\mathcal{D}^{[i]}(t)}\right]\right)^{2}}{2Var\left[\check{\mu}_{\boldsymbol{z}_{*}\mid\mathcal{D}^{[i]}(t)}\right]}\right)\\ &=\exp\left(-\lambda_{i}\left(\mathbb{E}\left[\check{\mu}_{\boldsymbol{z}_{*}\mid\mathcal{D}^{[i]}(t)}\right]-\mu\right)-\frac{\left(\mu-\mathbb{E}\left[\check{\mu}_{\boldsymbol{z}_{*}\mid\mathcal{D}^{[i]}(t)}\right]\right)^{2}}{2Var\left[\check{\mu}_{\boldsymbol{z}_{*}\mid\mathcal{D}^{[i]}(t)}\right]}\right)\\ &=\exp\left(\frac{-\left(2\lambda_{i}\mathbb{E}\left[\check{\mu}_{\boldsymbol{z}_{*}\mid\mathcal{D}^{[i]}(t)}\right]-2\lambda_{i}\mu\right)Var\left[\check{\mu}_{\boldsymbol{z}_{*}\mid\mathcal{D}^{[i]}(t)}\right]}{2Var\left[\check{\mu}_{\boldsymbol{z}_{*}\mid\mathcal{D}^{[i]}(t)}\right]}\right)\\ &\times\exp\left(-\frac{\mu^{2}-2\mu\mathbb{E}\left[\check{\mu}_{\boldsymbol{z}_{*}\mid\mathcal{D}^{[i]}(t)}\right]+\mathbb{E}\left[\check{\mu}_{\boldsymbol{z}_{*}\mid\mathcal{D}^{[i]}(t)}\right]^{2}}{2Var\left[\check{\mu}_{\boldsymbol{z}_{*}\mid\mathcal{D}^{[i]}(t)}\right]}\right)\\ &=\exp\left(\frac{\left(\mu-\left(\lambda_{i}Var\left[\check{\mu}_{\boldsymbol{z}_{*}\mid\mathcal{D}^{[i]}(t)}\right]+\mathbb{E}\left[\check{\mu}_{\boldsymbol{z}_{*}\mid\mathcal{D}^{[i]}(t)}\right]^{2}\right)}{-2Var\left[\check{\mu}_{\boldsymbol{z}_{*}\mid\mathcal{D}^{[i]}(t)}\right]^{2}}\right)\\ &\times\exp\left(-\lambda_{i}\mathbb{E}\left[\check{\mu}_{\boldsymbol{z}_{*}\mid\mathcal{D}^{[i]}(t)}\right]-\frac{\mathbb{E}\left[\check{\mu}_{\boldsymbol{z}_{*}\mid\mathcal{D}^{[i]}(t)}\right]^{2}}{2Var\left[\check{\mu}_{\boldsymbol{z}_{*}\mid\mathcal{D}^{[i]}(t)}\right]}\right)\exp\left(\frac{\left(\lambda_{i}Var\left[\check{\mu}_{\boldsymbol{z}_{*}\mid\mathcal{D}^{[i]}(t)}\right]+\mathbb{E}\left[\check{\mu}_{\boldsymbol{z}_{*}\mid\mathcal{D}^{[i]}(t)}\right]\right)^{2}}{2Var\left[\check{\mu}_{\boldsymbol{z}_{*}\mid\mathcal{D}^{[i]}(t)}\right]}\right)\\ &=\exp\left(\frac{\lambda_{i}^{2}Var\left[\check{\mu}_{\boldsymbol{z}_{*}\mid\mathcal{D}^{[i]}(t)}\right]}{2}\right)\exp\left(\frac{\left(\mu-\left(\lambda_{i}Var\left[\check{\mu}_{\boldsymbol{z}_{*}\mid\mathcal{D}^{[i]}(t)}\right]+\mathbb{E}\left[\check{\mu}_{\boldsymbol{z}_{*}\mid\mathcal{D}^{[i]}(t)}\right]\right)\right)^{2}}{-2Var\left[\check{\mu}_{\boldsymbol{z}_{*}\mid\mathcal{D}^{[i]}(t)}\right]}\right)}\right). \end{split}$$

Then we have

$$\mathbb{E}\left[\exp\left(\lambda_{i}(\check{\mu}_{\boldsymbol{z}_{*}|\mathcal{D}^{[i]}(t)} - \mathbb{E}\left[\check{\mu}_{\boldsymbol{z}_{*}|\mathcal{D}^{[i]}(t)}\right])\right)\right] \\
= \exp\left(\frac{\lambda_{i}^{2}Var\left[\check{\mu}_{\boldsymbol{z}_{*}|\mathcal{D}^{[i]}(t)}\right]}{2}\right) \underbrace{\frac{\int_{-\infty}^{+\infty} \exp\left(\frac{\left(\mu - \left(\lambda_{i}Var\left[\check{\mu}_{\boldsymbol{z}_{*}|\mathcal{D}^{[i]}(t)}\right] + \mathbb{E}\left[\check{\mu}_{\boldsymbol{z}_{*}|\mathcal{D}^{[i]}(t)}\right]\right)\right)^{2}\right) d\mu}_{-2Var\left[\check{\mu}_{\boldsymbol{z}_{*}|\mathcal{D}^{[i]}(t)}\right]} \\
= \exp\left(\frac{\lambda_{i}^{2}Var\left[\check{\mu}_{\boldsymbol{z}_{*}|\mathcal{D}^{[i]}(t)}\right]}{2}\right). \tag{10}$$

The term $\frac{\exp\left(\frac{\left(\mu-\left(\lambda_{i}Var\left[\check{\mu}_{\boldsymbol{z}_{*}\mid\mathcal{D}[i]}(t)\right]+\mathbb{E}\left[\check{\mu}_{\boldsymbol{z}_{*}\mid\mathcal{D}[i]}(t)\right]\right)\right)^{2}}{\sqrt{2\pi Var\left[\check{\mu}_{\boldsymbol{z}_{*}\mid\mathcal{D}[i]}(t)\right]}}}\right)}{\sqrt{2\pi Var\left[\check{\mu}_{\boldsymbol{z}_{*}\mid\mathcal{D}[i]}(t)\right]}} \text{ is a Gaussian probability density function with mean } \lambda_{i}Var\left[\check{\mu}_{\boldsymbol{z}_{*}\mid\mathcal{D}[i]}(t)\right]+\mathbb{E}\left[\check{\mu}_{\boldsymbol{z}_{*}\mid\mathcal{D}[i]}(t)\right]} \text{ and variance } Var\left[\check{\mu}_{\boldsymbol{z}_{*}\mid\mathcal{D}[i]}(t)\right]. \text{ Recall that } \sigma^{2}=\left(\frac{\sigma_{f}^{2}\sigma_{e}^{\max}}{\sigma_{f}^{2}+(\sigma_{e}^{\min})^{2}}\right)^{2}. \text{ By Assumption 2, it holds that the kernel function } \kappa(\cdot) \text{ is monotonically decreasing and } \kappa(0)=\sigma_{f}^{2}. \text{ Therefore, we have } Var\left[\check{\mu}_{\boldsymbol{z}_{*}\mid\mathcal{D}[i]}(t)\right]=\left(\frac{\kappa(\mathcal{D}_{\boldsymbol{z}_{*}}^{\mathcal{Z}[i]}(t))}{\sigma_{f}^{2}+(\sigma_{e}^{ij})^{2}}\sigma_{e}^{[i]}\right)^{2}\leq\left(\frac{\sigma_{f}^{2}\sigma_{e}^{\max}}{\sigma_{f}^{2}+(\sigma_{e}^{\min})^{2}}\right)^{2}=\sigma^{2}. \text{ Solution in } V$

Substituting $Var\left[\check{\mu}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)}\right] \leq \sigma^2$ into (10) yields $\mathbb{E}\left[\exp\left(\lambda_i(\check{\mu}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)} - \mathbb{E}\left[\check{\mu}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)}\right]\right)\right)\right] \leq \exp\left(\frac{\lambda_i^2\sigma^2}{2}\right)$. Thus by Definition 1, we conclude that $\check{\mu}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)}$ is a sub-Gaussian random variable.

