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[
S

]
34
1

[N
=
1

— Cosine
—— 1-Sqrt (20%)
T T T T

0 2 4 6

Figure 1: Results at 8B model scale. We validate the behavior with a 8B model (architecture of Llama 3.1) for a

single short run (6B tokens of FineWeb-Edu), where the cooldown matches the cosine schedule again.
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Figure 2: Comparison of cosine to zero with a 124M model and a LR sweep. We find that annealing cosine to
zero improves the loss, but is still matched by the 1-sqrt cooldown (left, best LR after sweep). It also shows similar
LR sensitivity as the standard cosine to 10% (right). Larger LR values led to divergence in training.
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Figure 3: Aggregate metrics throughout training of a 1B model on 100B and 460B tokens. We train a 1B model on
100B (left) and 460B tokens (right) of FineWeb, and find that the performance of cosine and cooldown matches. Though
cosine to zero improves the loss (Figure E[), it leads to a saturation before the end of training, hurting overall performance.
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Figure 4: Detailed Benchmarks throughout training of the 1B model on 100B tokens. For the cooldown (starting
at 80B tokens), we observe a similar uptick in performance for some metrics (e.g., MMLU, HellaSwag) akin to the
observed drop in loss. Other metrics do not benefit as clearly from the cooldown (e.g., OpenBookQA).



