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A  DATASET OVERVIEW AND CONTENTS

The outdoor sports dataset WEAR features data of 18 participants performing each a total of 18 dif-
ferent workout activities with untrimmed inertial (acceleration) and camera (egocentric video) data
recorded at 10 different outside locations. It provides a challenging prediction scenario marked by
purposely introduced activity variations and an overall small information overlap across modalities.
Figure|l|provides a dataset nutrition label inspired by |Holland et al.|(2018) in a table-like manner.

WEAR Dataset Key Facts

Motivation An outdoor sports dataset dataset
(egocentric-video & inertial data) with
small information overlap across modalities

Example Inertial-based, vision-based & multimodal
Use Cases Human Activity Recognition
Authors [Anonymized]

Meta information

Dataset
Locations 10
Activities 18 workout activities + NULL-class
Action segments 615
Total duration 908 min
Per-participant 50.5 +£10.5 min
Subjects
Count 18 (10 male, 8 female)
Age 28+5
Height 175.4 £10.8cm
Weight 69.26 +12.43 kg
Modalities
3D-Acceleration
Sensor Bangle.js Version 1
Settings 50 Hz (+ 8g)
Format .csv
Placement Ankles & Wrists
Size 589.2 MB
Egocentric Vision
Sensor GoPro Hero 8
Settings 1080p 60 FPS; SuperView FOV
Format .mp4
Placement Head (tilted 25° downwards)
Size 137.58 GB

Figure 1: Dataset nutrition label of the WEAR dataset. The dataset nutrition label was originally
proposed by |Holland et al.|(2018)). Our adaptation is inspired by DelPreto et al.| (2022).
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A.1 INTENDED USES AND ETHICAL CONSIDERATIONS

Before participating in the study, participants were notified that by nature the data they provide
can only be pseudonymised. This means that, though requiring a substantial amount of effort, the
identity of a person can be reconstructed. Although participants agreed to include their egocentric
videos in a public dataset, it is essential to refrain from actively identifying the individuals featured
in the WEAR dataset. If other researchers decide to contribute to the WEAR dataset by recording
additional participants, societal and ethical implications should be considered. As with the partici-
pants part of the original release of the WEAR dataset, all participants must be briefed before their
first recording, making them aware of all necessary information and implications that come with
providing to the WEAR dataset. Recording locations should only be chosen if video recordings
are allowed at said location and participants are given enough space to perform each activity safely.
If the recording location involves pedestrians walking within close proximity, pedestrians should
be notified that they are being recorded and, if applicable, captured faces should be blurred during
postprocessing.

The WEAR dataset and associated code are made public for research purposes. With the accurate
detection of physical activities that we perform in our daily lives having been identified as valu-
able information, the WEAR dataset focuses on one of the most popular application scenarios of
wearable smartwatches and action cameras, i.e. self-tracking of workout activities. With the ease of
reproducability we hope to make WEAR a collaborative, expanding dataset which researchers from
different locations and backgrounds can contribute to. For example, as the current selection of par-
ticipants is biased towards healthy, young people, we hope to overcome said limitation by including
people from more diverse backgrounds and age groups in future iterations of the dataset.

Lastly, the authors took great care of avoiding any infringement of rights during the data collection
process. Yet, in case of conflicts, they are of course committed to taking appropriate actions, such
as promptly removing data associated with such concerns.

A.2 DATA AVAILABILITY AND LICENSING

WEAR and all associated files are offered under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License. The dataset is hosted via the cloud-storage platform
[Anonymized], which is a service hosted by [anonymized] (https://www.anonymous.edu/
anon). It is a non-commercial cloud storage service for research, studying and teaching and
is provided to participating institutions exclusively. With locations exclusively in [anonymized],
[anonymized] is subject to the strict [anonymized] directives on data protection and data security.
The complete dataset can be downloaded via [anonyimized] (https://www.anonymous.edu/
anon). The dataset download is structured into the (1) ’.json’-formatted annotations, (2) raw, syn-
chronized inertial and vision data and (3) precomputed feature embeddings as mentioned in the main
paper. Third party data-hosting services will be explored once the dataset paper is published and in a
non-changing state. We will involve the ethics council of [anonymized] during our decision process
to ensure a each selected hosting platform is inline with our data privacy standards.