 $\begin{array}{l} \textbf{Lemma 4} \ \textit{Let} \ 0 < \alpha \leq \beta < \frac{1}{4} \ \textit{and Assumption 2 hold. For all} \ \boldsymbol{z}_* \in \mathcal{Z}_* \ \textit{and} \ 0 < \delta < 1, \\ \textit{with probability at least} \ 1 - \delta, \ \textit{it holds that} \ \frac{\hat{\sigma}_{\boldsymbol{z}_*|\mathcal{D}(t)}^2}{|\mathcal{I}(t)|} \sum_{i \in \mathcal{I}(t)} \check{\sigma}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)}^{\prime - 2} \left| \check{\mu}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)}^{\prime} - \check{\mu}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)} \right| \leq \\ \frac{2\alpha(\sqrt{2\sigma^2(\ln(2n)-\ln\delta)} + \frac{\sigma_f^2 \|\boldsymbol{\eta}\|_{\infty}}{\sigma_f^2 + (\sigma_e^{\min})^2})}{1-4\beta} \frac{\sigma_f^4 + \sigma_f^2(\sigma_e^{\max})^2 - \kappa(d^{\max}(t))^2}{\sigma_f^2(\sigma_e^{\min})^2}. \end{array}$

 $\begin{array}{lll} \textit{Proof:} & \text{We denote by } \mathcal{F}(t) \triangleq \mathcal{I}(t) \bigcap (\mathcal{V} \backslash \mathcal{B}) \text{ the set of benign agents in the set} \\ \mathcal{I}(t). & \text{That is, } \check{\mu}'_{\boldsymbol{z}_* \mid \mathcal{D}^{[i]}(t)} = \check{\mu}_{\boldsymbol{z}_* \mid \mathcal{D}^{[i]}(t)} \text{ for all } i \in \mathcal{F}(t), \text{ therefore it holds that} \\ \frac{\mathring{\sigma}^2_{\boldsymbol{z}_* \mid \mathcal{D}(t)}}{|\mathcal{I}(t)|} \sum_{i \in \mathcal{F}(t)} \check{\sigma}'^{-2}_{\boldsymbol{z}_* \mid \mathcal{D}^{[i]}(t)} \left| \check{\mu}'_{\boldsymbol{z}_* \mid \mathcal{D}^{[i]}(t)} - \check{\mu}_{\boldsymbol{z}_* \mid \mathcal{D}^{[i]}(t)} \right| = 0. \text{ Recall that } \hat{\sigma}^2_{\boldsymbol{z}_* \mid \mathcal{D}(t)} = \frac{|\mathcal{I}(t)|}{\sum_{j \in \mathcal{I}(t)} \check{\sigma}'^{-2}_{\boldsymbol{z}_* \mid \mathcal{D}^{[j]}(t)}}. \\ \text{We have} \end{array}$

$$\frac{\hat{\sigma}_{z_{*}|\mathcal{D}(t)}^{2}}{|\mathcal{I}(t)|} \sum_{i \in \mathcal{I}(t)} \check{\sigma}_{z_{*}|\mathcal{D}[i](t)}^{\prime - 2} \left| \check{\mu}_{z_{*}|\mathcal{D}[i](t)}^{\prime} - \check{\mu}_{z_{*}|\mathcal{D}[i](t)} \right| \\
= \frac{\hat{\sigma}_{z_{*}|\mathcal{D}(t)}^{2}}{|\mathcal{I}(t)|} \sum_{i \in \mathcal{I}(t) \cap \mathcal{B}} \check{\sigma}_{z_{*}|\mathcal{D}[i](t)}^{\prime - 2} \left| \check{\mu}_{z_{*}|\mathcal{D}[i](t)}^{\prime} - \check{\mu}_{z_{*}|\mathcal{D}[i](t)} \right| \\
+ \underbrace{\frac{\hat{\sigma}_{z_{*}|\mathcal{D}(t)}^{2}}{|\mathcal{I}(t)|}}_{= i \in \mathcal{F}(t)} \sum_{i \in \mathcal{F}(t)} \check{\sigma}_{z_{*}|\mathcal{D}[i](t)}^{\prime - 2} \left| \check{\mu}_{z_{*}|\mathcal{D}[i](t)}^{\prime} - \check{\mu}_{z_{*}|\mathcal{D}[i](t)} \right| \\
= 0 \\
= \frac{\sum_{i \in \mathcal{I}(t) \cap \mathcal{B}} \check{\sigma}_{z_{*}|\mathcal{D}[i](t)}^{\prime - 2} \left| \check{\mu}_{z_{*}|\mathcal{D}[i](t)}^{\prime} - \check{\mu}_{z_{*}|\mathcal{D}[i](t)} \right|}{\sum_{j \in \mathcal{I}(t)} \check{\sigma}_{z_{*}|\mathcal{D}[i](t)}^{\prime - 2} \left| \check{\mu}_{z_{*}|\mathcal{D}[i](t)}^{\prime - 2} \right| \\
\leq \frac{\sum_{i \in \mathcal{I}(t) \cap \mathcal{B}} \check{\sigma}_{z_{*}|\mathcal{D}[i](t)}^{\prime - 2} \left(\left| \check{\mu}_{z_{*}|\mathcal{D}[i](t)}^{\prime - 2} \right| + \left| \check{\mu}_{z_{*}|\mathcal{D}[i](t)} \right| \right)}{\sum_{j \in \mathcal{I}(t)} \check{\sigma}_{z_{*}|\mathcal{D}[j](t)}^{\prime - 2}}. \tag{11}$$

In the remaining proof, we find the upper bound of $\left|\check{\mu}'_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)}\right| + \left|\check{\mu}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)}\right|$, and characterize the lower and upper bounds of $\check{\sigma}'^{-2}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)}$.

