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A DATASET OVERVIEW AND CONTENTS

The outdoor sports dataset WEAR features data of 18 participants performing each a total of 18 dif-
ferent workout activities with untrimmed inertial (acceleration) and camera (egocentric video) data
recorded at 10 different outside locations. It provides a challenging prediction scenario marked by
purposely introduced activity variations and an overall small information overlap across modalities.
Figure 1 provides a dataset nutrition label inspired by Holland et al. (2018) in a table-like manner.

WEAR Dataset Key Facts
Motivation An outdoor sports dataset dataset 

(egocentric-video & inertial data) with 
small information overlap across modalities

Example Inertial-based, vision-based & multimodal 
Use Cases Human Activity Recognition
Authors [Anonymized]

Sensor Bangle.js Version 1
Settings 50 Hz (± 8g)
Format .csv
Placement Ankles & Wrists
Size 589.2 MB

Modalities  
3D-Acceleration

Egocentric Vision

Sensor GoPro Hero 8
Settings 1080p 60 FPS; SuperView FOV
Format .mp4
Placement Head (tilted 25° downwards)
Size 137.58 GB

Meta information  
Dataset

Count 18 (10 male, 8 female)
Age 28 ± 5
Height 175.4 ± 10.8 cm
Weight 69.26 ± 12.43 kg

Subjects

Locations 10
Activities 18 workout activities + NULL-class
Action segments 615
Total duration 908 min
Per-participant 50.5 ± 10.5 min

Figure 1: Dataset nutrition label of the WEAR dataset. The dataset nutrition label was originally
proposed by Holland et al. (2018). Our adaptation is inspired by DelPreto et al. (2022).
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A.1 INTENDED USES AND ETHICAL CONSIDERATIONS

Before participating in the study, participants were notified that by nature the data they provide
can only be pseudonymised. This means that, though requiring a substantial amount of effort, the
identity of a person can be reconstructed. Although participants agreed to include their egocentric
videos in a public dataset, it is essential to refrain from actively identifying the individuals featured
in the WEAR dataset. If other researchers decide to contribute to the WEAR dataset by recording
additional participants, societal and ethical implications should be considered. As with the partici-
pants part of the original release of the WEAR dataset, all participants must be briefed before their
first recording, making them aware of all necessary information and implications that come with
providing to the WEAR dataset. Recording locations should only be chosen if video recordings
are allowed at said location and participants are given enough space to perform each activity safely.
If the recording location involves pedestrians walking within close proximity, pedestrians should
be notified that they are being recorded and, if applicable, captured faces should be blurred during
postprocessing.

The WEAR dataset and associated code are made public for research purposes. With the accurate
detection of physical activities that we perform in our daily lives having been identified as valu-
able information, the WEAR dataset focuses on one of the most popular application scenarios of
wearable smartwatches and action cameras, i.e. self-tracking of workout activities. With the ease of
reproducability we hope to make WEAR a collaborative, expanding dataset which researchers from
different locations and backgrounds can contribute to. For example, as the current selection of par-
ticipants is biased towards healthy, young people, we hope to overcome said limitation by including
people from more diverse backgrounds and age groups in future iterations of the dataset.

Lastly, the authors took great care of avoiding any infringement of rights during the data collection
process. Yet, in case of conflicts, they are of course committed to taking appropriate actions, such
as promptly removing data associated with such concerns.

A.2 DATA AVAILABILITY AND LICENSING

WEAR and all associated files are offered under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License. The dataset is hosted via the cloud-storage platform
[Anonymized], which is a service hosted by [anonymized] (https://www.anonymous.edu/
anon). It is a non-commercial cloud storage service for research, studying and teaching and
is provided to participating institutions exclusively. With locations exclusively in [anonymized],
[anonymized] is subject to the strict [anonymized] directives on data protection and data security.
The complete dataset can be downloaded via [anonyimized] (https://www.anonymous.edu/
anon). The dataset download is structured into the (1) ’.json’-formatted annotations, (2) raw, syn-
chronized inertial and vision data and (3) precomputed feature embeddings as mentioned in the main
paper. Third party data-hosting services will be explored once the dataset paper is published and in a
non-changing state. We will involve the ethics council of [anonymized] during our decision process
to ensure a each selected hosting platform is inline with our data privacy standards.

The source code that was used to conduct all experiments is available via [Anonymized] (https:
//www.anonymous.edu/anon). A snapshot of the code is provided as part of the supple-
mentary material download. The repository is written in such a way that other architectures (both
inertial- and vision-based) can be added in the future. The repository provides Readme files which
give details on the overall structure of the repository, how collect additional data and how to set up
an Anaconda environment with the needed packages to run experiments. Experiments are defined
via ’.json’-format configuration files which allow for easy sharing of used hyperparameter settings.

B EXPERIMENTAL PROTOCOL

Table 1 gives an overview of the 18 activity classes featured in the WEAR dataset and provides
number of coherent sequences as well as total duration per workout activity class. In order to prop-
erly explain participants the activities they needed to perform and give insights on the overall study
design a recording plan (see Section D) was provided to participants prior to their first session. The
recording plan details all necessary materials and is written in such a way that the can easily be
reproduced by persons other than the authors. The plan further outlines the study protocol as well
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Table 1: Overview of the activity classes featured in the WEAR dataset. Each activity is categorized
into as either a running (R), flexibility (F) or strength (S) exercise. The total duration of each class
is provided in minutes and averaged across all activities. The total duration of the null class, i.e.
samples not belonging to any of the classes of interest, is provided. A detailed description of each
activity can be found in the recording plan attached at the end of the supplementary material.

Label ID Activity Class Category Action Segments Total duration
(in min)

1 jogging R 28 32:30
2 jogging (rotating arms) R 22 29:34
3 jogging (skipping) R 34 29:11
4 jogging (sidesteps) R 30 33:33
5 jogging (butt-kicks) R 37 28:43
6 stretching (triceps) F 25 29:13
7 stretching (lunging) F 23 31:09
8 stretching (shoulders) F 22 30:04
9 stretching (hamstrings) F 23 30:50
10 stretching (lumbar rotation) F 27 31:36
12 push-ups S 57 27:33
13 push-ups (complex) S 41 29:14
14 sit-ups S 43 30:50
15 sit-ups (complex) S 32 31:02
16 burpees S 49 31:25
17 lunges S 31 31:54
18 lunges (complex) S 35 33:19
19 bench-dips S 56 28:38
0 null - 592 358:29

informs about any risks of harm, data collection, usage, anonymisation and publication, as well as
how to revoke data usage rights at any point in the future. Besides a written description of each activ-
ity, the original document provides short video-clips of each activity, showing the correct execution
of exercises. To avoid any misunderstandings, the participants further received a one-on-one session
with the researchers being able to ask their questions about the plan and activities in it. Other than
the used sensors for video and acceleration recording, the exercises only require a yoga mat and a
chair (or similar items). Sessions can be recorded at any location outside as long as the privacy and
safety of the participants as well as pedestrians is ensured.

B.1 PARTICIPANT AND SESSION INFORMATION

The location and the time of day at which the sessions were performed were not fixed and thus
vary across subjects. As participants were allowed to split activities across more (or less) than two
sessions, session counts vary across subjects. Table 2 provides information on all 10 recording
locations that are part of the WEAR dataset. The table details general information such as surface
conditions of the location as well as which direction the static camera seen in videos is facing.
Table 3 provides supplementary information on all separate sessions contained in the dataset. For
each session, we detail its overall length in minutes, the number of distinct activities performed by
the participant, the location it was recorded at, the month and time of day it was recorded, as well as
the overall weather conditions during the duration of the session.

After having completed all sessions, participants were asked to take part in a questionnaire which
was used to gather vital information (gender, age, height and weight) as well as workout-specific
questions, aiming towards assessing the overall fitness level and experience with the activities de-
tailed in the study protocol. The workout-specific questions were:

1. How many workouts (longer than 15 min) do you usually do per week?

2. Which kind of workout do you usually do (cycling, team sport, gym, cardio, yoga etc.)?

3. How many activities that are part of the workout plan did you know in advance?

4. How many activities that are part of the workout plan do you perform regularly yourself as
part of your own workouts?

Table 4 shows the answers to the questionnaire items for each participant. Note that, to protect the
privacy of our study participants, we only asked for age, height and weight in ranges instead of exact
values, and always provided the option to not answer the questions if preferred.
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Table 2: Description of the 10 locations featured in the WEAR dataset. For each location we provide
information on surface conditions, overall surroundings and direction the static camera is facing.

Location ID Description

1
Meadow in proximity to a larger building.
Area is surrounded by trees with from November on-wards, fallen leaves laying on the ground.
Static camera faces North-West.

2 Parking lot in proximity to building. Concrete surface.
Static camera faces West.

3 Small square with concrete surface. Surrounded by bushes and buildings.
Static camera faces West.

4 Meadow enclosed by bungalow-style living quarters.
Static camera faces North-East

5
Covered walkway next to a building. Concrete surface.
Walkway enclosed by building and bushes.
Static camera faces North.

6
Football field with ash surface build behind a supermarket next a road and crop-fields.
Long side of the football field is surrounded by bushes.
Static camera faces mostly North-West.

7
Backyard in an urban-village with both concrete and grass surface.
Terrace has a garden table and chairs standing around.
Static camera faces mostly West.

8 Parking lot next to allotments in a city-area.
Static camera faces mostly North-East.

9 Meadow next to a building.
Static camera faces South.

10
City park in a metropolitan area behind a city mall.
Park is surrounded by buildings, a playing ground, football and basketball fields.
Static camera faces mostly North.

