A  Proofs

In this section, we provide complete proofs for each lemma and theorem.

A.1 Proof of Lemma 1

Notice that |Z(t)| = |[M(t) N C(t)] < |M(t)|. By definition of M(t) in (6), we have M(t) =V \
(Tihax () U T (¢)). Definitions of T, (¢) and Ty, (1) give | T ()] = [T, (£)| = [Sn]. Then
we have |M (¢ )| = [V\ (T (&)U mln( ))| = n—2|fn], which indicates that |Z(t)| < n—2|6n|.

Since M(t) |JC(t) C V, then it holds that |[M(t) | JC(¢)| < n. By definition of C(¢) in (6), we
have |C(t)] = n — 2|fn]. Therefore, we have |Z(t)| = [M@)NC(H)] = [M(B)] + [C(@)| -
IM(t)UC(t)| > n—4|Bn]. Since B < 1, we have |Z(t)| > 0,1i.e., Z(t) # 0.

A.2  Proof of Lemma 2

Notice that Z(t) = M(t) [ C(t). Recall that in Step 2 of Section 3.2, i/, | plil(¢) 18 sorted in non-
descending order. Without loss of generality, agent 1 has the smallest value and agent n has the largest
value, i.e., ﬂ;*‘D[i](t) < 'a/z*|D[i+1](t) fori =1,2,...,n—1. Recall that 7. (¢) contains | Sn | agents
with the largest local predictive means. For any g € Trﬁax( ) and ¢ € M(t), we have fi, Dl =
- Suppose that there exists i € M(t) such that [L’z*m[i](t) > max;jey\g { fL, |pul (1) | then

i
z.|Dla’](
we have ¢ € B. For all ¢ € T#_ (), we have [L’z*m[q](t) > ﬂ;*lp[i](t) > maxjen s {fiz, |pli ) -
Since |TH.(t)] = |Bn], then we have |an| > |Bn]| + 1. It contradicts with & < . There-
fore, we have [/Z*‘D[i](t) < maxjey s {ﬂz*m[j](t)} for all i € M(t). Likewise, we have

minjev\g {ﬂz*lp[j](t)} < [le*\D[i](t) for all i € M(t)
Analogous to the proof of ‘a/z*|DW(t)’

max;ey\ B { 2. |Dl (t)} forall i € C(t).

we conclude that mmjev\g{ G DUt )} <gé ’z Dl (1) <

A.3 Proof of Theorem 1

Part I: Roadmap of the proof: We first show in Lemma 3 that at time instant ¢, the local predictive
mean of agent ¢ € V in the attack-free scenario is a sub-Gaussian random variable. Then notice
that by triangular inequality, the prediction errors under attacks can be bounded by the magnitude
of attacks plus the prediction errors in the attack-free case. Therefore, for i € Z(¢), Lemma 4 uses
concentration inequalities of sub-Gaussian random variables to quantify the upper bound of the
Byzantine attacks. We derive the upper bound of the prediction error in the attack-free case in Lemma
S.

Lemma 3 Let Assumptions 2 and 3 hold. For agenti € V and z, € Z,, it holds that [i,,_ 1Dl (1) isa
sub-Gaussian random variable.

Proof: Pick any ¢ € V. Monotonicity of Assumption 2 implies that k(zlf] (1), 2l (1) =k(0) = 0)20.
By Assumption 3, the prior mean is p(z.) = u(z M( t)) = 0. For notational simplicity, we denote
the distance by Dz* T & D(z., Z [%]( )). Hence, by (5), the local predictive mean is computed as
<(DZ ) f)
el Yy

a deterministic process 77(z>[k ]( t)) and a zero-mean Gaussian noise Y,

Given the observation model (4), y[i] can be decomposed into

- n(zLi] (t)). For agent

Pz, Dl (1) = 1)

[ ]
O
i € V, we denote the expectation and variance of /i, |pii(;) by E [uz*m[t ] and Var [fi, pri]

[ []1 )~ n(zL ] (t)) is the only random variable with variance (O’L )2, and

S r(DZH® ’ w(pZe\ %
this implies i, |piiy) ~ N %n(zk] 1), ((2:([1])3 (O'L:L])Q . Then for \; € R, we
o Oe¢ gy T e

respectively. Notice that y

conduct the following algebraic calculations
E [exp(Ai(fz, jpiit) — E [, jpa)]))]
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Then we have
E [exp (Ai (i, jpti (1) — E [z, jpiar)]))]
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(n=(rivarfn,, \D[“(t)}”["‘z* |Dli] <t>D>2 >