1) The upper bound of $\left|\check{\mu}'_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)}\right| + \left|\check{\mu}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)}\right|$. By Lemma 2, we have $\left|\check{\mu}'_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)}\right| \leq \max_{i \in \mathcal{V} \setminus \mathcal{B}} \left\{\left|\check{\mu}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)}\right|\right\}$ for all $i \in \mathcal{I}(t)$. Then $\left|\check{\mu}'_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)}\right| + \left|\check{\mu}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)}\right| \leq 2\max_{i \in \mathcal{V} \setminus \mathcal{B}} \left\{\left|\check{\mu}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)}\right|\right\}$ for all $i \in \mathcal{I}(t)$. By Lemma 3, for all $i \in \mathcal{V}$, $\check{\mu}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)}$ is a sub-Gausian random variable. Since $|\mathcal{V} \setminus \mathcal{B}| = n - \lfloor \alpha n \rfloor$, by maximal inequality (Theorem 1.14 on page 25 in [28]), for any $\epsilon_1 > 0$, we have

$$P\left\{\max_{i\in\mathcal{V}\setminus\mathcal{B}}\left\{\left|\check{\mu}_{\boldsymbol{z}_{*}\mid\mathcal{D}^{[i]}(t)}-\frac{\kappa(D_{\boldsymbol{z}_{*}}^{\mathcal{Z}^{[i]}(t)})}{\sigma_{f}^{2}+(\sigma_{e}^{[i]})^{2}}\eta(\boldsymbol{z}_{*}^{[i]}(t))\right|\right\}\geq\epsilon_{1}\right\}\leq2(n-\lfloor\alpha n\rfloor)e^{-\frac{\epsilon_{1}^{2}}{2\sigma^{2}}}\leq2ne^{-\frac{\epsilon_{1}^{2}}{2\sigma^{2}}}.$$

For $0 < \delta < 1$, choosing $\epsilon_1 \triangleq \sqrt{2\sigma^2(\ln(2n) - \ln \delta)}$, with probability at least $1 - \delta$, we have

$$\max_{i \in \mathcal{V} \setminus \mathcal{B}} \left\{ \left| \check{\mu}_{\boldsymbol{z}_* \mid \mathcal{D}^{[i]}(t)} - \frac{\kappa(D_{\boldsymbol{z}_*}^{\mathcal{Z}^{[i]}(t)})}{\sigma_f^2 + (\sigma_e^{[i]})^2} \eta(\boldsymbol{z}_*^{[i]}(t)) \right| \right\} \leq \sqrt{2\sigma^2 (\ln(2n) - \ln \delta)}.$$

Since triangular inequality renders

$$\left| \check{\mu}_{{\boldsymbol{z}}_* \mid \mathcal{D}^{[i]}(t)} \right| \leq \left| \check{\mu}_{{\boldsymbol{z}}_* \mid \mathcal{D}^{[i]}(t)} - \frac{\kappa(D_{{\boldsymbol{z}}_*}^{\mathcal{Z}^{[i]}(t)})}{\sigma_f^2 + (\sigma_e^{[i]})^2} \eta({\boldsymbol{z}}_*^{[i]}(t)) \right| + \left| \frac{\kappa(D_{{\boldsymbol{z}}_*}^{\mathcal{Z}^{[i]}(t)})}{\sigma_f^2 + (\sigma_e^{[i]})^2} \eta({\boldsymbol{z}}_*^{[i]}(t)) \right|,$$

we have

$$\max_{i \in \mathcal{V} \backslash \mathcal{B}} \left\{ \left| \check{\mu}_{\boldsymbol{z}_* \mid \mathcal{D}^{[i]}(t)} \right| \right\} \leq \max_{i \in \mathcal{V} \backslash \mathcal{B}} \left\{ \left| \frac{\kappa(D_{\boldsymbol{z}_*}^{\mathcal{Z}^{[i]}(t)})}{\sigma_f^2 + (\sigma_e^{[i]})^2} \eta(\boldsymbol{z}_*^{[i]}(t)) \right| \right\}$$

$$\left. + \max_{i \in \mathcal{V} \backslash \mathcal{B}} \left\{ \left| \check{\mu}_{\boldsymbol{z}_* \mid \mathcal{D}^{[i]}(t)} - \frac{\kappa(D_{\boldsymbol{z}_*}^{\mathcal{Z}^{[i]}(t)})}{\sigma_f^2 + (\sigma_e^{[i]})^2} \eta(\boldsymbol{z}_*^{[i]}(t)) \right| \right\},$$

which implies that with probability at least $1 - \delta$,

$$\max_{i \in \mathcal{V} \setminus \mathcal{B}} \left\{ \left| \check{\mu}_{\boldsymbol{z}_* \mid \mathcal{D}^{[i]}(t)} \right| \right\} \leq \sqrt{2\sigma^2(\ln(2n) - \ln \delta)} + \max_{i \in \mathcal{V} \setminus \mathcal{B}} \left\{ \left| \frac{\kappa(D_{\boldsymbol{z}_*}^{\mathcal{Z}^{[i]}(t)})}{\sigma_f^2 + (\sigma_e^{[i]})^2} \eta(\boldsymbol{z}_*^{[i]}(t)) \right| \right\}.$$

Since $|\eta(\boldsymbol{z}_*^{[i]}(t))| \leq \|\eta\|_{\infty}$, by monotonicity of $\kappa(\cdot)$ in Assumption 2, it holds that $\max_{i \in \mathcal{V} \setminus \mathcal{B}} \left\{ \left| \frac{\kappa(D_{\boldsymbol{z}_*}^{\mathcal{Z}^{[i]}(t)})}{\sigma_f^2 + (\sigma_e^{[i]})^2} \eta(\boldsymbol{z}_*^{[i]}(t)) \right| \right\} \leq \frac{\sigma_f^2 \|\eta\|_{\infty}}{\sigma_f^2 + (\sigma_e^{\min})^2}$. Then with probability at least $1 - \delta$, we have

$$\max_{i \in \mathcal{V} \setminus \mathcal{B}} \left\{ \left| \check{\mu}_{\boldsymbol{z}_* \mid \mathcal{D}^{[i]}(t)} \right| \right\} \leq \sqrt{2\sigma^2 (\ln(2n) - \ln \delta)} + \frac{\sigma_f^2 \|\eta\|_{\infty}}{\sigma_f^2 + (\sigma_e^{\min})^2}.$$

Therefore, with probability at least $1 - \delta$, we have

$$\left| \check{\mu}_{\boldsymbol{z}_{*} \mid \mathcal{D}^{[i]}(t)}^{\prime} \right| + \left| \check{\mu}_{\boldsymbol{z}_{*} \mid \mathcal{D}^{[i]}(t)} \right| \leq 2 \max_{i \in \mathcal{V} \setminus \mathcal{B}} \left\{ \left| \check{\mu}_{\boldsymbol{z}_{*} \mid \mathcal{D}^{[i]}(t)} \right| \right\}$$

$$\leq 2\left(\sqrt{2\sigma^{2}(\ln(2n) - \ln \delta)} + \frac{\sigma_{f}^{2} \|\eta\|_{\infty}}{\sigma_{f}^{2} + (\sigma_{e}^{\min})^{2}} \right). \tag{12}$$