B.2 HARDWARE OVERVIEW

In order to capture the accelerometer data, four open-source Bangle.js Version 1 smartwatches run-
ning a custom, open-source firmware (Van Laerhoven et al., 2022) were used. The Bangle.js Version
1 comes with a Nordic 64MHz nRF52832 ARM Cortex-M4 processor with Bluetooth LE, 64kB
RAM, 512kB on-chip flash, 4MB external flash, a heart rate monitor, a 3D accelerometer and a
3D magnetometer. The raw 3D acceleration was captured at 50 Hz with a sensitivity of ± 8g. As
outlined in the recording plan (see Section D), watches were placed by the researchers before each
session in a predetermined orientation on the participants’ limbs and ankles. Egocentric video data
was captured using a GoPro Hero 8 action camera. The camera was mounted using a headstrap
with the camera tilted downwards in a roughly 45 degree angle. The GoPro was set to record at
1080p with 60 frames using a SuperView FOV with Hypersmooth 2.0 electronic image stabilization
and Auto Low-Light correction turned on. As the recorded egocentric video of participants makes
accurate ground truth annotations more difficult (due to e.g. participants not looking at the actions
they perform), a second camera was placed on a tripod in the proximity to the participants. Using
again a large FOV setting, the second camera was placed in a way such that as much area as possible
was captured. To allow for even more freedom of movement, participants were allowed to move out
of the FOV of the second camera, but were asked to start and end their activities within the camera’s
FOV. This allowed participants, especially during running exercises, to run straight distances and
overall commence activities in a more natural way. To preserve the privacy of our participants, the
second camera’s video stream and all audio streams captured during the experiments are not part of
the WEAR dataset.

B.3 POSTPROCESSING AND ANNOTATION PROCESS

The open-source firmware (Van Laerhoven et al., 2022) running on each Bangle.js smartwatch stores
the lossless, delta-compressed inertial data in separate files on the internal memory of each watch.
During post-processing, said compressed files were extracted, uncompressed and concatenated to a
single CSV file per session. Being a common issue with accelerometers sampling at a high sampling
rate, the Bangle.js smartwatch is not able to maintain an exact sampling rate of 50 Hz, with the true
sampling rate being closer to 48 Hz with fluctuations ranging between ± 1 Hz. The firmware
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Table 3: Per-session meta-information. We provide the individual session count, duration of each
session, number of activities performed during the session, location ID (LID) the session was per-
formed at, approximate time of the year and day and weather conditions during recording time.
More detailed information on each location can be found in Table 2 using the location ID.

Subject Session Duration # Activities Month Time-of-day LID Weather conditions

sbj 0 1 16:33:30 7 mid-Oct. morning 1 sunny, ≈10◦C
sbj 0 2 11:55:00 6 mid-Oct. afternoon 1 partly-cloudy, ≈10◦C
sbj 0 3 18:06:00 7 late-Oct. afternoon 1 partly-cloudy, ≈20◦C
sbj 1 1 20:20:00 9 late-Oct. afternoon 1 sunny, ≈15◦C
sbj 1 2 25:58:00 9 early-Nov. afternoon 1 sunny, ≈10◦C
sbj 2 1 32:24:00 9 early-Nov. morning 1 sunny, ≈10◦C
sbj 2 2 25:08:00 9 mid-Jan. afternoon 2 cloudy, after rain, ≈0◦C
sbj 2 3 01:52:00 1 mid-Feb. afternoon 3 sunny, ≈5◦C
sbj 3 1 33:34:00 10 mid-Nov. afternoon 4 sunny, ≈5◦C
sbj 3 2 25:52:00 6 mid-Nov. afternoon 4 partly-cloudy, ≈10◦C
sbj 3 3 06:24:00 2 mid-Nov. afternoon 4 sunny, ≈10◦C
sbj 3 4 03:41:00 2 late-Jan. afternoon 5 cloudy, snowy, ≈-5◦C
sbj 4 1 24:07:30 9 mid-Nov. midday 1 foggy, cloudy, windy, ≈5◦C
sbj 4 2 29:04:00 9 late-Nov. afternoon 1 partly-cloudy, ≈5◦C
sbj 5 1 19:48:30 9 mid-Nov. afternoon 1 sunny, ≈10◦C
sbj 5 2 16:02:00 9 end-Nov. afternoon 1 cloudy, ≈5◦C
sbj 6 1 23:52:00 10 end-Nov. afternoon 1 foggy, ≈5◦C
sbj 6 2 17:51:30 8 end-Jan. morning 5 cloudy, snowy, ≈-5◦C
sbj 7 1 22:48:00 9 late-Dec. morning 6 partly-sunny, ≈10◦C
sbj 7 2 24:45:00 9 late-Dec. midday 6 partly-sunny, ≈10◦C
sbj 8 1 20:00:00 9 late-Dec. midday 6 partly-cloudy, ≈10◦C
sbj 8 2 21:35:00 9 late-Jan. afternoon 7 cloudy, ≈0◦C
sbj 9 1 18:50:00 9 early-Jan. afternoon 8 cloudy, ≈10◦C
sbj 9 2 17:16:00 9 early-Jan. afternoon 8 cloudy, ≈10◦C
sbj 10 1 21:42:00 9 mid-Jan. afternoon 5 rainy, windy, ≈5◦C
sbj 10 2 21:04:00 9 early-Feb. afternoon 5 rainy, windy, ≈5◦C
sbj 10 3 23:39:00 9 mid-Feb. afternoon 9, 3 sunny, cloudy, windy, ≈5◦C
sbj 11 1 17:41:00 9 mid-Jan. morning 5 cloudy, rainy, ≈5◦C
sbj 11 2 19:21:00 9 mid-Jan. midday 5 cloudy, rainy, ≈5◦C
sbj 12 1 27:08:00 9 mid-Jan. afternoon 5 cloudy, windy, ≈0◦C
sbj 12 2 27:22:00 9 late-Feb. afternoon 5 partly-sunny, windy, ≈0◦C
sbj 13 1 30:08:00 9 mid-Jan. afternoon 5, 3 sunny, ≈0◦C
sbj 13 2 36:10:00 9 mid-Jan. afternoon 5, 3 sunny, ≈0◦C
sbj 14 1 22:18:00 9 mid-Jan. afternoon 5, 3 sunny, ≈-5◦C
sbj 14 2 31:03:00 9 mid-Jan. afternoon 5, 3 cloudy, ≈-5◦C
sbj 15 1 23:17:00 9 late-Jan. afternoon 5, 3 cloudy, ≈0◦C
sbj 15 2 20:06:00 9 late-Jan. afternoon 5, 3 cloudy, ≈0◦C
sbj 16 1 26:34:00 9 early-Feb. midday 10 partly-sunny, ≈10◦C
sbj 16 2 31:56:00 9 early-Feb. midday 10 partly-sunny, ≈10◦C
sbj 17 1 23:16:00 9 early-Feb. afternoon 1 sunny, ≈0◦C
sbj 17 2 28:15:00 9 early-Feb. afternoon 3 sunny, ≈0◦C

Table 4: Per subject answers to the questionnaire handed to participants after having completed all
sessions. The questionnaire collected vital information (gender (G), left- or righthanded (L/R), age,
height and weight) as well as workout-specific questions, i.e. frequency and type of private workouts
and number of activities, part of the WEAR dataset, which were known in advance and regularly
conducted in private workouts.

Subject G L/R Age Height Weight Private Workouts Activities

Frequency Type Known Regularly

sbj 0 M R ≥40 180-189 70-79 5 Cycling 5 0
sbj 1 M R 25-29 170-179 60-69 3 Hiking 11 0
sbj 2 M R 25-29 180-189 80-89 5 Gym, Cardio 18 9
sbj 3 M R 35-39 170-179 70-79 4-5 Gym, Basketball, Cardio 18 9
sbj 4 M R 25-29 180-189 60-69 0 Table-tennis 18 0
sbj 5 F R 30-34 160 -169 N/A 2-3 Freeletics 16 9
sbj 6 F R 25-29 150-159 50-59 1 Gym 9 0
sbj 7 M R 30-34 180-189 80-89 5 Gym, Cardio 18 5
sbj 8 F R 25-29 170-179 60-69 2-3 Volleyball, Yoga 15 7
sbj 9 F R 25-29 150-159 50-59 7 Gym, Bicycling, Cardio, Ballet 18 7
sbj 10 F R 20-24 160-169 50-59 5 Gym, Dancing, Yoga 15 7
sbj 11 F R 25-29 160-169 50-59 3 Volleyball, Cardio, Yoga 18 11
sbj 12 F R 20-24 170-179 60-69 4 Gym 17 8
sbj 13 M R 20-24 ≥190 90-99 2 Gym, Cardio 16 8
sbj 14 M R 30-34 170-179 80-89 0 N/A 11 2
sbj 15 F L 25-29 180-189 60-69 8 Rowing, Gym, Cycling, Cardio 18 9
sbj 16 M R 20-24 180-189 60-69 2-3 Gym 15 3
sbj 17 M R 25-29 180-189 70-79 4 Badminton, Bouldering, Hiking 15 5
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Inertial Sensors

Camera Sensors

Annotations

Figure 2: Snapshot along with descriptions of the annotation process using Final Cut Pro. Importing
the converted video and inertial data (as ’.wav’-files) allowed for an easy validation of the synchro-
nization process. Labels were added via subtitles, exported as ’.srt’-files and converted such that
they can be appended to the respective ’.csv’-files.

(Van Laerhoven et al., 2022) provides for each file a timestamp that was set by the on-board real-
time clock, which allows correcting individual times of all delta-compressed samples. Therefore,
in order to obtain the true sampling rate and correct the timestamps of the concatenated CSV-file,
synchronisation jumps were performed by each participant at the start and end of each session. The
synchronization jumps involved participants move in front of the tripod-mounted camera, stand still
for approximately 10 seconds, jump three times while raising the arms while jumping and stand still
for another 10 seconds. This allowed to map peaks in the inertial sensor streams to be mapped to
points in the video stream and thus obtain a start and end point within both modality data streams.
Lastly, assuming recorded inertial data records are equidistant, all records within the span of the
start and end-point were evenly distributed across the experiment’s duration and, as a final step,
resampled to have a sampling rate of 50 Hz via linear interpolation. Similar to the inertial data, the
video data recorded by the head-mounted GoPro was not recording at a true frame rate of 60 FPS,
but slightly deviated from that (i.e. 59.94 FPS). We therefore also resampled the egocentric videos
to be of a frame rate of 60 FPS.