The source code that was used to conduct all experiments is available via [Anonymized] (https:
//www.anonymous .edu/anon). A snapshot of the code is provided as part of the supple-
mentary material download. The repository is written in such a way that other architectures (both
inertial- and vision-based) can be added in the future. The repository provides Readme files which
give details on the overall structure of the repository, how collect additional data and how to set up
an Anaconda environment with the needed packages to run experiments. Experiments are defined
via ’.json’-format configuration files which allow for easy sharing of used hyperparameter settings.

B EXPERIMENTAL PROTOCOL

Table [T] gives an overview of the 18 activity classes featured in the WEAR dataset and provides
number of coherent sequences as well as total duration per workout activity class. In order to prop-
erly explain participants the activities they needed to perform and give insights on the overall study
design a recording plan (see Section D) was provided to participants prior to their first session. The
recording plan details all necessary materials and is written in such a way that the can easily be
reproduced by persons other than the authors. The plan further outlines the study protocol as well
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Table 1: Overview of the activity classes featured in the WEAR dataset. Each activity is categorized
into as either a running (R), flexibility (F) or strength (S) exercise. The total duration of each class
is provided in minutes and averaged across all activities. The total duration of the null class, i.e.
samples not belonging to any of the classes of interest, is provided. A detailed description of each
activity can be found in the recording plan attached at the end of the supplementary material.

Label ID  Activity Class Category  Action Segments  Total duration
(in min)

1 jogging R 28 32:30
2 jogging (rotating arms) R 22 29:34
3 jogging (skipping) R 34 29:11
4 jogging (sidesteps) R 30 33:33
5 jogging (butt-kicks) R 37 28:43
6 stretching (triceps) F 25 29:13
7 stretching (lunging) F 23 31:09
8 stretching (shoulders) F 22 30:04
9 stretching (hamstrings) F 23 30:50
10 stretching (lumbar rotation) F 27 31:36
12 push-ups S 57 27:33
13 push-ups (complex) N 41 29:14
14 sit-ups N 43 30:50
15 sit-ups (complex) S 32 31:02
16 burpees S 49 31:25
17 lunges S 31 31:54
18 lunges (complex) S 35 33:19
19 bench-dips S 56 28:38
0 null - 592 358:29

informs about any risks of harm, data collection, usage, anonymisation and publication, as well as
how to revoke data usage rights at any point in the future. Besides a written description of each activ-
ity, the original document provides short video-clips of each activity, showing the correct execution
of exercises. To avoid any misunderstandings, the participants further received a one-on-one session
with the researchers being able to ask their questions about the plan and activities in it. Other than
the used sensors for video and acceleration recording, the exercises only require a yoga mat and a
chair (or similar items). Sessions can be recorded at any location outside as long as the privacy and
safety of the participants as well as pedestrians is ensured.

B.1 PARTICIPANT AND SESSION INFORMATION

The location and the time of day at which the sessions were performed were not fixed and thus
vary across subjects. As participants were allowed to split activities across more (or less) than two
sessions, session counts vary across subjects. Table [2| provides information on all 10 recording
locations that are part of the WEAR dataset. The table details general information such as surface
conditions of the location as well as which direction the static camera seen in videos is facing.
Table [3| provides supplementary information on all separate sessions contained in the dataset. For
each session, we detail its overall length in minutes, the number of distinct activities performed by
the participant, the location it was recorded at, the month and time of day it was recorded, as well as
the overall weather conditions during the duration of the session.

After having completed all sessions, participants were asked to take part in a questionnaire which
was used to gather vital information (gender, age, height and weight) as well as workout-specific
questions, aiming towards assessing the overall fitness level and experience with the activities de-
tailed in the study protocol. The workout-specific questions were:

1. How many workouts (longer than 15 min) do you usually do per week?

2. Which kind of workout do you usually do (cycling, team sport, gym, cardio, yoga etc.)?
3. How many activities that are part of the workout plan did you know in advance?
4.

How many activities that are part of the workout plan do you perform regularly yourself as
part of your own workouts?