2) The lower and upper bounds of $\check{\sigma}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)}^{I-2}$. Lemma 2 renders that $\min_{j\in\mathcal{V}\setminus\mathcal{B}}\left\{\check{\sigma}_{\boldsymbol{z}_*|\mathcal{D}^{[j]}(t)}^2\right\} \leq \check{\sigma}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)}^{I-2} \leq \max_{j\in\mathcal{V}\setminus\mathcal{B}}\left\{\check{\sigma}_{\boldsymbol{z}_*|\mathcal{D}^{[j]}(t)}^2\right\}$ for all $i\in\mathcal{I}(t)$, then we have $\left(\max_{j\in\mathcal{V}\setminus\mathcal{B}}\left\{\check{\sigma}_{\boldsymbol{z}_*|\mathcal{D}^{[j]}(t)}^2\right\}\right)^{-1} \leq \check{\sigma}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)}^{I-2} \leq \left(\min_{j\in\mathcal{V}\setminus\mathcal{B}}\left\{\check{\sigma}_{\boldsymbol{z}_*|\mathcal{D}^{[j]}(t)}^2\right\}\right)^{-1}$ for all $i\in\mathcal{I}(t)$. Theorem IV.3 in [29] gives $\frac{\sigma_f^2(\sigma_e^{[i]})^2}{\sigma_f^2+(\sigma_e^{[i]})^2} \leq \check{\sigma}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)}^2 \leq \sigma_f^2 - \frac{\kappa(d^{[i]}(t))^2}{\sigma_f^2+(\sigma_e^{[i]})^2}$ for all $\boldsymbol{z}_*\in\mathcal{Z}_*$. By monotonicity of $\kappa(\cdot)$ in Assumption 2, it holds that $\frac{\sigma_f^2(\sigma_e^{\min})^2}{\sigma_f^2+(\sigma_e^{\max})^2} \leq \check{\sigma}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)}^2 \leq \sigma_f^2 - \frac{\kappa(d^{\max}(t))^2}{\sigma_f^2+(\sigma_e^{\max})^2}$, which implies that for any $i\in\mathcal{I}(t), \boldsymbol{z}_*\in\mathcal{Z}_*$,

$$\frac{\sigma_f^2 + (\sigma_e^{\max})^2}{\sigma_f^4 + \sigma_f^2 (\sigma_e^{\max})^2 - \kappa (d^{\max}(t))^2} \leq \check{\sigma}_{\boldsymbol{z}_* \mid \mathcal{D}^{[i]}(t)}^{\prime - 2} \leq \frac{\sigma_f^2 + (\sigma_e^{\max})^2}{\sigma_f^2 (\sigma_e^{\min})^2}.$$

Lemma 1 shows that $|\mathcal{I}(t)| \ge n - 4\lfloor \beta n \rfloor$. Since $\lfloor \beta n \rfloor \le \beta n$, it indicates that $|\mathcal{I}(t)| \ge (1 - 4\beta)n$. Then we have

$$\sum_{j \in \mathcal{I}(t)} \check{\sigma}_{z_*|\mathcal{D}^{[j]}(t)}^{\prime - 2} \ge \frac{(1 - 4\beta)n\left(\sigma_f^2 + (\sigma_e^{\max})^2\right)}{\sigma_f^4 + \sigma_f^2(\sigma_e^{\max})^2 - \kappa(d^{\max}(t))^2}.$$
(13)

Since $|\mathcal{I}(t) \cap \mathcal{B}| \leq |\mathcal{B}| = |\alpha n| \leq \alpha n$, by (12), with probability at least $1 - \delta$, we have

$$\sum_{i \in \mathcal{I}(t) \cap \mathcal{B}} \check{\sigma}_{\boldsymbol{z}_{*}|\mathcal{D}^{[i]}(t)}^{\prime - 2} \left(\left| \check{\mu}_{\boldsymbol{z}_{*}|\mathcal{D}^{[i]}(t)}^{\prime} \right| + \left| \check{\mu}_{\boldsymbol{z}_{*}|\mathcal{D}^{[i]}(t)} \right| \right) \\
\leq 2\alpha n \left(\sqrt{2\sigma^{2}(\ln(2n) - \ln \delta)} + \frac{\sigma_{f}^{2} \|\eta\|_{\infty}}{\sigma_{f}^{2} + (\sigma_{e}^{\min})^{2}} \right) \frac{\sigma_{f}^{2} + (\sigma_{e}^{\max})^{2}}{\sigma_{f}^{2}(\sigma_{e}^{\min})^{2}}. \tag{14}$$

Combining (13) and (14) with (11) renders that with probability at least $1 - \delta$, it holds that

$$\begin{split} &\frac{\hat{\sigma}_{\boldsymbol{z}_*|\mathcal{D}(t)}^2}{|\mathcal{I}(t)|} \sum_{i \in \mathcal{I}(t)} \check{\sigma}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)}^{\prime - 2} \left| \check{\boldsymbol{\mu}}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)}^{\prime} - \check{\boldsymbol{\mu}}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)} \right| \\ & \leq \frac{2\alpha(\sqrt{2\sigma^2(\ln(2n) - \ln \delta)} + \frac{\sigma_f^2 \|\boldsymbol{\eta}\|_{\infty}}{\sigma_f^2 + (\sigma_e^{\min})^2})}{1 - 4\beta} \frac{\sigma_f^4 + \sigma_f^2(\sigma_e^{\max})^2 - \kappa(d^{\max}(t))^2}{\sigma_f^2(\sigma_e^{\min})^2}. \end{split}$$

The following Lemma characterizes the upper bound of the prediction error in the attack-free case.

Lemma 5 Suppose Assumptions 2 and 3 hold. For $\mathbf{z}_* \in \mathcal{Z}_*$, with probability at least $1-\delta$, it holds that $\frac{\hat{\sigma}^2_{\mathbf{z}_*|\mathcal{D}(t)}}{|\mathcal{I}(t)|} \sum_{i \in \mathcal{I}(t)} \check{\sigma}'_{\mathbf{z}_*|\mathcal{D}[i](t)} \left| \check{\mu}_{\mathbf{z}_*|\mathcal{D}[i](t)} - \eta(\mathbf{z}_*) \right| \leq \left(1 - \frac{\kappa(d^{\max}(t))}{\sigma_f^2 + (\sigma_e^{\max})^2}\right) \|\eta\|_{\infty} + \frac{\sigma_f^2}{\sigma_f^2 + (\sigma_e^{\min})^2} \ell_{\eta} d^{\max}(t) + \sqrt{2\sigma^2(\ln 2 - \ln \delta)}.$

 $\textit{Proof: Recall that } \check{\mu}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)} = \frac{\kappa(D_{\boldsymbol{z}_*}^{\mathcal{Z}^{[i]}(t)})}{\sigma_f^2 + (\sigma_e^{[i]})^2} y_{\boldsymbol{z}_*^{[i]}(t)}^{[i]}. \text{ Then for } i \in \mathcal{V}, \text{ we have } i \in \mathcal{V}, \text{ and } i \in \mathcal{V}, \text{ and } i \in \mathcal{V}.$

$$\begin{split} \check{\mu}_{\boldsymbol{z}_{*}|\mathcal{D}^{[i]}(t)} - \eta(\boldsymbol{z}_{*}) &= (1 - \frac{\kappa(D_{\boldsymbol{z}_{*}}^{\mathcal{Z}^{[i]}(t)})}{\sigma_{f}^{2} + (\sigma_{e}^{[i]})^{2}})(-\eta(\boldsymbol{z}_{*})) + \frac{\kappa(D_{\boldsymbol{z}_{*}}^{\mathcal{Z}^{[i]}(t)})}{\sigma_{f}^{2} + (\sigma_{e}^{[i]})^{2}}(y_{\boldsymbol{z}_{*}^{[i]}(t)}^{[i]} - \eta(\boldsymbol{z}_{*}^{[i]}(t))) \\ &+ \frac{\kappa(D_{\boldsymbol{z}_{*}}^{\mathcal{Z}^{[i]}(t)})}{\sigma_{f}^{2} + (\sigma_{e}^{[i]})^{2}}(\eta(\boldsymbol{z}_{*}^{[i]}(t)) - \eta(\boldsymbol{z}_{*})). \end{split}$$