In order to validate our synchronization process we made use of the similarities between sensor and
audio data and converted each axis of the 3D accelerometer as well as their combined magnitude to
four separate WAV-files. This approach is inspired by the works of Scholl et al. (2019) and Morshed
et al. (2022). We calculated the magnitude as the summed norm of each individual inertial sensor
channels, i.e.

√
x2 + y2 + z2 with x, y and z being the x-, y- and z-axis of the 3D accelerometer

data. Having converted the CSV data to WAV files allowed us to import both video data and inertial
data into a standard video editing tool, in our case we used Final Cut Pro (see Figure 2). The user
interface of Final Cut offers to see previews of sound files being in our case equivalent to a graph-
like visualization of the acceleration data. This feature enabled us to have a visualised data stream
of all modalities simultaneously while annotating. On average, the combined magnitude proved to
be most useful when verifying the correctness of our synchronization across time. Labels of the
activities were added by a single expert annotator as subtitles in SRT-format. A final script then
converted the exported SRT-file to CSV-format, filling gaps within the subtitles with a NULL label
and appended this to the respective final inertial sensor data CSV-file.

C SUPPLEMENTARY EXPERIMENTS AND FIGURES

C.1 ATTEND-AND-DISCRIMINATE IMPROVEMENTS

Instead of employing a plain Attend-and-Discriminate model as proposed by Abedin et al. (2021),
we incorporate architecture improvements suggested by Bock et al. (2021). Said architecture im-
provements are (1) using one instead of two recurrent layers, (2) increasing the amount of hidden
units in the recurrent layer from 128 to 1024 and (3) scaling the convolutional kernel by the same
factor the window size increases or decreases. Table 5 shows performance difference gained from
employing the improved Attend-and-Discriminate architecture by comparing it to the original ar-
chitecture. Note that results were obtained using longer training times along with a learning rate
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Table 5: Results demonstrating the effectiveness of made modifications to the Attend-and-
Discriminate model (Abedin et al., 2021). We compare the plain original model with an optimised
version (1-layered LSTM with 1024 hidden units and an adjusted convolutional kernel sizes). We
report results on the three employed window sizes (0.5, 1.0 and 2.0 seconds) each with a 50% over-
lap. Note that results are reported with no postprocessing applied.

Model P R F1 mAP

0.3 0.4 0.5 0.6 0.7 Avg

0.
5s Original A-and-D 71.87 72.78 71.63 1.86 1.54 1.35 1.07 0.87 1.34

Optimised A-and-D 76.29 69.08 71.60 1.69 1.14 0.83 0.63 0.48 0.96

1.
0s Original A-and-D 72.37 72.38 71.60 3.07 2.46 1.96 1.49 1.31 2.06

Optimised A-and-D 78.90 73.25 75.22 4.35 3.38 2.76 2.22 1.76 2.90

2.
0s Original A-and-D 74.48 73.99 73.26 8.75 7.1 5.94 4.85 3.95 6.12

Optimised A-and-D 81.13 76.47 77.90 11.13 9.35 7.42 6.04 5.17 7.82

Table 6: Results demonstrating the effectiveness of longer training times on the inertial-based mod-
els. Compared are the shallow DeepConvLSTM (Bock et al., 2021) and improved Attend-and-
Discriminate (Abedin et al., 2021) model using either a short training time (30 epochs and no step-
wise learning rate schedule (LRS)) or long training time (300 epochs and LRS). We report results
on the three employed window sizes (0.5, 1.0 and 2.0 seconds) each with a 50% overlap. Note that
results are reported with no postprocessing applied.

Model Epochs LRS P R F1 mAP

0.3 0.4 0.5 0.6 0.7 Avg

0.
5s

Shallow D. 30 70.51 72.92 70.71 2.13 1.82 1.55 1.33 1.22 1.61
Shallow D. 300 ✓ 77.29 69.13 71.91 2.50 1.97 1.65 1.37 1.16 1.73
A-and-D 30 72.15 71.87 71.24 1.97 1.61 1.33 1.04 0.84 1.36
A-and-D 300 ✓ 76.29 69.08 71.60 1.69 1.14 0.83 0.63 0.48 0.96

1.
0s

Shallow D. 30 73.35 76.25 73.78 4.83 4.01 3.38 2.81 2.32 3.47
Shallow D. 300 ✓ 81.09 72.07 75.29 5.71 4.50 3.66 2.77 2.50 3.83
A-and-D 30 74.00 74.96 73.70 4.48 3.47 3.00 2.35 2.01 3.06
A-and-D 300 ✓ 78.90 73.25 75.22 4.35 3.38 2.76 2.22 1.76 2.90

2.
0s

Shallow D. 30 74.97 78.21 75.63 11.68 10.44 8.71 7.8 6.42 9.01
Shallow D. 300 ✓ 82.95 74.63 77.60 13.24 11.1 8.79 7.77 6.77 9.53
A-and-D 30 77.04 79.01 77.29 10.55 8.74 7.21 6.17 5.08 7.55
A-and-D 300 ✓ 81.13 76.47 77.90 11.13 9.35 7.42 6.04 5.17 7.82

schedule (see Section C.2 for more details) and are reported without having applied any postpro-
cessing.

C.2 LONGER VS. SHORTER TRAINING RUNS

As mentioned in the main paper, all inertial-based architectures are trained for 300 epochs as com-
pared to 30 epochs reported in Bock et al. (2021). These longer training times are inspired by the
training reported in Abedin et al. (2021). To compensate for longer training times we employ a
step-wise learning rate schedule as seen in Abedin et al. (2021) with a step size of 10 epochs and a
decay rate of 0.9. Table 6 shows the improvement gained from using such longer training times by
comparing it to a shorter training time of 30 epochs.

C.3 ABLATION STUDY ON POSTPROCESSING

The following details ablation experiments conducted to demonstrate the effectiveness and validity
of the applied postprocessing described in the experiments section of the main paper.

Figure 3 illustrates the effect the majority vote filter has on the prediction stream of the inertial-based
models. One can see that without applying a majority vote filter, inertial-based architectures produce
a large amount of non-coherent segments. This is due to the fact that during training, inertial models
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Figure 3: Color-coded comparison of the ground truth data (top row) with the raw and postprocessed
(15 sec majority vote filter) activity streams of the shallow DeepConvLSTM (Bock et al., 2021) and
Attend-and-Discriminate (Abedin et al., 2021) (A-and-D) model. The illustrated activity stream is
of a sample subject having trained using inertial data which is windowed using a 1 second sliding
window with 50% overlap.

such as Bock et al. (2021) and Abedin et al. (2021) are not explicitly trained to predict coherent
segments, but rather predict a continuous stream of windowed data. The models therefore tend to
show a lot of intermediate switches in-between activity labels which causes mAP scores of inertial-
based architectures to be substantially lower than scores of vision-based models. We therefore make
use of a majority vote filter to erase short activity-label switches. Table 7 and 8 shows experimental
results of applying different-sized majority vote filters (5, 10, 15, 20 and 25 seconds) compared to
applying no filter. Interestingly, results (see Table 7 and 8) not only demonstrate the effectiveness of
the majority vote filter through a substantial increase in mAP scores, yet also show that said increase
does not come at the cost of a decreased F1-score, but rather an increase. Table 7 and 8 further show
a majority vote filter of 15 seconds being most effective resulting in the highest F1-score.

Temporal action localization models such as the ActionFormer (Zhang et al., 2022) and TriDet
architecture (Shi et al., 2023) are not trained on an explicitly modelled NULL-class. This means,
that unlike Bock et al. (2021) and Abedin et al. (2021), models are only able to predict segments with
activity labels other than the NULL-class. With both models being set to predict up to 2000 action
segments per video, the unprocessed prediction results resulted in activity streams such as illustrated
in Figure 4. One can see that almost all samples have been assigned an activity label, leaving
only a few data to be predicted as NULL, ultimately resulting in a substantially lower NULL-class
accuracy than compared to inertial-based models mentioned in this paper. We therefore increased
the score-threshold of both the ActionFormer and TriDet model, eliminating low-scoring segments
and replacing them with NULL (see Figure 4). This improved classification performance of the
ActionFormer (see Table 9) and TriDet model (see Table 10) significantly across all experiments
(i.e. using inertial, vision and a combined setup as input data), while only marginally decreasing
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Table 7: Ablation experiments on the effect of different-sized majority vote (MV) filters (5, 10, 15,
20 and 25 seconds) on the raw prediction results (0 seconds) of the shallow DeepConvLSTM model
(Bock et al., 2021). We report results on the three employed window sizes (0.5, 1.0 and 2.0 seconds)
each with a 50% overlap. Best results per clip-length are in bold.

MV filter P R F1 mAP

0.3 0.4 0.5 0.6 0.7 Avg

0.
5

w
in

do
w 0 sec 77.29 69.13 71.91 2.50 1.97 1.65 1.37 1.16 1.73

5 sec 85.87 75.63 79.04 37.83 36.02 34.30 32.48 29.89 34.10
10 sec 86.63 75.81 79.38 50.43 47.92 46.17 43.86 41.94 46.06
15 sec 86.77 75.42 79.18 54.36 51.67 49.42 47.40 44.70 49.51
20 sec 86.72 74.71 78.66 56.90 53.97 51.65 49.06 46.25 51.57
25 sec 86.56 73.89 78.02 57.22 54.16 52.20 49.56 45.89 51.81

1.
0

w
in

do
w 0 sec 81.09 72.07 75.29 5.71 4.50 3.66 2.77 2.50 3.83

5 sec 87.27 77.21 80.73 42.92 40.25 38.10 35.38 32.51 37.83
10 sec 87.87 77.35 81.05 52.02 49.72 47.21 44.42 41.94 47.06
15 sec 88.02 77.03 80.86 57.09 55.32 53.61 50.59 47.85 52.89
20 sec 87.98 76.44 80.44 59.24 57.28 55.49 52.17 50.07 54.85
25 sec 87.74 75.81 79.93 61.50 59.63 57.41 53.88 51.13 56.71

2.
0

w
in

do
w 0 sec 82.95 74.63 77.60 13.24 11.10 8.79 7.77 6.77 9.53

5 sec 86.92 77.88 81.08 42.44 40.53 37.92 35.18 32.81 37.78
10 sec 87.80 78.37 81.71 55.51 52.62 49.75 47.09 44.87 49.97
15 sec 87.92 78.16 81.60 59.89 57.00 54.69 51.77 48.99 54.47
20 sec 87.90 77.74 81.32 61.04 58.99 57.05 53.31 50.49 56.18
25 sec 87.70 77.22 80.89 62.35 60.18 57.95 54.64 50.97 57.22

Table 8: Ablation experiments on the effect of different-sized majority vote (MV) filters (5, 10,
15, 20 and 25 seconds) on the raw prediction results (0 seconds) of the improved Attend-and-
Discriminate model (Abedin et al., 2021). We report results on the three employed window sizes
(0.5, 1.0 and 2.0 seconds) each with a 50% overlap. Best results per clip length are in bold.