—2Var [ﬂz* 1Dl (1)

exp (
The term

is a Gaussian probability density function

2nVar [ﬂz* |plil (f«)}

with mean \;Var [[Lz*lD[i](t)] +E [[Jzz*lp[i](t)] and variance Var [[Lz*m[i](tﬂ. Recall that o2 =

2 _max
(%) . By Assumption 2, it holds that the kernel function «(+) is monotonically decreasing

; 2

,{(Df*[l](t)) [’L] 0.20_213;: 2 . 9
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Substituting Var [fi,_piiy] < o into (10) yields E [exp (Ai(fiz, pii(y — E [fiz, ptin]))] <

exp (#) Thus by Definition 1, we conclude that fi, |pi(y) is a sub-Gaussian random variable.

and £ (0) = o'}. Therefore, we have Var [ji,, pui ] = (
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Lemmad Let0 < o < 3 < L and Assumption 2 hold. Forall z, € Z, and 0 < § < 1,

1
with probability at least 1 — 4, it holds that ‘z%‘(D)(‘” ieT(t) 6;:|D[l 1y | \D[il(t) — [l pliey| <
fH”HoQ
2a(y/202(In(2n)—1In §)+ 2+(amm)2 . +o_§(o_xnax) —n(dm“x(t))z
1— 4ﬁ 2 (0-111111)2

Proof: We denote by F(t) = Z()N(V\B) the set of benign agents in the set
Z(t). That is, = fiz,pla for all i € F(t), therefore it holds that

52 z.|Dl(1)
A — i piin| = R ()}
Ol Zie}-(t) az*m[i](t) Mz*mm(t) Hz. DU @) 2D " ez 6. \‘D[ o)
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&2
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iEF(t)
=0
L1—2 . .
_ ZiEI(t)ﬂB U;*\DM (t) 'U//z*|’D['i](t) — Mz, |Dl(t)
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In the remaining proof, we find the upper bound of ‘[le*lp[i](t)’ + |/[l‘z*|D[77](
lower and upper bounds of & O' | Dlil(1)"
1) The upper bound of ﬂ;*lmi](t)‘ + |ﬂz*\D[i](t)‘. By Lemma 2, we have [L’z*le(t)‘ <
max;cy\B {{ﬂz*|’D[i](t)|} for all ¢ € Z(t). Then ﬂlz*\D[il(t) |/:Lz*\D[i](t)‘ <

2max;cy\B {|ﬂz*‘p[i](t)|} for all i € Z(t). By Lemma 3, for all i € V, ji, |pui( is a sub-
Gausian random variable. Since |V\B| = n — |an|, by maximal inequality (Theorem 1.14 on page
25 in [28]), for any €; > 0, we have

[4]
DzZ (t)
P{m { H0= )
i€EV\B o3 + (0e")?

For 0 < § < 1, choosing €1 = /202(In(2n) — In ), with probability at least 1 — &, we have

(1))

:u'z [ DlE(t) —

2 2
} > 61} <2(n— Lomj)e_%*l? < 2ne 7.
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Since triangular inequality renders
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k(D2 )
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k(D2
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“+ max {
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which implies that with probability at least 1 — 9,

max {|/~Lz*\D[ ](t)’} <\/202 In(2n) — Ind) + max { n(zE](t))

ieV\B i€V\B

} |

Since |n(z [Z]( t))] < |Inllec, by monotonicity of (-) in Assumption 2, it holds that

K(DZ”(”) [4] < offllnl\oo Th ith bability at least 1 — § h
maXiev\B m (Z* ( )) < W cn with prooaoility at leas — 0, W€ nave
o3 1llsc
lrenva\%{lﬂz*m[ |} £ v20°(In(2n) —no) + 0% + (omin)2

Therefore, with probability at least 1 — J, we have

[L;*\D[i](t)’ iz o] < Ziglg@{|ﬁz*\D[il(t)|}

7l
75 + (o2

2(v/202(In(2n) — Ind) + ). (12)

2) The lower and wupper bounds of & Lemma 2 renders that

oD ()"

mmjev\B{ ;. |pu (t)} < (72*‘ ey S MaXjey\s {a (t)} for all ¢ € Z(t), then we

have (maxjev\g{ 2. 1Dl }) < V;*fpm(t) < (mm]ev\g 52 DU }) for all i € Z(t).
. Fol)? ) 2 r(dl ()

Theorem IV.3 in [29] gives m < .1l (r) < oy — m for all z, € Z,.. By

2( min)2

monotonicity of «(-) in Assumption 2, it holds that —-=

K/(dlnax(t))Q
Trem < Ly <

2 _ kla ()"
0% o2 (omax)2>

which implies that for any ¢ € Z(t), z. € Z,,
O'J% + (O_énax)Q < - O_f + (O_max)Q
> 0' T 5 o
0';% + a?(aéﬂaxﬁ _ K(dmax(t))? | lil(t) — G-JQC(O-émn)2

Lemma 1 shows that |Z(t)| > n — 4|8n]. Since |8n]| < fn, it indicates that |Z(¢)| > (1 — 48)n.
Then we have

(1= 4B)n (0% + (om%)?)