By triangular inequality, we have

$$|\check{\mu}_{\boldsymbol{z}_{*}|\mathcal{D}^{[i]}(t)} - \eta(\boldsymbol{z}_{*})| \leq \frac{\kappa(D_{\boldsymbol{z}_{*}}^{\mathcal{Z}^{[i]}(t)})}{\sigma_{f}^{2} + (\sigma_{e}^{[i]})^{2}} |\eta(\boldsymbol{z}_{*}^{[i]}(t)) - \eta(\boldsymbol{z}_{*})| + \frac{\kappa(D_{\boldsymbol{z}_{*}}^{\mathcal{Z}^{[i]}(t)})}{\sigma_{f}^{2} + (\sigma_{e}^{[i]})^{2}} |y_{\boldsymbol{z}_{*}^{[i]}(t)}^{[i]} - \eta(\boldsymbol{z}_{*}^{[i]}(t))| + (1 - \frac{\kappa(D_{\boldsymbol{z}_{*}}^{\mathcal{Z}^{[i]}(t)})}{\sigma_{f}^{2} + (\sigma_{e}^{[i]})^{2}}) |\eta(\boldsymbol{z}_{*})|.$$

$$(15)$$

We analyze the upper bound of each term on the right-hand side of the inequality (15).

Term 1. Recall that $z_*^{[i]}(t) \in \operatorname{proj}(z_*, \mathbb{Z}^{[i]}(t))$. The Lipschitz continuity of η in Assumption 3 gives

$$\frac{\kappa(D_{\boldsymbol{z}_{*}}^{\mathcal{Z}^{[i]}(t)})}{\sigma_{f}^{2} + (\sigma_{e}^{[i]})^{2}} \left| \eta(\boldsymbol{z}_{*}^{[i]}(t)) - \eta(\boldsymbol{z}_{*}) \right| \leq \frac{\kappa(D_{\boldsymbol{z}_{*}}^{\mathcal{Z}^{[i]}(t)})}{\sigma_{f}^{2} + (\sigma_{e}^{[i]})^{2}} \ell_{\eta} D_{\boldsymbol{z}_{*}}^{\mathcal{Z}^{[i]}(t)} \leq \frac{\sigma_{f}^{2}}{\sigma_{f}^{2} + (\sigma_{e}^{\min})^{2}} \ell_{\eta} d^{\max}(t). \quad (16)$$

Term 2. Recall that $\check{\mu}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)}$ follows a Gaussian probability distribution and $\check{\mu}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)} \sim \mathcal{N}\left(\frac{\kappa(D_{\boldsymbol{z}_*}^{\mathcal{Z}^{[i]}(t)})}{\sigma_f^2 + (\sigma_e^{[i]})^2}\eta(\boldsymbol{z}_*^{[i]}(t)), \left(\frac{\kappa(D_{\boldsymbol{z}_*}^{\mathcal{Z}^{[i]}(t)})}{\sigma_f^2 + (\sigma_e^{[i]})^2}\right)^2(\sigma_e^{[i]})^2\right)$. By Lemma 3, for all $i \in \mathcal{V}$, we have that $\check{\mu}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)}$ is a sub-Gaussian random variable. Then by concentration inequality of the sub-Gaussian random variable (see Lemma 1.3 of [28]), for any $\epsilon_2 > 0$, we have

$$P\left\{\left|\check{\mu}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)} - \frac{\kappa(D_{\boldsymbol{z}_*}^{\mathcal{Z}^{[i]}(t)})}{\sigma_f^2 + (\sigma_e^{[i]})^2} \eta(\boldsymbol{z}_*^{[i]}(t))\right| > \epsilon_2\right\} \leq 2e^{-\frac{\epsilon_2^2}{2\sigma^2}}.$$

Combining the above inequality with $\check{\mu}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)} = \frac{\kappa(D_{\boldsymbol{z}_*}^{\mathcal{Z}^{[i]}(t)})}{\sigma_f^2 + (\sigma_e^{[i]})^2} y_{\boldsymbol{z}_*^{[i]}(t)}^{[i]}$, for $0 < \delta < 1$, choosing $\epsilon_2 \triangleq \sqrt{2\sigma^2(\ln 2 - \ln \delta)}$, with probability at least $1 - \delta$, it holds

$$\frac{\kappa(D_{\boldsymbol{z}_{*}}^{\mathcal{Z}^{[i]}(t)})}{\sigma_{f}^{2} + (\sigma_{e}^{[i]})^{2}} |y_{\boldsymbol{z}_{*}^{[i]}(t)}^{[i]} - \eta(\boldsymbol{z}_{*}^{[i]}(t))| = \left| \check{\mu}_{\boldsymbol{z}_{*}|\mathcal{D}^{[i]}(t)} - \frac{\kappa(D_{\boldsymbol{z}_{*}}^{\mathcal{Z}^{[i]}(t)})}{\sigma_{f}^{2} + (\sigma_{e}^{[i]})^{2}} \eta(\boldsymbol{z}_{*}^{[i]}(t)) \right| \leq \sqrt{2\sigma^{2}(\ln 2 - \ln \delta)}.$$
(17)

Term 3. We have $|\eta(z_*)| \leq ||\eta||_{\infty}$. By monotonicity of $\kappa(\cdot)$ in Assumption 2, it gives

$$(1 - \frac{\kappa(D_{\boldsymbol{z}_{*}}^{\mathcal{Z}^{[i]}(t)})}{\sigma_{f}^{2} + (\sigma_{e}^{[i]})^{2}})|\eta(\boldsymbol{z}_{*})| \le (1 - \frac{\kappa(d^{\max}(t))}{\sigma_{f}^{2} + (\sigma_{e}^{\max})^{2}})||\eta||_{\infty}.$$
(18)

Therefore, applying the inequalities (16), (17) and (18) to (15), for $0 < \delta < 1$, with probability at least $1 - \delta$, we have that for all $i \in \mathcal{I}(t)$,

$$\left| \check{\mu}_{\boldsymbol{z}_* \mid \mathcal{D}^{[i]}(t)} - \eta(\boldsymbol{z}_*) \right| \le \left(1 - \frac{\kappa(d^{\max}(t))}{\sigma_f^2 + (\sigma_e^{\max})^2} \right) \|\eta\|_{\infty} + \frac{\sigma_f^2 \ell_{\eta} d^{\max}(t)}{\sigma_f^2 + (\sigma_e^{\min})^2} + \sqrt{2\sigma^2(\ln 2 - \ln \delta)}. \tag{19}$$