MV filter P R F1 mAP

0.3 0.4 0.5 0.6 0.7 Avg

0.
5

w
in

do
w

0 sec 76.29 69.08 71.60 1.69 1.14 0.83 0.63 0.48 0.96
5 sec 86.18 76.16 79.40 36.38 34.07 31.09 28.14 26.25 31.19
10 sec 87.25 76.31 79.78 49.15 46.28 43.86 41.41 39.61 44.06
15 sec 87.54 75.98 79.59 53.57 51.08 48.51 45.82 42.87 48.37
20 sec 87.61 75.38 79.20 56.13 53.42 50.90 47.50 44.76 50.54
25 sec 87.40 74.53 78.52 59.00 55.82 53.45 49.49 45.90 52.73

1.
0

w
in

do
w

0 sec 78.90 73.25 75.22 4.35 3.38 2.76 2.22 1.76 2.90
5 sec 86.58 78.95 81.56 40.43 37.88 35.03 32.22 29.61 35.03
10 sec 87.61 79.24 82.09 51.81 49.59 47.73 44.88 41.55 47.11
15 sec 87.87 79.02 82.01 56.38 54.47 52.28 50.07 46.92 52.03
20 sec 87.94 78.59 81.74 57.80 57.80 55.88 52.95 49.58 55.19
25 sec 87.82 77.92 81.23 61.65 59.71 58.10 54.85 51.44 57.15

2.
0

w
in

do
w

0 sec 81.13 76.47 77.90 11.13 9.35 7.42 6.04 5.17 7.82
5 sec 86.57 80.10 82.22 38.81 36.58 33.69 31.05 28.98 33.82
10 sec 87.91 80.71 83.06 52.89 50.98 48.32 45.34 42.49 48.00
15 sec 88.24 80.55 83.08 58.32 56.68 54.44 51.58 48.34 53.87
20 sec 88.37 80.22 82.89 61.18 59.97 57.99 54.69 51.07 56.98
25 sec 88.24 79.76 82.51 62.83 61.06 58.96 56.20 52.87 58.38
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null jogging jogging (rotating arms) jogging (skipping) jogging (sidesteps) jogging (butt-kicks)

stretching (triceps) stretching (lunging) stretching (shoulders)

push-ups push-ups (complex) sit-ups sit-ups (complex) burpees lunges lunges (complex)

stretching (hamstrings) stretching (lumbar rotation)

bench-dips

Figure 4: Color-coded comparison of the ground truth data (top row) with the raw and score-
thresholded (0.2) activity streams of the TriDet (Shi et al., 2023) model. The illustrated activity
stream is of sample subject having trained the model using both inertial and vision data which is
windowed using a 1 second sliding window with 50% overlap.

mAP scores. Table 10 further shows 0.2 being the most effective identified threshold of our ablation
study, resulting in the highest F1-score of the temporal action localization models.
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Table 9: ActionFormer score thresholding results (Zhang et al., 2022) ablation experiments on the
effect of different score thresholds (0.05, 0.1, 0.15, 0.2 and 0.25) on the raw prediction results (0.0
threshold) of experiments involving the ActionFormer model. We report results on the ActionFormer
being applied to only inertial, camera and a combined (inertial + camera) features using three clip
length window sizes (0.5, 1.0 and 2.0 seconds) each with a 50% overlap. Best results per modality
are in bold.

Threshold CL P R F1 mAP

0.3 0.4 0.5 0.6 0.7 Avg

In
er

tia
l

0.0 0.5s 55.65 77.50 61.41 73.55 70.70 62.51 48.14 32.02 57.38
0.05 0.5s 65.11 78.53 67.78 72.61 69.73 61.60 47.24 31.25 56.49
0.1 0.5s 71.15 77.77 72.15 70.28 67.59 59.74 45.25 29.67 54.51
0.15 0.5s 76.27 75.18 73.96 67.45 64.89 57.02 42.55 28.10 52.00
0.2 0.5s 78.73 70.50 72.51 63.71 61.28 53.90 39.81 26.40 49.02
0.25 0.5s 81.76 64.25 69.46 59.09 56.93 49.66 36.17 24.36 45.24

0.0 1.0s 58.46 78.94 61.91 80.02 78.14 74.28 69.19 61.32 72.59
0.05 1.0s 67.40 80.21 70.60 79.24 77.40 73.55 68.45 60.59 71.85
0.1 1.0s 74.00 79.14 74.72 77.63 75.80 72.05 67.14 59.34 70.39
0.15 1.0s 78.82 77.21 76.41 75.15 73.46 70.03 65.55 57.90 68.42
0.2 1.0s 81.69 75.37 76.86 72.90 71.30 68.28 64.14 56.65 66.65
0.25 1.0s 84.12 73.38 76.86 70.25 69.01 66.15 62.49 55.35 64.65

0.0 2.0s 54.47 74.61 57.84 74.85 71.16 67.88 63.67 56.53 66.82
0.05 2.0s 61.67 75.41 64.98 73.92 70.13 66.81 62.62 55.69 65.84
0.1 2.0s 68.67 73.72 68.95 71.70 68.20 65.00 61.01 54.27 64.04
0.15 2.0s 74.59 71.78 71.00 69.22 66.05 63.02 59.22 52.51 62.00
0.2 2.0s 78.18 69.15 71.15 66.43 63.30 60.47 56.66 50.26 59.43
0.25 2.0s 80.99 66.93 70.90 64.11 61.06 58.31 54.73 48.47 57.34

C
am

er
a

0.0 0.5s 49.81 70.46 54.24 67.44 65.10 59.96 47.89 31.61 54.40
0.05 0.5s 60.74 71.84 61.94 65.69 63.30 58.37 46.42 30.48 52.85
0.1 0.5s 64.66 69.02 63.90 61.28 59.04 54.71 43.57 28.40 49.40
0.15 0.5s 66.39 63.73 62.19 56.29 54.18 50.10 39.76 25.88 45.24
0.2 0.5s 68.06 57.68 58.47 51.27 49.45 45.74 36.10 23.38 41.19
0.25 0.5s 66.90 51.37 53.93 45.81 44.29 40.92 32.29 20.96 36.85

0.0 1.0s 55.09 71.87 55.96 74.07 72.05 69.54 65.81 59.28 68.15
0.05 1.0s 65.74 73.82 65.65 72.63 70.60 68.14 64.44 58.04 66.77
0.1 1.0s 69.02 72.32 66.98 69.87 67.99 65.71 62.29 56.17 64.41
0.15 1.0s 71.61 70.33 67.18 66.59 64.76 62.83 59.75 54.23 61.63
0.2 1.0s 72.63 68.87 67.26 63.99 62.32 60.62 57.88 52.79 59.52
0.25 1.0s 73.27 66.99 66.84 61.76 60.27 58.78 56.31 51.42 57.71

0.0 2.0s 53.31 68.90 53.53 71.61 68.95 65.86 63.05 56.53 65.20
0.05 2.0s 59.24 69.98 59.74 70.45 67.70 64.52 61.81 55.38 63.97
0.1 2.0s 64.35 69.29 62.97 67.74 65.15 62.23 59.79 53.64 61.71
0.15 2.0s 66.97 67.45 63.83 64.14 62.31 59.9 57.64 51.75 59.15
0.2 2.0s 69.67 65.79 64.15 61.32 59.92 57.96 55.91 50.39 57.10
0.25 2.0s 69.90 63.15 63.00 58.07 56.88 55.16 53.31 48.22 54.33

In
er

tia
l+

C
am

er
a

0.0 0.5s 58.49 81.20 64.60 76.95 75.25 69.60 54.99 38.62 63.08
0.05 0.5s 70.50 82.93 73.57 75.67 73.92 68.28 53.51 37.45 61.76
0.1 0.5s 75.70 80.32 76.13 72.35 70.82 65.52 50.69 35.30 58.94
0.15 0.5s 79.23 75.95 75.91 68.58 67.28 62.02 47.49 33.52 55.78
0.2 0.5s 82.40 70.96 73.76 64.95 63.89 58.49 44.67 31.77 52.75
0.25 0.5s 83.87 64.68 70.06 60.10 59.29 53.92 40.80 29.37 48.70

0.0 1.0s 60.91 82.08 64.96 84.41 82.67 79.73 76.01 68.01 78.16
0.05 1.0s 72.45 83.75 75.61 83.50 81.77 78.76 75.07 67.02 77.22
0.1 1.0s 77.00 82.96 78.46 81.63 79.83 76.97 73.38 65.52 75.46
0.15 1.0s 79.84 81.61 79.43 79.70 77.92 75.01 71.70 64.22 73.71
0.2 1.0s 82.38 80.30 80.15 77.63 75.97 73.28 70.31 63.04 72.05
0.25 1.0s 84.48 78.66 80.20 75.58 74.02 71.52 68.65 61.80 70.31

0.0 2.0s 56.73 77.66 60.37 78.90 75.83 72.84 69.29 63.15 72.00
0.05 2.0s 64.75 78.75 68.25 77.56 74.55 71.65 68.11 62.09 70.80
0.1 2.0s 71.04 77.83 72.35 75.64 72.87 70.07 66.46 60.54 69.12
0.15 2.0s 75.27 75.80 73.75 73.23 70.66 68.04 64.52 58.82 67.06
0.2 2.0s 79.19 73.88 74.52 71.10 68.79 66.38 63.00 57.54 65.36
0.25 2.0s 81.26 72.13 74.26 69.17 66.79 64.40 61.18 56.14 63.53
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Table 10: TriDet score thresholding results (Shi et al., 2023) ablation experiments on the effect of
different score thresholds (0.05, 0.1, 0.15, 0.2 and 0.25) on the raw prediction results (0.0 threshold)
of experiments involving the TriDet model. We report results on the TriDet being applied to only
inertial, camera and a combined (inertial + camera) features using three clip length sizes (0.5, 1.0
and 2.0 seconds) each with a 50% overlap. Best results per modality are in bold.