Z V/z |2D[J](f) = g4 2 ( ymax)2 max 2" 13)
jezty o + o f (o) — k(d™(t))
Since |Z(t) N B| < |B| = |an] < an, by (12), with probability at least 1 — J, we have
> iiou ( Aoy | T |z ot e )D
i€Z(t)N B
0—2 o O' + O_max 2
< 2an(y/202(In(2n) — Ind) + sl i ) (14)
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Combining (13) and (14) with (11) renders that with probability at least 1 — 4, it holds that

A2
0 2. |D(t) Z 52
DRI

i€Z(t

Nz | Dl (¢) ﬂz*\D[i](t)

2
2 _ M g max max
2a(y/202(In(2n) — Ind) + ey 5) o+ 02 (o)2 — g (dmax (1))

< -
>~ 1 745 0]20(05“““)2

iv



|
The following Lemma characterizes the upper bound of the prediction error in the attack-free case.

Lemma 5 Suppose Assumptions 2 and 3 hold. For z,. € Z,, with probability at least 1—9, it holds that
PR + o /— . d!nax t 2 max
|I|(1t>)(| Zie_’[(t) O'/Z* ‘2@[1'] 0 ’:uz*|D[i](t) - U(Z*)| (1_ UK(+(Um(a>()))2 ) ||77||oo+ 2+(o-m|n)2 € d (t)""

202(In2 — In ).

/{(Dz[ ](t)) [7]

my M(t) Then for ¢ € V, we have

Proof: Recall that ﬂz*u)[i](t) =

2l (1) zlil(t)
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By triangular inequality, we have
Ll (¢) zl (@)
k(DZ."") il KDz, ) | i [i]
|z, i (1) — 1(Z)| < o n(z (1) — n(z)| + Y — (2 ()]
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& DZ* (t)
(=P ), (15)
of+(oc)

We analyze the upper bound of each term on the right-hand side of the inequality (15).
Term 1. Recall that 2" (t) € proj(z., ZI1(t)). The Lipschitz continuity of 1 in Assumption 3 gives

2
g
0,20 < Iy amx(1). (16

(D2 (i
> =) - n(z*)’<a+(m) 2 S

0%+ (o')?

Term 2. Recall that fi, pii) follows a Gaussian probability distribution and /i, |priy ~

(o) o3 +(o)?

fiz, Dl () 1s @ sub-Gaussian random variable. Then by concentration inequality of the sub-Gaussian
random variable (see Lemma 1.3 of [28]), for any €2 > 0, we have

|

Combining the above inequality with /i, priy) =

=zl () ) s zlil (1)
N (w)n(zm(t)), (Q)) (0i1)2). By Lemma 3, for all i € V, we have that
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2 = /202(In2 — In §), with probability at least 1 — 4, it holds

(D)

for 0 < § < 1, choosing

zlil
k(D% (t))| [

= (N 0)] = |z pragy - n(=(1)| < 207 (In2 ~ o).
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Term 3. We have |n(z,)| < ||n||s. By monotonicity of x(-) in Assumption 2, it gives
2l ()
#(Dz, ) r(d™(t))
(1- g Izl < (1= — T max)g)Hnlloo- (18)
Uf + (0e')? Tf T %



Therefore, applying the inequalities (16), (17) and (18) to (15), for 0 < § < 1, with probability at
least 1 — §, we have that for all i € Z(t),

i (™% (1)) 020, dm
‘:u‘z*|D[i](t) - 77(2*)| < (1 - 0_]20 + (o_max)g)”n”w + O_JQZC_’_ (O’min)2 + 20’2(11’12 —In 5) (19)
&3* t) x 2 24 |D(t) : : .
By (7), we have 0 < ‘I‘(f;‘ )cr’z il < 1and ‘I‘(t)‘ ez i(yy = L. which implies

~ /=

2
that with probability at least 1 — 4, it holds that “2x/2(0 ez O-z*‘D[i] ® ‘:U’z*|’Dm(t) —n(z.)| <

[Z(®)]
*( o lnd
(1= Bl + G20 + /2022 — nd). m

With Lemmas 3, 4 and 5, we now proceed to complete the proof of part I in Theorem 1.