By (7), we have $0 < \frac{\hat{\sigma}^2_{\boldsymbol{z}_*|\mathcal{D}(t)}}{|\mathcal{I}(t)|} \check{\sigma}'^{-2}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)} < 1$ and $\frac{\hat{\sigma}^2_{\boldsymbol{z}_*|\mathcal{D}(t)}}{|\mathcal{I}(t)|} \sum_{i \in \mathcal{I}(t)} \check{\sigma}'^{-2}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)} = 1$, which implies that with probability at least $1 - \delta$, it holds that $\frac{\hat{\sigma}^2_{\boldsymbol{z}_*|\mathcal{D}(t)}}{|\mathcal{I}(t)|} \sum_{i \in \mathcal{I}(t)} \check{\sigma}'^{-2}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)} \left| \check{\mu}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)} - \eta(\boldsymbol{z}_*) \right| \leq (1 - \frac{\kappa(d^{\max}(t))}{\sigma_f^2 + (\sigma_e^{\max})^2}) \|\eta\|_{\infty} + \frac{\sigma_f^2 \ell_{\eta} d^{\max}(t)}{\sigma_f^2 + (\sigma_e^{\min})^2} + \sqrt{2\sigma^2(\ln 2 - \ln \delta)}.$

With Lemmas 3, 4 and 5, we now proceed to complete the proof of part I in Theorem 1.

Proof of part I in Theorem 1: Note that, given (7), we have

$$\begin{aligned} \left| \hat{\mu}_{\boldsymbol{z}_{*}|\mathcal{D}(t)} - \eta(\boldsymbol{z}_{*}) \right| &= \left| \frac{\hat{\sigma}_{\boldsymbol{z}_{*}|\mathcal{D}(t)}^{2}}{|\mathcal{I}(t)|} \sum_{i \in \mathcal{I}(t)} \check{\mu}_{\boldsymbol{z}_{*}|\mathcal{D}^{[i]}(t)}^{\prime} \check{\sigma}_{\boldsymbol{z}_{*}|\mathcal{D}^{[i]}(t)}^{\prime-2} - \eta(\boldsymbol{z}_{*}) \right| \\ &= \left| \frac{\hat{\sigma}_{\boldsymbol{z}_{*}|\mathcal{D}(t)}^{2}}{|\mathcal{I}(t)|} \sum_{i \in \mathcal{I}(t)} \check{\mu}_{\boldsymbol{z}_{*}|\mathcal{D}^{[i]}(t)}^{\prime} \check{\sigma}_{\boldsymbol{z}_{*}|\mathcal{D}^{[i]}(t)}^{\prime-2} - \frac{\hat{\sigma}_{\boldsymbol{z}_{*}|\mathcal{D}(t)}^{2}}{|\mathcal{I}(t)|} \sum_{i \in \mathcal{I}(t)} \check{\mu}_{\boldsymbol{z}_{*}|\mathcal{D}^{[i]}(t)} \check{\sigma}_{\boldsymbol{z}_{*}|\mathcal{D}^{[i]}(t)}^{\prime-2} + \frac{\hat{\sigma}_{\boldsymbol{z}_{*}|\mathcal{D}(t)}^{2}}{|\mathcal{I}(t)|} \sum_{i \in \mathcal{I}(t)} \check{\mu}_{\boldsymbol{z}_{*}|\mathcal{D}^{[i]}(t)} \check{\sigma}_{\boldsymbol{z}_{*}|\mathcal{D}^{[i]}(t)}^{\prime-2} - \eta(\boldsymbol{z}_{*}) \right|. \end{aligned} \tag{20}$$

Since $\frac{\hat{\sigma}^2_{\boldsymbol{z}_*|\mathcal{D}(t)}}{|\mathcal{I}(t)|} \sum_{i \in \mathcal{I}(t)} \check{\sigma}'^{-2}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)} = 1$, then this implies that $\frac{\hat{\sigma}^2_{\boldsymbol{z}_*|\mathcal{D}(t)}}{|\mathcal{I}(t)|} \sum_{i \in \mathcal{I}(t)} \check{\mu}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)} \check{\sigma}'^{-2}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)} - \eta(\boldsymbol{z}_*)$ $\eta(\boldsymbol{z}_*) = \frac{\hat{\sigma}^2_{\boldsymbol{z}_*|\mathcal{D}(t)}}{|\mathcal{I}(t)|} \sum_{i \in \mathcal{I}(t)} \check{\sigma}'^{-2}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)} \left(\check{\mu}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)} - \eta(\boldsymbol{z}_*)\right)$. Therefore, by triangular inequality, (20) is upper bounded as

$$\begin{split} &\left| \frac{\hat{\sigma}_{\boldsymbol{z}_{*}|\mathcal{D}(t)}^{2}}{|\mathcal{I}(t)|} \sum_{i \in \mathcal{I}(t)} \check{\mu}_{\boldsymbol{z}_{*}|\mathcal{D}^{[i]}(t)}^{\prime} \check{\sigma}_{\boldsymbol{z}_{*}|\mathcal{D}^{[i]}(t)}^{\prime-2} - \eta(\boldsymbol{z}_{*}) \right| \\ & \leq \frac{\hat{\sigma}_{\boldsymbol{z}_{*}|\mathcal{D}(t)}^{2}}{|\mathcal{I}(t)|} \sum_{i \in \mathcal{I}(t)} \check{\sigma}_{\boldsymbol{z}_{*}|\mathcal{D}^{[i]}(t)}^{\prime-2} \left| \check{\mu}_{\boldsymbol{z}_{*}|\mathcal{D}^{[i]}(t)} - \eta(\boldsymbol{z}_{*}) \right| \\ & + \frac{\hat{\sigma}_{\boldsymbol{z}_{*}|\mathcal{D}(t)}^{2}}{|\mathcal{I}(t)|} \sum_{i \in \mathcal{I}(t)} \check{\sigma}_{\boldsymbol{z}_{*}|\mathcal{D}^{[i]}(t)}^{\prime-2} \left| \check{\mu}_{\boldsymbol{z}_{*}|\mathcal{D}^{[i]}(t)}^{\prime} - \check{\mu}_{\boldsymbol{z}_{*}|\mathcal{D}^{[i]}(t)} \right|. \end{split}$$

Then, combining this with Lemmas 4 and 5, we complete the proof of part I.