Table [4] shows the answers to the questionnaire items for each participant. Note that, to protect the
privacy of our study participants, we only asked for age, height and weight in ranges instead of exact
values, and always provided the option to not answer the questions if preferred.
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Table 2: Description of the 10 locations featured in the WEAR dataset. For each location we provide

information on surface conditions, overall surroundings and direction the static camera is facing.
Location ID  Description

Meadow in proximity to a larger building.
1 Area is surrounded by trees with from November on-wards, fallen leaves laying on the ground.
Static camera faces North-West.

Parking lot in proximity to building. Concrete surface.

2 Static camera faces West.

3 Small square with concrete surface. Surrounded by bushes and buildings.
Static camera faces West.

4 Meadow enclosed by bungalow-style living quarters.

Static camera faces North-East

Covered walkway next to a building. Concrete surface.
5 Walkway enclosed by building and bushes.
Static camera faces North.

Football field with ash surface build behind a supermarket next a road and crop-fields.
6 Long side of the football field is surrounded by bushes.
Static camera faces mostly North-West.

Backyard in an urban-village with both concrete and grass surface.
7 Terrace has a garden table and chairs standing around.
Static camera faces mostly West.

Parking lot next to allotments in a city-area.
Static camera faces mostly North-East.

Meadow next to a building.
Static camera faces South.

City park in a metropolitan area behind a city mall.
10 Park is surrounded by buildings, a playing ground, football and basketball fields.
Static camera faces mostly North.

B.2 HARDWARE OVERVIEW

In order to capture the accelerometer data, four open-source Bangle.js Version 1 smartwatches run-
ning a custom, open-source firmware (Van Laerhoven et al.,[2022)) were used. The Bangle.js Version
1 comes with a Nordic 64MHz nRF52832 ARM Cortex-M4 processor with Bluetooth LE, 64kB
RAM, 512kB on-chip flash, 4MB external flash, a heart rate monitor, a 3D accelerometer and a
3D magnetometer. The raw 3D acceleration was captured at 50 Hz with a sensitivity of + 8g. As
outlined in the recording plan (see Section D)), watches were placed by the researchers before each
session in a predetermined orientation on the participants’ limbs and ankles. Egocentric video data
was captured using a GoPro Hero 8 action camera. The camera was mounted using a headstrap
with the camera tilted downwards in a roughly 45 degree angle. The GoPro was set to record at
1080p with 60 frames using a SuperView FOV with Hypersmooth 2.0 electronic image stabilization
and Auto Low-Light correction turned on. As the recorded egocentric video of participants makes
accurate ground truth annotations more difficult (due to e.g. participants not looking at the actions
they perform), a second camera was placed on a tripod in the proximity to the participants. Using
again a large FOV setting, the second camera was placed in a way such that as much area as possible
was captured. To allow for even more freedom of movement, participants were allowed to move out
of the FOV of the second camera, but were asked to start and end their activities within the camera’s
FOV. This allowed participants, especially during running exercises, to run straight distances and
overall commence activities in a more natural way. To preserve the privacy of our participants, the
second camera’s video stream and all audio streams captured during the experiments are not part of
the WEAR dataset.

B.3 POSTPROCESSING AND ANNOTATION PROCESS

The open-source firmware (Van Laerhoven et al.|2022)) running on each Bangle.js smartwatch stores
the lossless, delta-compressed inertial data in separate files on the internal memory of each watch.
During post-processing, said compressed files were extracted, uncompressed and concatenated to a
single CSV file per session. Being a common issue with accelerometers sampling at a high sampling
rate, the Bangle.js smartwatch is not able to maintain an exact sampling rate of 50 Hz, with the true
sampling rate being closer to 48 Hz with fluctuations ranging between + 1 Hz. The firmware
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Table 3: Per-session meta-information. We provide the individual session count, duration of each
session, number of activities performed during the session, location ID (LID) the session was per-
formed at, approximate time of the year and day and weather conditions during recording time.
More detailed information on each location can be found in Table 2] using the location ID.