Threshold CL P R F1 mAP

0.3 0.4 0.5 0.6 0.7 Avg

In
er

tia
l

0.0 0.5s 54.94 77.88 61.53 76.30 73.57 67.90 59.18 49.16 65.22
0.05 0.5s 68.51 79.26 70.92 75.39 72.72 67.04 58.34 48.35 64.37
0.1 0.5s 77.48 78.04 76.26 73.34 70.84 65.04 56.14 46.43 62.36
0.15 0.5s 82.56 75.02 77.19 70.28 67.93 62.10 53.15 43.92 59.48
0.2 0.5s 86.06 70.10 75.25 66.01 63.71 57.70 49.30 41.09 55.56
0.25 0.5s 87.78 63.97 71.09 60.73 58.58 52.94 45.06 37.85 51.03

0.0 1.0s 55.34 78.01 60.87 b 78.45 76.11 72.94 67.48 75.03
0.05 1.0s 66.81 79.22 70.05 79.42 77.66 75.28 72.22 66.73 74.26
0.1 1.0s 75.83 77.89 75.28 77.92 76.26 73.95 70.86 65.47 72.89
0.15 1.0s 80.70 75.94 76.91 75.97 74.38 72.16 69.09 64.04 71.13
0.2 1.0s 83.85 73.76 77.12 73.27 71.66 69.83 66.79 62.25 68.76
0.25 1.0s 85.73 71.77 76.59 70.96 69.39 67.51 64.72 60.43 66.60

0.0 2.0s 50.57 75.56 58.19 74.94 72.67 70.35 67.05 61.67 69.33
0.05 2.0s 63.35 75.93 66.64 73.77 71.50 69.14 66.04 60.82 68.26
0.1 2.0s 71.97 74.06 71.04 71.23 68.99 66.91 63.87 59.06 66.01
0.15 2.0s 77.71 71.69 72.47 68.04 65.97 64.04 61.08 56.62 63.15
0.2 2.0s 81.72 69.37 72.53 65.57 63.65 61.86 59.07 54.82 60.99
0.25 2.0s 84.13 67.14 71.99 63.01 61.13 59.28 56.78 52.98 58.64

C
am

er
a

0.0 0.5s 49.81 70.46 54.24 67.44 65.10 59.96 47.89 31.61 54.40
0.05 0.5s 60.74 71.84 61.94 65.69 63.30 58.37 46.42 30.48 52.85
0.1 0.5s 64.66 69.02 63.90 61.28 59.04 54.71 43.57 28.40 49.40
0.15 0.5s 66.39 63.73 62.19 56.29 54.18 50.10 39.76 25.88 45.24
0.2 0.5s 68.06 57.68 58.47 51.27 49.45 45.74 36.10 23.38 41.19
0.25 0.5s 66.90 51.37 53.93 45.81 44.29 40.92 32.29 20.96 36.85

0.0 1.0s 55.09 71.87 55.96 74.07 72.05 69.54 65.81 59.28 68.15
0.05 1.0s 65.74 73.82 65.65 72.63 70.60 68.14 64.44 58.04 66.77
0.1 1.0s 69.02 72.32 66.98 69.87 67.99 65.71 62.29 56.17 64.41
0.15 1.0s 71.61 70.33 67.18 66.59 64.76 62.83 59.75 54.23 61.63
0.2 1.0s 72.63 68.87 67.26 63.99 62.32 60.62 57.88 52.79 59.52
0.25 1.0s 73.27 66.99 66.84 61.76 60.27 58.78 56.31 51.42 57.71

0.0 2.0s 53.31 68.90 53.53 71.61 68.95 65.86 63.05 56.53 65.20
0.05 2.0s 59.24 69.98 59.74 70.45 67.70 64.52 61.81 55.38 63.97
0.1 2.0s 64.35 69.29 62.97 67.74 65.15 62.23 59.79 53.64 61.71
0.15 2.0s 66.97 67.45 63.83 64.14 62.31 59.9 57.64 51.75 59.15
0.2 2.0s 69.67 65.79 64.15 61.32 59.92 57.96 55.91 50.39 57.10
0.25 2.0s 69.90 63.15 63.00 58.07 56.88 55.16 53.31 48.22 54.33

In
er

tia
l+

C
am

er
a

0.0 0.5s 58.91 80.98 64.74 80.30 78.52 74.52 67.53 56.76 71.53
0.05 0.5s 73.96 82.69 75.74 78.95 77.12 73.10 66.16 55.44 70.15
0.1 0.5s 81.07 79.82 78.94 75.31 73.67 69.70 62.86 52.32 66.77
0.15 0.5s 84.88 75.43 78.36 71.95 70.36 66.35 59.14 49.20 63.40
0.2 0.5s 87.85 70.34 75.90 67.65 66.05 62.22 55.55 46.12 59.52
0.25 0.5s 88.98 63.95 71.24 62.04 60.46 56.70 50.70 42.00 54.38

0.0 1.0s 58.69 81.51 64.16 84.95 83.77 82.05 79.49 74.19 80.89
0.05 1.0s 71.84 83.39 75.19 84.03 82.83 81.13 78.55 73.17 79.94
0.1 1.0s 78.61 82.79 79.37 82.69 81.48 79.76 77.15 71.88 78.59
0.15 1.0s 82.64 81.42 80.93 80.99 79.76 78.09 75.60 70.57 77.00
0.2 1.0s 84.99 79.55 81.08 78.64 77.45 75.74 73.40 68.79 74.81
0.25 1.0s 86.81 77.11 80.38 75.60 74.39 72.76 70.40 66.20 71.87

0.0 2.0s 51.17 78.44 60.46 79.51 77.74 75.56 72.54 68.28 74.73
0.05 2.0s 66.62 79.44 70.01 78.08 76.28 74.17 71.23 67.13 73.38
0.1 2.0s 74.65 78.03 74.43 75.36 73.74 71.85 69.13 65.12 71.04
0.15 2.0s 79.86 76.49 76.35 73.39 71.72 69.95 67.56 63.76 69.28
0.2 2.0s 83.10 74.55 76.72 71.20 69.69 67.88 65.49 61.77 67.20
0.25 2.0s 84.29 72.39 76.03 68.64 67.07 65.30 63.02 59.49 64.70
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C.4 SINGLE-STAGE TEMPORAL ACTION LOCALIZATION FOR INERTIAL DATA

In this paper we demonstrated the applicability of vision-based single-stage temporal action localiza-
tion models on a previously unexplored modality, i.e. inertial data. As the investigated architectures,
namely the TriDet (Shi et al., 2023) and ActionFormer (Zhang et al., 2022), both require clip-based,
one-dimensional feature embeddings as input, data of both camera and inertial sensors had to be
preprocessed. Figure 5 summarizes the applied preprocessing on both modalities. First step for
both modalities included windowing the data streams using a predefined clip length and overlap. In
total three different clip lengths were tested (0.5, 1 and 2 seconds). Having windowed the inertial
data left us with a 3-dimensional feature array, i.e. [no. windows,window length, no. sensor axis].
In order to obtain a vectorized feature embedding per sliding window, individual sensor axis were
concatenated. Depending on the window length this left us with a one-dimensional feature vector
of size 300 (0.5 second), 600 (1 second) and 1200 (2 seconds) per video clip, i.e. sliding window.
Contrarily, as also applied in Shi et al. (2023), we extracted two-stream I3D feature embeddings
(Carreira & Zisserman, 2017) pretrained on Kinetics-400 (Kay et al., 2017) from the raw video
stream, resulting in a vision-based embedding of size 2048 per video clip. Having vectorized both
modalities we were able to train both temporal action localization architectures on either (1) inertial,
(2) camera or (3) a concatenation of the two (inertial + camera). Even though our concatenation ap-
proach results in varying input dimensions, said change does not come at increased computational
costs. More specifically, while amount of learnable parameters marginally increases (not more than
10%) with an increased input dimension, unlike other approaches, no additional embedding needs
to be extracted from the inertial data and raw data streams can directly be used.

Inertial Data
Right Arm Left LegRight Leg Left Arm

...

12 sensor axis per window [1 x 50 x 12]

concatenate/ vectorize

1 
se

c,
 i.

e.
 5

0 
sa

m
pl

es

...
Inertial Input Dimension: [1 x 600]

Video Clip (e.g. 1 second)

Camera Data

4 x

Two-Stream 
Inflated 3D Features

[1 x 1024]

RGB Features

[1 x 1024]

Flow Features

Camera Input Dimension: [1 x 2048]

Combined Input Dimension: [1 x 2648]

concatenate

Right Arm Left LegRight Leg Left Arm

Figure 5: Visualization of the applied preprocessing on inertial and camera data in order to make to
create a feature embedding which can be used to train the TriDet Shi et al. (2023) and ActionFormer
Zhang et al. (2022) network.

C.5 ABLATION STUDY ON INFLUENCE OF FREQUENCY OF INPUTS

With the frequencies both the camera (60 FPS) and inertial sensors (50 HZ) being set fairly high, the
WEAR dataset allows to explore lower frequency experiments and their effect fewer datapoints per
second might have on the predictive quality of the trained models. Table 11 summarizes experiments
conducted using only 50% and 20% of the available frequency for both types of sensors. Note that
a clip length of 0.5 seconds was not explored during experiments as it was not possible anymore to
extract two-stream I3D feature embeddings (Carreira & Zisserman, 2017) as the amount of frames
was lower than the required minimum input frames. Looking at results presented in Table 11 one can
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see that all models trained using only inertial data suffered from lower frequency inputs with both
classification and mAP scores decreasing. Contrarily, models trained using camera-based improved
when using features extracted from videos with a lower FPS, which might be caused by Kinetics-
400 (Kay et al., 2017), which was used for pretraining the I3D extraction method, on consisting of
videos with a lower FPS than the WEAR dataset.