Part II: We give the upper bound and lower bound of $\hat{\sigma}^2_{z_*|\mathcal{D}(t)}$ as follows:

1) Upper bound. Recall that $\hat{\sigma}^2_{\boldsymbol{z}_*|\mathcal{D}(t)} = \frac{|\mathcal{I}(t)|}{\sum_{i\in\mathcal{I}(t)}\check{\sigma}'^{-2}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)}}$. Note that $f(x) = \frac{1}{x}$ is a convex function for x>0. By Jensen's inequality (see page 21 in [30]), we have $f(\frac{1}{n}\sum_{i=1}^n x_i) \leq \frac{1}{n}\sum_{i=1}^n f(x_i)$. Then plugging in $x_i = \check{\sigma}'^{-2}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)}$, we have

$$\hat{\sigma}^2_{\boldsymbol{z}_*|\mathcal{D}(t)} = \frac{|\mathcal{I}(t)|}{\sum_{i \in \mathcal{I}(t)} \check{\sigma}'^{-2}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)}} = f(\frac{\sum_{i \in \mathcal{I}(t)} \check{\sigma}'^{-2}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)}}{|\mathcal{I}(t)|}) \leq \frac{1}{|\mathcal{I}(t)|} \sum_{i \in \mathcal{I}(t)} \check{\sigma}'^2_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)}.$$

It suffices to show the upper bound of $\sum_{i \in \mathcal{I}(t)} \check{\sigma}_{z_*|\mathcal{D}^{[i]}(t)}^{\prime 2}$. We decompose the agent set $\mathcal{I}(t)$ into two subsets $\mathcal{F}(t)$ and $\mathcal{I}(t) \cap \mathcal{B}$ where $\mathcal{F}(t) \triangleq \mathcal{I}(t) \cap (\mathcal{V} \setminus \mathcal{B})$ contains the benign agents and $\mathcal{I}(t) \cap \mathcal{B}$ contains the Byzantine agents, then we have

$$\sum_{i \in \mathcal{I}(t)} \check{\sigma}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)}^{\prime 2} = \sum_{i \in \mathcal{F}(t)} \check{\sigma}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)}^{\prime 2} + \sum_{i \in \mathcal{I}(t) \cap \mathcal{B}} \check{\sigma}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)}^{\prime 2}. \tag{21}$$

We proceed to analyze each term on the right-hand side of (21).

First, notice that $\mathcal{F}(t)$ is the set of benign agents, hence it holds that $\check{\sigma}'^2_{z_*|\mathcal{D}^{[i]}(t)} = \check{\sigma}^2_{z_*|\mathcal{D}^{[i]}(t)}$ for all $i \in \mathcal{F}(t)$. According to Theorem IV.3 in [29], we have $\check{\sigma}^2_{z_*|\mathcal{D}^{[i]}(t)} \leq \sigma^2_f - \frac{\kappa(d^{[i]}(t))^2}{\sigma^2_f + (\sigma^{[i]}_e)^2}$ for all $z_* \in \mathcal{Z}_*$. Monotonicity of $\kappa(\cdot)$ in Assumption 2 shows that $\kappa(d^{\max}(t))^2 \leq \kappa(d^{[i]}(t))^2$, which indicates $\frac{\kappa(d^{\max}(t))^2}{\sigma^2_f + (\sigma^{\max}_e)^2} \leq \frac{\kappa(d^{[i]}(t))^2}{\sigma^2_f + (\sigma^{[i]}_e)^2}$. Therefore, we have

$$\sum_{i \in \mathcal{F}(t)} \check{\sigma}_{\boldsymbol{z}_* \mid \mathcal{D}^{[i]}(t)}^{\prime 2} \leq \sum_{i \in \mathcal{F}(t)} \left(\sigma_f^2 - \frac{\kappa (d^{[i]}(t))^2}{\sigma_f^2 + (\sigma_e^{[i]})^2} \right) \leq |\mathcal{F}(t)| \left(\sigma_f^2 - \frac{\kappa (d^{\max}(t))^2}{\sigma_f^2 + (\sigma_e^{\max})^2} \right). \tag{22}$$

Second, by Lemma 2, we have

$$\sum_{i \in \mathcal{I}(t) \cap \mathcal{B}} \check{\sigma}_{z_{*}|\mathcal{D}^{[i]}(t)}^{\prime 2} \leq \sum_{i \in \mathcal{I}(t) \cap \mathcal{B}} \max_{i \in \mathcal{V} \setminus \mathcal{B}} \left\{ \check{\sigma}_{z_{*}|\mathcal{D}^{[i]}(t)}^{2} \right\} \\
\leq \sum_{i \in \mathcal{I}(t) \cap \mathcal{B}} \max_{i \in \mathcal{V} \setminus \mathcal{B}} \left\{ \sigma_{f}^{2} - \frac{\kappa(d^{[i]}(t))^{2}}{\sigma_{f}^{2} + (\sigma_{e}^{[i]})^{2}} \right\} = |\mathcal{I}(t) \cap \mathcal{B}| \left(\sigma_{f}^{2} - \frac{\kappa(d^{\max}(t))^{2}}{\sigma_{f}^{2} + (\sigma_{e}^{\max})^{2}} \right). \tag{23}$$

Therefore, combining (21) with (22) and (23), the upper bound of $\hat{\sigma}^2_{z_*|\mathcal{D}(t)}$ is given as

$$\hat{\sigma}_{\boldsymbol{z}_*|\mathcal{D}(t)}^2 \le \sigma_f^2 - \frac{\kappa (d^{\max}(t))^2}{\sigma_f^2 + (\sigma_e^{\max})^2}.$$
 (24)

2) Lower bound. Similar to (21), we have

$$\sum_{i \in \mathcal{I}(t)} \check{\sigma}_{\boldsymbol{z}_* | \mathcal{D}^{[i]}(t)}^{\prime - 2} = \sum_{i \in \mathcal{F}(t)} \check{\sigma}_{\boldsymbol{z}_* | \mathcal{D}^{[i]}(t)}^{\prime - 2} + \sum_{i \in \mathcal{I}(t) \cap \mathcal{B}} \check{\sigma}_{\boldsymbol{z}_* | \mathcal{D}^{[i]}(t)}^{\prime - 2}.$$
(25)

First, it holds that $\check{\sigma}'^{-2}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)} = \check{\sigma}^{-2}_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)}$ for all $i \in \mathcal{F}(t)$. Theorem IV.3 in [29] gives $\check{\sigma}^2_{\boldsymbol{z}_*|\mathcal{D}^{[i]}(t)} \geq \frac{\sigma_f^2(\sigma_e^{[i]})^2}{\sigma_f^2 + (\sigma_e^{[i]})^2}$ for all $\boldsymbol{z}_* \in \mathcal{Z}_*$. Then following the logic of deriving the above upper bound, we have

$$\sum_{i \in \mathcal{F}(t)} \check{\sigma}_{z_*|\mathcal{D}^{[i]}(t)}^{-2} \le \sum_{i \in \mathcal{F}(t)} \frac{\sigma_f^2 + (\sigma_e^{[i]})^2}{\sigma_f^2 (\sigma_e^{[i]})^2} \le |\mathcal{F}(t)| \frac{\sigma_f^2 + (\sigma_e^{\max})^2}{\sigma_f^2 (\sigma_e^{\min})^2}.$$
 (26)