Proof of part I in Theorem 1: Note that, given (7), we have

o
2| D(t) . L1—2
‘I(t)| Z M;*|Dm(t)0-;*\D[i] OR 77(2*)

|z, () — 1(2)| =

i€Z(t)
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Since ~ = (t)l DI /z*\DM(t) — 1, then this implies that ~ = )|> Yiez() uz*‘p[i](t)o;*m[i](t) -

z*ID(t)

N(ze) = HEE Yiez) 9 Uz*upm ® (/s Dl (1) — n(2+)). Therefore, by triangular inequality, (20)
is upper bounded as

z.|D(t) )
|Z(t)] Z Hz. Dl (t)Uz*|Dt]() n(z:)

i€T(t)
LD .
i I ) /z*\QD 1(¢) ’“z*lD[ I(t) — n(z.))|
i€T(t)
z*\D t) 52

2t (1) [P i) — Pz Dl (1)

Then, combining this with Lemmas 4 and 5, we complete the proof of part L.

Part I1: We give the upper bound and lower bound of &i D) A8 follows:

1) Upper bound. Recall that &i D) = % Note that f(z) = - is a convex function
* Pi€T(t) z*‘D[z]m

for x > 0. By Jensen’s inequality (see page 21 in [30]), we have f(1 Z?:l z;) < LS f@).

Then plugging in x; = o \DM (1) We have
~1—2
ERRp— L R—p =TI N TP
D@ = - = = .| Dl
PO Lo 0% oy () ZW] &, "=

It suffices to show the upper bound of » . LEI(t) crz 1Dl ()" We decompose the agent set Z(¢) into two

subsets F(t) and Z(¢) (| B where F(t) £ Z(t)((V\B) contains the benign agents and Z(t) (B
contains the Byzantine agents, then we have

Yo nipun = D Tepumt D e @

1€Z(t) 1€F(t) €Z(t) B
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We proceed to analyze each term on the right-hand side of (21).

First, notice that F(¢) is the set of benign agents, hence it holds that O’ Dl = 52 2. Dl (1) for

all i € F(t). According to Theorem IV.3 in [29], we have 52 Ll < JJ% % for all
"f

2. € Z,. Monotonicity of #(-) in Assumption 2 shows that x(d™**(t))? < x(dl’(t))2, which

indicates S (1)* o r(d(1)” Therefore, we have

o2 H(omax)Z = U§+(U{[}])2.

) r(d¥ (1)) (M2 (£))2
Z - z. | Dl (t) < Z (O’; o [i]\2 < |]:<t)| O’; o 0.2 + (O.max)2 : (22)
i€ F(t) ieF(t) o} + (0e)? f e

Second, by Lemma 2, we have

~ 12 ~2
2 Tlpnw S D 7213\’%3{"Z*|D['i]<t>}

i€eZ(t)N B i€eZ(t)NB
d[z] 2 dmax ($))2
< v {2 - mona (- 20008) . e
iezmns < 0f+ (0c)? of T\

Therefore, combining (21) with (22) and (23), the upper bound of 62* D) is given as

K(d™(t))?

—_— . (24)
7% + (o7

~2
Oz D) SOF —

2) Lower bound. Similar to (21), we have

~1—2 _ ~1—2 v/ 2
> 0. |DlilE) = R 0o T > 0 . |1DlI(t)" (25)

1€Z(t) 1€ F(t) €Z(t) B

First, it holds that a |2D[ 1) 6;2|D[1.](t) for all ¢ € F(t). Theorem IV.3 in [29] gives 62*|Dli1(t) >
Uf(0<[: ]_)2

ROl for all z, € Z,. Then following the logic of deriving the above upper bound, we have

2 [il\2 2 max)2
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) O pi(y S ) YROIYEE o7 (omin)?
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Second, Lemma 2 implies the following inequality

-1 [i])2

5 2 . .2 Uf(Ue )
Z Tzipii S Z (imm {Uz*|D[i](t)}> < (Zmln {[]
EV\B eI N B EVB | 02 + (0)2

-1

ieZ(t) B i€Z(t)N B
0.2 + (o.max)Z
< |z (\B-L———. 27
- ‘ ( )n ‘ O-J%(O-énln)2 ( )
Therefore, combining (25) with (26) and (27) yields an upper bound of EzeI 5 'z |2D[ oy ie.,
o} +(o8™)? |Z(t)]
Diez) O’z*‘DM o < |Z(t)] o?(o?in)g . Recall that 62 =P = T S then we have
0,2 (O.min)2
A !
z*ID( = ¢ (28)

UJ% + (omax)2”

Thus, combining (24) and (28), the proof is complete.

vii



	Proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 1