C.6 ABLATION STUDY ON INERTIAL SENSOR SELECTION

As reported experimental results are based on acceleration recordings of all limbs, the following
experiments investigate how the predictive performance of each algorithm is affected by using only
(1) acceleration recorded from the right wrist and (2) acceleration recorded from both the right
wrist and right ankle. Results in Table 12 show that using only acceleration data obtained from the
right wrist significantly decreases predictive performance across all algorithms across all metrics.
Moreover, Table 13 clearly underlines the value of additionally measuring acceleration at the ankles’
of participants, as results again significantly increase, being mostly on par compared to using all
four inertial sensor locations. Interestingly, unlike the inertial-based architectures, results of vision-
based models improve when excluding data captured by the left-wrist and left-ankle inertial sensors,
which could be caused by the dataset being biased towards right-handed participants (see Table 4)
and dominant hand movement might being overall more consistent. Figure 6 shows the per-class
results of the TriDet model (Shi et al., 2023) being trained using (1) data obtained from the right
wrist inertial sensor, (2) right wrist and right ankle inertial sensor and (3) all four inertial sensors
(right and left wrists and ankles).
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Figure 6: Confusion matrices of the TriDet model (Shi et al., 2023) being applied using only inertial
obtained from the (1) right wrist, (2) right wrist and ankle and (3) right and left wrists and ankles
with a one second sliding window and 50% overlap.

C.7 ABLATION STUDY ON SECOND EXECUTION OF WORKOUT SESSIONS

In order to explore the robustness of obtained results, we recorded all activities of two participants
(sbj 0 and sbj 14) a second time in August. Both participants recording conditions significantly
differed from their first recording, with temperatures being around 25 degrees Celsius with overall
more sunny weather conditions. Further, as not all participants knew all activities beforehand (see
Table 4), recording the same participants a second time would allow to analyse how a certain degree
of familiarity with the recording setup can be seen in altered movements (e.g., via a smoother execu-
tion of activities) as well as subject-specific finetuning affects the overall recognition performance.
Table 14 compares validation results obtained on the original, first recording of sbj 0 and sbj 14 with
their second execution of the workout plan. Unlike our prior experiments, each algorithm is trained
using the data of all but the validation subjects’ recordings, ensuring the validation subjects (sbj 0
and sbj 14) remain unseen during the training of each algorithm. All results are postprocessed as
reported in the main paper. While, one can see improved results regarding sbj 0, this trend does not
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Table 11: Results of evaluating different frequencies (Freq.) as input for different clip lengths (CL)
on our WEAR dataset. Both inertial- and camera-based features were downsampled to be only 50%
(i.e. 30 FPS and 25 Hz) and 20% (i.e. 12 FPS and 10 Hz) of the original frequency input (i.e. 60 FPS
and 50 Hz). One can see that the predictive performance of inertial models decreases with a lower
frequency input. Interestingly camera and combined models increase in performance when lower
frequency inputs with I3D being calculated on 12 FPS videos resulting in the highest classification
and mAP scores during camera-based experiments. Experiments are evaluated in terms of precision
(P), recall (R), F1-score and mean average precision (mAP) for different temporal intersection over
union (tIoU) thresholds. Best results per modality are in bold.

Threshold CL P R F1 mAP

0.3 0.4 0.5 0.6 0.7 Avg

In
er

tia
l

Shallow D. Orig 1s 88.02 77.03 80.86 57.09 55.32 53.61 50.59 47.85 52.89
Shallow D. 50% 1s 87.02 76.51 80.10 55.33 52.70 51.02 48.30 45.67 50.61
Shallow D. 20% 1s 86.38 76.10 79.59 53.94 51.95 50.05 47.60 45.19 49.75

A-and-D Orig 1s 87.87 79.02 82.01 56.38 54.47 52.28 50.07 46.92 52.03
A-and-D 50% 1s 87.57 78.25 81.23 55.88 53.51 51.33 48.16 44.78 50.73
A-and-D 20% 1s 86.10 79.88 81.67 56.76 54.87 53.03 49.85 47.39 52.38

ActionFormer Orig 1s 81.69 75.37 76.86 72.90 71.30 68.28 64.14 56.65 66.65
ActionFormer 50% 1s 80.93 73.66 75.62 71.40 69.69 66.77 63.09 56.01 65.39
ActionFormer 20% 1s 80.73 72.43 74.51 70.07 68.34 65.44 60.83 54.45 63.82

TriDet Orig 1s 83.85 73.76 77.12 73.27 71.66 69.83 66.79 62.25 68.76
TriDet 50% 1s 84.52 72.82 76.67 72.01 70.62 68.86 65.13 60.32 67.39
TriDet 20% 1s 84.30 71.72 75.68 70.60 69.38 67.34 63.75 57.61 65.74

Shallow D. Orig 2s 87.92 78.16 81.60 59.89 57.00 54.69 51.77 48.99 54.47
Shallow D. 50% 2s 85.08 76.13 79.09 53.85 51.57 49.30 46.50 43.79 49.00
Shallow D. 20% 2s 84.59 75.39 78.33 53.21 50.98 48.66 45.69 43.08 48.32

A-and-D Orig 2s 88.24 80.55 83.08 58.32 56.68 54.44 51.58 48.34 53.87
A-and-D 50% 2s 87.24 78.05 80.88 53.69 51.36 48.58 45.99 42.66 48.46
A-and-D 20% 2s 86.98 77.94 80.83 55.63 53.32 49.76 46.45 43.74 49.78

ActionFormer Orig 2s 78.18 69.15 71.15 66.43 63.30 60.47 56.66 50.26 59.43
ActionFormer 50% 2s 77.85 67.46 70.24 64.88 62.47 59.26 55.65 49.35 58.32
ActionFormer 20% 2s 76.84 65.71 68.69 62.51 59.90 56.87 52.64 45.50 55.48

TriDet Orig 2s 81.72 69.37 72.53 65.57 63.65 61.86 59.07 54.82 60.99
TriDet 50% 2s 80.61 65.51 69.77 62.32 60.60 58.20 55.90 51.50 57.71
TriDet 20% 2s 78.59 63.55 67.79 59.87 58.24 56.09 53.33 47.92 55.09

C
am

er
a

ActionFormer Orig 1s 72.63 68.87 67.26 63.99 62.32 60.62 57.88 52.79 59.52
ActionFormer 50% 1s 74.62 68.58 67.81 64.61 63.12 61.28 58.56 53.77 60.27
ActionFormer 20% 1s 74.36 67.82 67.92 65.92 64.36 62.98 59.99 55.31 61.71

TriDet Orig 1s 75.32 68.07 67.95 64.36 63.30 61.38 59.13 54.64 60.56
TriDet 50% 1s 77.21 68.41 68.82 66.01 65.06 63.46 61.53 57.56 62.72
TriDet 20% 1s 75.95 68.41 69.10 66.61 65.71 63.72 61.85 57.66 63.11

ActionFormer Orig 2s 69.67 65.79 64.15 61.32 59.92 57.96 55.91 50.39 57.10
ActionFormer 50% 2s 72.64 67.53 66.43 64.22 62.25 60.65 57.71 52.93 59.55
ActionFormer 20% 2s 71.94 65.39 65.62 61.94 59.93 58.10 54.62 49.88 56.89

TriDet Orig 2s 73.85 64.09 64.25 60.95 60.03 57.75 55.55 52.19 57.30
TriDet 50% 2s 75.08 66.27 67.10 64.18 62.98 61.37 59.95 56.11 60.92
TriDet 20% 2s 74.04 63.20 64.98 59.48 58.27 56.82 55.70 52.05 56.47

In
er

tia
l+

C
am

er
a

ActionFormer Orig 1s 82.38 80.30 80.15 77.63 75.97 73.28 70.31 63.04 72.05
ActionFormer 50% 1s 82.04 80.24 79.84 76.98 75.34 73.35 69.60 63.07 71.67
ActionFormer 20% 1s 81.89 79.33 79.24 76.24 74.92 72.95 70.43 63.08 71.52

TriDet Orig 1s 84.99 79.55 81.08 78.64 77.45 75.74 73.40 68.79 74.81
TriDet 50% 1s 86.25 79.48 81.46 77.68 77.07 75.26 73.05 68.94 74.40
TriDet 20% 1s 84.79 79.13 80.45 77.55 76.83 75.05 71.94 68.19 73.91

ActionFormer Orig 2s 79.19 73.88 74.52 71.10 68.79 66.38 63.00 57.54 65.36
ActionFormer 50% 2s 79.24 75.14 75.55 70.84 68.13 65.71 62.77 57.33 64.96
ActionFormer 20% 2s 78.47 73.78 74.15 68.60 66.69 63.24 60.14 55.78 62.89

TriDet Orig 2s 83.10 74.55 76.72 71.20 69.69 67.88 65.49 61.77 67.20
TriDet 50% 2s 81.33 73.58 75.69 70.52 69.06 67.31 64.91 61.32 66.62
TriDet 20% 2s 82.51 72.91 75.48 69.09 67.08 64.87 62.59 59.41 64.61
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Table 12: Results of using only inertial features captured by the sensor placed on the right wrist
for different clip lengths (CL) on our WEAR dataset evaluated in terms of precision (P), recall (R),
F1-score and mean average precision (mAP) for different temporal intersection over union (tIoU)
thresholds. One can see a clear overall decrease across all evaluation metrics. Best results per
modality are in bold.