Second, Lemma 2 implies the following inequality

$$\sum_{i \in \mathcal{I}(t) \cap \mathcal{B}} \check{\sigma}_{\boldsymbol{z}_{*} \mid \mathcal{D}^{[i]}(t)}^{\prime - 2} \leq \sum_{i \in \mathcal{I}(t) \cap \mathcal{B}} \left(\min_{i \in \mathcal{V} \setminus \mathcal{B}} \left\{ \check{\sigma}_{\boldsymbol{z}_{*} \mid \mathcal{D}^{[i]}(t)}^{2} \right\} \right)^{-1} \leq \sum_{i \in \mathcal{I}(t) \cap \mathcal{B}} \left(\min_{i \in \mathcal{V} \setminus \mathcal{B}} \left\{ \frac{\sigma_{f}^{2}(\sigma_{e}^{[i]})^{2}}{\sigma_{f}^{2} + (\sigma_{e}^{\max})^{2}} \right\} \right)^{-1} \leq \sum_{i \in \mathcal{I}(t) \cap \mathcal{B}} \left(\min_{i \in \mathcal{V} \setminus \mathcal{B}} \left\{ \frac{\sigma_{f}^{2}(\sigma_{e}^{[i]})^{2}}{\sigma_{f}^{2}(\sigma_{e}^{\min})^{2}} \right\} \right)^{-1} \leq \sum_{i \in \mathcal{I}(t) \cap \mathcal{B}} \left(\min_{i \in \mathcal{V} \setminus \mathcal{B}} \left\{ \frac{\sigma_{f}^{2}(\sigma_{e}^{[i]})^{2}}{\sigma_{f}^{2}(\sigma_{e}^{\min})^{2}} \right\} \right)^{-1} \leq \sum_{i \in \mathcal{I}(t) \cap \mathcal{B}} \left(\min_{i \in \mathcal{V} \setminus \mathcal{B}} \left\{ \frac{\sigma_{f}^{2}(\sigma_{e}^{[i]})^{2}}{\sigma_{f}^{2}(\sigma_{e}^{\min})^{2}} \right\} \right)^{-1} \leq \sum_{i \in \mathcal{I}(t) \cap \mathcal{B}} \left(\min_{i \in \mathcal{V} \setminus \mathcal{B}} \left\{ \frac{\sigma_{f}^{2}(\sigma_{e}^{[i]})^{2}}{\sigma_{f}^{2}(\sigma_{e}^{\min})^{2}} \right\} \right)^{-1} \leq \sum_{i \in \mathcal{I}(t) \cap \mathcal{B}} \left(\min_{i \in \mathcal{V} \setminus \mathcal{B}} \left\{ \frac{\sigma_{f}^{2}(\sigma_{e}^{[i]})^{2}}{\sigma_{f}^{2}(\sigma_{e}^{\min})^{2}} \right\} \right)^{-1} \leq \sum_{i \in \mathcal{I}(t) \cap \mathcal{B}} \left(\min_{i \in \mathcal{V} \setminus \mathcal{B}} \left\{ \frac{\sigma_{f}^{2}(\sigma_{e}^{[i]})^{2}}{\sigma_{f}^{2}(\sigma_{e}^{\min})^{2}} \right\} \right)^{-1} \leq \sum_{i \in \mathcal{I}(t) \cap \mathcal{B}} \left(\min_{i \in \mathcal{V} \setminus \mathcal{B}} \left\{ \frac{\sigma_{f}^{2}(\sigma_{e}^{[i]})^{2}}{\sigma_{f}^{2}(\sigma_{e}^{\min})^{2}} \right\} \right)^{-1} \leq \sum_{i \in \mathcal{I}(t) \cap \mathcal{B}} \left(\min_{i \in \mathcal{V} \setminus \mathcal{B}} \left\{ \frac{\sigma_{f}^{2}(\sigma_{e}^{\min})^{2}}{\sigma_{f}^{2}(\sigma_{e}^{\min})^{2}} \right\} \right)^{-1} \leq \sum_{i \in \mathcal{I}(t) \cap \mathcal{B}} \left(\min_{i \in \mathcal{V} \setminus \mathcal{B}} \left\{ \frac{\sigma_{f}^{2}(\sigma_{e}^{\min})^{2}}{\sigma_{f}^{2}(\sigma_{e}^{\min})^{2}} \right\} \right)^{-1} \leq \sum_{i \in \mathcal{I}(t) \cap \mathcal{B}} \left(\min_{i \in \mathcal{V} \setminus \mathcal{B}} \left\{ \frac{\sigma_{f}^{2}(\sigma_{e}^{\min})^{2}}{\sigma_{f}^{2}(\sigma_{e}^{\min})^{2}} \right\} \right)^{-1} \leq \sum_{i \in \mathcal{I}(t) \cap \mathcal{B}} \left(\min_{i \in \mathcal{V} \setminus \mathcal{B}} \left\{ \frac{\sigma_{f}^{2}(\sigma_{e}^{\min})^{2}}{\sigma_{f}^{2}(\sigma_{e}^{\min})^{2}} \right\} \right)^{-1} \leq \sum_{i \in \mathcal{I}(t) \cap \mathcal{B}} \left(\frac{\sigma_{f}^{2}(\sigma_{e}^{\min})^{2}}{\sigma_{f}^{2}(\sigma_{e}^{\min})^{2}} \right)^{-1} \leq \sum_{i \in \mathcal{I}(t) \cap \mathcal{B}} \left(\frac{\sigma_{f}^{2}(\sigma_{e}^{\min})^{2}}{\sigma_{f}^{2}(\sigma_{e}^{\min})^{2}} \right)^{-1} \leq \sum_{i \in \mathcal{I}(t) \cap \mathcal{B}} \left(\frac{\sigma_{f}^{2}(\sigma_{e}^{\min})^{2}}{\sigma_{f}^{2}(\sigma_{e}^{\min})^{2}} \right)^{-1} \leq \sum_{i \in \mathcal{I}(t) \cap \mathcal{B}} \left(\frac{\sigma_{f}^{2}(\sigma_{e}^{\min})^{2}}{\sigma_{f}^{2}(\sigma_{e}^{\min})^{2}} \right)^{-1} \leq \sum_{i \in \mathcal{I}(t) \cap \mathcal{B}} \left(\frac{\sigma_{f}^{2}(\sigma_{e}^{\min})^{2}}{\sigma_{f}^{2}(\sigma_{e}^{\min})^{2}} \right)^{-1} \leq \sum_{i \in \mathcal{I}(t) \cap \mathcal{$$

Therefore, combining (25) with (26) and (27) yields an upper bound of $\sum_{i \in \mathcal{I}(t)} \check{\sigma}_{\boldsymbol{z}_* \mid \mathcal{D}^{[i]}(t)}^{\prime - 2}$, i.e., $\sum_{i \in \mathcal{I}(t)} \check{\sigma}_{\boldsymbol{z}_* \mid \mathcal{D}^{[i]}(t)}^{\prime - 2} \leq |\mathcal{I}(t)| \frac{\sigma_f^2 + (\sigma_e^{\max})^2}{\sigma_f^2(\sigma_e^{\min})^2}$. Recall that $\hat{\sigma}_{\boldsymbol{z}_* \mid \mathcal{D}(t)}^2 = \frac{|\mathcal{I}(t)|}{\sum_{i \in \mathcal{I}(t)} \check{\sigma}_{\boldsymbol{z}_* \mid \mathcal{D}^{[i]}(t)}^{\prime - 2}}$, then we have

$$\hat{\sigma}_{\boldsymbol{z}_*|\mathcal{D}(t)}^2 \ge \frac{\sigma_f^2(\sigma_e^{\min})^2}{\sigma_f^2 + (\sigma_e^{\max})^2}.$$
 (28)

Thus, combining (24) and (28), the proof is complete.