Model CL P R F1 mAP

0.3 0.4 0.5 0.6 0.7 Avg

In
er

tia
l

Shallow D. 0.5s 64.54 68.08 64.23 23.26 21.57 19.27 17.31 16.00 19.48
A-and-D 0.5s 75.34 64.09 66.93 27.08 25.33 22.55 20.53 18.94 22.89
ActionFormer 0.5s 72.96 63.59 65.30 54.45 52.42 45.70 34.82 22.11 41.90
TriDet 0.5s 79.48 62.89 66.98 54.32 52.10 47.57 40.39 30.38 44.95
Shallow D. 1s 66.98 68.81 66.19 25.53 23.62 22.11 19.56 18.28 21.82
A-and-D 1s 75.56 64.31 67.21 29.18 26.39 23.52 21.60 19.57 24.05
ActionFormer 1s 73.07 65.51 66.91 61.00 58.05 52.69 47.32 39.82 51.78
TriDet 1s 78.04 67.88 70.44 63.08 62.09 60.07 57.07 50.36 58.54
Shallow D. 2s 66.79 67.68 65.34 28.34 26.46 24.05 21.58 19.40 23.97
A-and-D 2s 76.71 65.87 68.63 31.93 28.51 25.86 23.46 21.31 26.21
ActionFormer 2s 69.44 61.33 63.06 55.42 53.22 51.32 47.34 39.90 49.44
TriDet 2s 70.73 58.22 61.08 52.06 50.54 48.51 46.05 40.93 47.62

I+
C

ActionFormer 0.5s 76.91 65.69 67.69 58.60 57.36 51.30 38.48 26.15 46.38
TriDet 0.5s 81.87 65.19 69.57 60.83 59.12 55.57 48.84 40.71 53.01
ActionFormer 1s 79.62 77.00 76.56 72.06 70.65 68.94 66.26 60.49 67.68
TriDet 1s 79.96 76.26 76.45 74.39 73.55 71.84 69.52 65.88 71.03
ActionFormer 2s 74.43 73.48 72.01 68.87 66.86 64.51 60.95 55.89 63.42
TriDet 2s 77.07 71.70 72.43 67.87 66.93 64.93 62.12 58.30 64.03

Table 13: Results using only inertial features captured by the sensor placed on the right wrist and
right ankle for different clip lengths (CL) on our WEAR dataset evaluated in terms of precision
(P), recall (R), F1-score and mean average precision (mAP) for different temporal intersection over
union (tIoU) thresholds. Comparing results to 12 one can see the increase in performance one can
achieve when tracking acceleration measured at the ankle in addition to a wrist-worn inertial sensor.
Best results per modality are in bold.

Model CL P R F1 mAP

0.3 0.4 0.5 0.6 0.7 Avg

In
er

tia
l

Shallow D. 0.5s 78.73 74.71 75.24 42.19 40.40 37.77 34.94 32.07 37.47
A-and-D 0.5s 81.88 69.35 73.02 41.76 39.42 35.94 32.48 30.29 35.98
ActionFormer 0.5s 78.62 74.39 74.47 68.28 64.52 54.70 39.06 25.95 50.50
TriDet 0.5s 84.83 73.00 76.38 68.73 65.80 60.60 50.99 40.43 57.31
Shallow D. 1s 80.63 74.87 76.32 44.49 42.87 40.70 37.12 34.95 40.03
A-and-D 1s 82.83 72.72 75.77 43.75 41.17 38.26 34.65 32.20 38.00
ActionFormer 1s 81.33 78.60 78.64 76.64 74.60 70.97 65.88 58.13 69.24
TriDet 1s 84.03 78.16 79.75 77.84 75.93 73.69 70.80 64.39 72.53
Shallow D. 2s 80.41 75.62 76.76 46.07 44.36 41.52 38.50 35.63 41.21
A-and-D 2s 84.56 76.65 79.07 50.25 47.27 43.27 40.19 36.96 43.59
ActionFormer 2s 77.72 73.34 73.63 70.06 67.29 64.45 60.00 52.62 62.88
TriDet 2s 79.75 72.70 74.49 68.19 66.31 64.34 61.33 57.12 63.46

I+
C

ActionFormer 0.5s 81.20 73.51 75.19 66.99 65.65 60.32 44.59 30.61 53.63
TriDet 0.5s 86.97 71.16 75.78 67.41 65.68 61.54 53.14 43.45 58.24
ActionFormer 1s 83.01 82.35 81.47 79.17 77.84 75.34 71.12 65.54 73.80
TriDet 1s 85.39 81.59 82.47 80.22 79.12 77.01 73.81 71.07 76.25
ActionFormer 2s 78.22 77.84 76.53 73.87 71.83 69.07 64.91 59.47 67.83
TriDet 2s 80.93 77.67 77.90 73.47 72.01 70.12 68.21 64.43 69.65
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Table 14: Comparison of obtained results of repeated sessions for participants sbj 0 and sbj 14 for
different clip lengths (CL) on our WEAR dataset evaluated in terms of F1-score and mean average
precision (mAP). The two participants were invited to perform the recording plan a second time.
While one can see that improved results regarding sbj 0, suggesting potential learning effects of
the correct execution of activities, this trend does not apply to sbj 14. Note that weather conditions
(temperature and sunlight) significantly differ amongst the recordings – winter (first recording) com-
pared to summer (2nd recording). These figures are, as in the earlier results, averaged across 3 runs
using 3 different random seeds. For the first recording, both subjects’ best results per modality are
in underlined. For the second recording, both subjects’ best results per modality are in bold. Unlike
our prior experiments, each algorithm is trained using the data of all but the validation subjects’
recordings, ensuring the validation subjects (sbj 0 and sbj 14) remain unseen during the training of
each algorithm. All results are postprocessed as reported in the main paper.

Model CL sbj 0 sbj 14

1st Recording 2nd Recording 1st Recording 2nd Recording
F1 mAP F1 mAP F1 mAP F1 mAP

In
er

tia
l

Shallow D. 0.5s 69.75 42.18 85.15 75.20 77.52 65.18 77.60 62.40
A-and-D 0.5s 73.51 38.02 84.10 70.60 79.09 59.26 75.88 61.70
ActionFormer 0.5s 76.05 69.17 81.98 72.68 79.02 78.01 69.09 62.24
TriDet 0.5s 74.84 67.57 80.07 74.97 81.59 85.67 72.29 67.90
Shallow D. 1s 73.72 49.62 85.46 76.47 82.77 69.30 77.15 62.19
A-and-D 1s 78.08 48.78 84.52 71.40 79.75 62.44 76.24 63.27
ActionFormer 1s 77.98 75.22 75.37 83.92 84.01 91.39 75.67 80.49
TriDet 1s 76.54 75.68 72.88 81.31 84.92 93.81 74.75 80.08
Shallow D. 2s 69.75 42.18 85.01 77.84 84.60 73.36 79.72 67.69
A-and-D 2s 78.33 50.22 84.78 73.66 82.12 65.43 85.40 71.87
ActionFormer 2s 61.20 59.68 68.56 70.85 78.72 87.25 72.91 81.73
TriDet 2s 68.30 62.51 69.88 74.12 82.09 91.70 74.04 79.84

C
am

er
a

ActionFormer 0.5s 48.97 42.98 68.39 62.88 58.60 53.70 70.43 73.19
TriDet 0.5s 51.25 50.85 70.96 69.08 60.98 55.52 68.52 66.87
ActionFormer 1s 64.29 62.62 77.37 87.25 74.11 78.20 63.00 82.72
TriDet 1s 60.74 62.18 76.84 87.84 66.60 73.17 62.31 84.26
ActionFormer 2s 59.88 57.27 76.76 90.20 73.65 82.32 71.78 78.15
TriDet 2s 55.54 58.63 76.39 84.31 66.91 78.75 61.31 75.83

I+
C

ActionFormer 0.5s 79.81 69.93 80.94 74.64 81.65 84.12 71.43 75.35
TriDet 0.5s 79.98 71.20 74.35 69.08 84.83 85.85 77.16 80.15
ActionFormer 1s 83.55 80.74 87.30 94.12 85.71 94.71 75.98 82.18
TriDet 1s 81.75 83.90 86.51 92.22 88.27 97.60 75.16 80.27
ActionFormer 2s 67.90 69.20 80.19 91.18 82.72 94.50 77.35 88.00
TriDet 2s 70.16 72.56 78.35 87.84 83.30 94.62 76.97 85.00

apply to sbj 14. More specifcially, improvements and decline rates between the two recordings lie
within the expected standard deviation across participants (between 15% to 20%). Though being a
small sample size of only two participants, the results suggest that in order to guarantee a reliable
detection of activities, each participant would need to be recorded multiple times under different
conditions. Nevertheless, in order to come up with reliable conclusions, future extensions of the
WEAR dataset would need focus on re-recording more participants multiple times under varying
conditions.

C.8 ADDITIONAL VISUALIZATIONS OF FINAL RUNS

In addition to the visualisations supplied in the main paper, the following provides supplementary
visualizations for further analysis. All models mentioned in this section were trained using a clip
length of 1.0 second with a 50% overlap. Predictions made by the temporal action localization mod-
els (Zhang et al., 2022; Shi et al., 2023) were filtered using a score threshold of 0.2 and predictions
made by inertial-based architectures (Bock et al., 2021; Abedin et al., 2021) were filtered using a
majority vote filter of 15 seconds. Figure 7 provides confusion matrices of the ActionFormer (Zhang
et al., 2022) being applied using inertial, camera and combined (inertial + camera) features. Fig-
ure 8 provides Confusion matrices of the shallow DeepConvLSTM (Bock et al., 2021) and improved
Attend-and-Discriminate (Abedin et al., 2021) applied on inertial data. Figure 9 shows a color-coded
visualisation of predictions streams of all models mentioned in the results table of the main paper.
Figure 10 delivers a side-by-side comparison of the confusion matrices of all models involved in
the Oracle-late-fusion-approach analysis mentioned in the main paper. Figure 10 shows that a joint
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Figure 7: Confusion matrices of the ActionFormer (Zhang et al., 2022) being applied using only
inertial, vision (camera) and both combined (inertial + camera).
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Figure 8: Confusion matrices of the shallow DeepConvLSTM (Bock et al., 2021) and improved
Attend-and-Discriminate (Abedin et al., 2021).

learning of both modalities particularly improves differentiation between the NULL-class and the
activity classes resulting in better action boundaries, i.e. higher mAP scores, and classification
scores.
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Figure 9: Color-coded comparison of the ground truth data (top row) with the shallow DeepConvL-
STM (Bock et al., 2021), improved Attend-and-Discriminate (Abedin et al., 2021), ActionFormer
(Zhang et al., 2022) and TriDet (Shi et al., 2023) model on varying input modalities.

19



Under review as a conference paper at ICLR 2024

(2) TriDet (Camera)True Labels (1) Attend-and-Discriminate (Interial)

Pr
ed

ic
te

d 
La

be
ls

jogging stretching strength

nu
ll

no
rm

al

ro
ta

tin
g 

ar
m

s

sk
ip

pi
ng

si
de

st
ep

s

bu
tt-

ki
ck

s

tri
ce

ps

lu
ng

in
g

sh
ou

ld
er

s

ha
m

st
rin

gs

lu
m

ba
r r

ot
at

io
n

pu
sh

-u
ps

pu
sh

-u
ps

 (c
om

pl
ex

)

si
t-u

ps

si
t-u

ps
 (c

om
pl

ex
)

bu
rp

ee
s

lu
ng

es
 (c

om
pl

ex
)

be
nc

h-
di

ps

lu
ng

es
jogging stretching strength

nu
ll

no
rm

al

ro
ta

tin
g 

ar
m

s

sk
ip

pi
ng

si
de

st
ep

s

bu
tt-

ki
ck

s

tri
ce

ps

lu
ng

in
g

sh
ou

ld
er

s

ha
m

st
rin

gs

lu
m

ba
r r

ot
at

io
n

pu
sh

-u
ps

pu
sh

-u
ps

 (c
om

pl
ex

)

si
t-u

ps

si
t-u

ps
 (c

om
pl

ex
)

bu
rp

ee
s

lu
ng

es
 (c

om
pl

ex
)

be
nc

h-
di

ps

lu
ng

es

jo
gg

in
g

st
re

tc
hi

ng
st

re
ng

th

null

normal

rotating arms

skipping

sidesteps

butt-kicks

triceps

lunging

shoulders

hamstrings

lumbar rotation

push-ups

push-ups (complex)

sit-ups

sit-ups (complex)

burpees

lunges (complex)

bench-dips

lunges

(4) Oracle-approach ( (1) + (2) )

jogging stretching strength

nu
ll

no
rm

al

ro
ta

tin
g 

ar
m

s

sk
ip

pi
ng

si
de

st
ep

s

bu
tt-

ki
ck

s

tri
ce

ps

lu
ng

in
g

sh
ou

ld
er

s

ha
m

st
rin

gs

lu
m

ba
r r

ot
at

io
n

pu
sh

-u
ps

pu
sh

-u
ps

 (c
om

pl
ex

)

si
t-u

ps

si
t-u

ps
 (c

om
pl

ex
)

bu
rp

ee
s

lu
ng

es
 (c

om
pl

ex
)

be
nc

h-
di

ps

lu
ng

es

(3) TriDet (Inertial + Camera)

jogging stretching strength

no
rm

al

ro
ta

tin
g 

ar
m

s

sk
ip

pi
ng

si
de

st
ep

s

bu
tt-

ki
ck

s

tri
ce

ps

lu
ng

in
g

sh
ou

ld
er

s

ha
m

st
rin

gs

lu
m

ba
r r

ot
at

io
n

pu
sh

-u
ps

pu
sh

-u
ps

 (c
om

pl
ex

)

si
t-u

ps

si
t-u

ps
 (c

om
pl

ex
)

bu
rp

ee
s

lu
ng

es
 (c

om
pl

ex
)

be
nc

h-
di

ps

lu
ng

esnu
ll

(5) Oracle-approach ( (3) + (4) )
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Figure 10: Confusion matrices of the best (1) inertial model (Attend-and-Dicriminate (Abedin et al.,
2021)), (2) vision model (TriDet (Shi et al., 2023)) and (3) combined model (vision + inertial)
compared with (4) an Oracle-combination of the inertial and camera as well (5) Oracle-combination
of the previous oracle with the combined approach.
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D FULL-TEXT RECORDING PLAN

 

Outdoor Activities Dataset Recording Plan 
Setup: 

- 4 Bangle.js Smartwatches on each limb 
- Sampling rate at 50 Hz with ±8g 

- 2 GoPros (head-mounted)  
- Static (GoPro Hero 5): 

- Mounted on Tripod of CV group; observing whole scene 
- For labeling purposes 
- 1080p 30 FPS Superview FOV (no video stabilization) 

- Head-mounted (GoPro Hero 8): 
- Hands & feet centrally visible in frames; roughly 45° downward 
- Optional: straps for fixation (additional velcro tape needed) 
- 1080p 60 FPS Superview FOV (auto low light + video stabilization) 

- Repetitions on different days/times 
 
Equipment List: 

- 4 Bangle.js Smartwatches 
- 2 GoPros + Head-Mount + Tripod 
- Bench/ Box/ Chair 
- Optional: 

- Stopwatch 
- Yoga Mat 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 11: First page of the recording plan of the WEAR dataset.
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1st Session (ca. 30 min)  
 

➔ Each activity 3 sets à repetitions at will (ca. 30 sec); short break after each set (ca. 30 sec) 
 

Activity Sub-Activity Description Normal Variant Easy Variant 

Running Sidestep Start with both feet 
together; jump on one 

foot to the side and 
repeat same motion for 
other foot to create a 

jumping motion; repeat 

 

 

Butt-Kicks Fold hands on butt; jog 
while trying to lift 

alternating each heel 
as close to butt as 

possible  
(“kicking” it)  

 

 

Stretching Shoulder  Start by standing 
straight; stretch left arm 

to the right while 
keeping it parallel to 

the ground; use lower 
right arm to press 

against left arm upper 
left arm (close to the 

elbow) trying to move it 
closer to the body; hold 

stretch; repeat by 
switching arms 

 

 

Hamstrings 
 

Start by sitting down; 
have left leg stretched 

out straight in a 45° 
angle to the left side 
and keep right leg as 
sitting cross-legged 

with right foot touching 
the left knee’s side; try 
to reach for left foot; 

hold stretch; repeat by 
switching legs 

 

 

Lumbar 
Rotation 

Start by laying on back; 
reach out with both 

arms to the side; raise 
legs; move legs to the 
left side as close as 

possible to the ground 
while keeping them 

straight; do not move 
torso; hold stretch; 

repeat by moving legs 
to opposite side 

 

 

Figure 12: Second page of the recording plan of the WEAR dataset. Note that pictures are blurred
for anonymization and are short video-clips in the original document.
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Burpees Normal Start by standing 
straight; put your hands 

on the ground and 
jump back with your 
feet into a push-up 

position; do a push-up; 
jump forward with your 

feet into the starting 
position and jump up 

with raised arms; 
repeat 

 

No Push Up, but lay flat on ground; get up by 
standing up instead of jumping 

Walking 
Lunges 

Normal Stand straight; Keep 
your hands crossed in 

front of your torso; 
move your right foot 

forward, bending your 
left knee to the ground 
and right knee into a 
90° angle; step your 

left foot forward going 
back into the position 
your started in; repeat 

to create walking 
motion 

 

 

Complex Stand straight; keep 
your arms raised in 
front of you pointing 

forward parallel to the 
floor; do a lunge, but 
when at the bottom 

turn your torso to the 
side of the foot being 

forward; repeat to 
create walking motion  

 

Bench 
Dips 

Normal Stand with your back 
facing a chair; go into 
dip position with your 

hands on the chair and 
your legs straight in 

front of you; move your 
body downwards by 

bending your arms into 
a 90° angle; keep legs 
and back as straight as 

possible; move up 
again; repeat 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 13: Third page of the recording plan of the WEAR dataset. Note that pictures are blurred for
anonymization and are short video-clips in the original document.
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2nd Session (ca. 30 min) 
 

➔ Each activity 3 sets à repetitions at will (ca. 30 sec); short break after each set (ca. 30 sec) 
 

Activity Sub-Activity Description Normal Variant Easy Variant 

Running Jogging  Normal jogging 

 

 

Jogging with 
rotating arms 

Jogging while rotating 
arms backwards; first 

only left arm; then only 
right arm; then both 
arms simultaneously  

 

 

Skipping Alternate between 
jumping from left leg 
while lifting the right 

knee high; land on the 
left leg; repeat by 

switching legs to create 
running motion 

 

 

 Triceps Start by standing 
straight; raise left arm 
behind head and try to 

touch the right 
shoulder; use right arm 
to grab left elbow trying 

to move left hand 
further down the 

shoulder; hold stretch; 
repeat by switching 

arms 
 

 

Lunging Start by standing in a 
split stance with right 
front forward and left 

foot straight back; bend 
right knee about 90°; 
place hands on your 
forward knee; hold 
stretch; repeat by 

switching legs  
 

 

Figure 14: Fourth page of the recording plan of the WEAR dataset. Note that pictures are blurred
for anonymization and are short video-clips in the original document.
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Push-ups Normal 
 
 

Normal Push-Up 

 

On knees 

Complex Move into a push-up 
position;  do a push-up 
by lowering your body 

to the ground; after 
moving it back up, 

reach out with the right 
arm to the sky, opening 

your torso so that it 
faces to the right; move 

back into push-up; 
repeat for left arm; 
repeat sequence 

 

On knees 

Sit-ups Normal Lay on your back; have 
your hands touch the 
sides of your head; 

move your legs into a 
90° angle with your feet 

on the ground; move 
your torso towards your 

knees while keeping 
the legs in place; 

repeat  

Straight legs  

Complex Lay on your back with 
your hands touching 

the sides of your head; 
move your legs into a 
90° angle (feet on the 
ground) while also (!) 

moving your torso 
towards your knees; 

when reaching highest 
point, touch first your 
right heel with your 

right hand; and left heel 
with left hand;  repeat 

 

First move up with upper body; then with lower 
body so that legs are straight during situp 

 
 

Figure 15: Fifth page of the recording plan of the WEAR dataset. Note that pictures are blurred for
anonymization and are short video-clips in the original document.
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