Subject  Session  Duration  # Activities =~ Month Time-of-day =~ LID  Weather conditions
sbj-0 1 16:33:30 7 mid-Oct. morning 1 sunny, ~10°C

sbj-0 2 11:55:00 6 mid-Oct. afternoon 1 partly-cloudy, ~210°C
sbj-0 3 18:06:00 7 late-Oct. afternoon 1 partly-cloudy, ~20°C
sbj_1 1 20:20:00 9 late-Oct. afternoon 1 sunny, ~15°C

sbj-1 2 25:58:00 9 early-Nov. afternoon 1 sunny, ~10°C

sbj.2 1 32:24:00 9 early-Nov. morning 1 sunny, ~10°C

sbj-2 2 25:08:00 9 mid-Jan. afternoon 2 cloudy, after rain, 0°C
sbj_2 3 01:52:00 1 mid-Feb. afternoon 3 sunny, ~5°C

sbj-3 1 33:34:00 10 mid-Nov. afternoon 4 sunny, ~5°C

sbj-3 2 25:52:00 6 mid-Nov. afternoon 4 partly-cloudy, ~10°C
sbj_3 3 06:24:00 2 mid-Nov. afternoon 4 sunny, ~10°C

sbj-3 4 03:41:00 2 late-Jan. afternoon 5 cloudy, snowy, ~-5°C
sbj-4 1 24:07:30 9 mid-Nov. midday 1 foggy, cloudy, windy, ~5°C
sbj-4 2 29:04:00 9 late-Nov. afternoon 1 partly-cloudy, ~5°C
sbj.5 1 19:48:30 9 mid-Nov. afternoon 1 sunny, ~10°C

sbj.5 2 16:02:00 9 end-Nov. afternoon 1 cloudy, ~5°C

sbj-6 1 23:52:00 10 end-Nov. afternoon 1 foggy, ~5°C

sbj-6 2 17:51:30 8 end-Jan. morning 5 cloudy, snowy, ~-5°C
sbj-7 1 22:48:00 9 late-Dec. morning 6 partly-sunny, ~10°C
sbj.7 2 24:45:00 9 late-Dec. midday 6 partly-sunny, 2210°C
sbj_8 1 20:00:00 9 late-Dec. midday 6 partly-cloudy, 210°C
sbj_8 2 21:35:00 9 late-Jan. afternoon 7 cloudy, ~0°C

sbj-9 1 18:50:00 9 early-Jan. afternoon 8 cloudy, ~10°C

sbj-9 2 17:16:00 9 early-Jan. afternoon 8 cloudy, 210°C
sbj-10 1 21:42:00 9 mid-Jan. afternoon 5 rainy, windy, &5°C
sbj-10 2 21:04:00 9 early-Feb. afternoon 5 rainy, windy, ~5°C
sbj-10 3 23:39:00 9 mid-Feb. afternoon 9,3 sunny, cloudy, windy, ~5°C
sbj_11 1 17:41:00 9 mid-Jan. morning 5 cloudy, rainy, ~5°C
sbj-11 2 19:21:00 9 mid-Jan. midday 5 cloudy, rainy, ~5°C
sbj-12 1 27:08:00 9 mid-Jan. afternoon 5 cloudy, windy, ~0°C
sbj-12 2 27:22:00 9 late-Feb. afternoon 5 partly-sunny, windy, ~0°C
sbj-13 1 30:08:00 9 mid-Jan. afternoon 573 sunny, ~0°C

sbj_13 2 36:10:00 9 mid-Jan. afternoon 53 sunny, ~0°C

sbj-14 1 22:18:00 9 mid-Jan. afternoon 53 sunny, ~-5°C

sbj-14 2 31:03:00 9 mid-Jan. afternoon 53 cloudy, &-5°C

sbj_15 1 23:17:00 9 late-Jan. afternoon 53 cloudy, ~0°C

sbj-15 2 20:06:00 9 late-Jan. afternoon 53 cloudy, ~0°C

sbj-16 1 26:34:00 9 early-Feb. midday 10 partly-sunny, ~10°C
sbj-16 2 31:56:00 9 early-Feb. midday 10 partly-sunny, 2210°C
sbj-17 1 23:16:00 9 early-Feb. afternoon 1 sunny, ~0°C

sbj-17 2 28:15:00 9 early-Feb. afternoon 3 sunny, ~0°C

Table 4: Per subject answers to the questionnaire handed to participants after having completed all
sessions. The questionnaire collected vital information (gender (G), left- or righthanded (L/R), age,
height and weight) as well as workout-specific questions, i.e. frequency and type of private workouts
and number of activities, part of the WEAR dataset, which were known in advance and regularly
conducted in private workouts.

Subject G L/R  Age Height Weight Private Workouts Activities
Frequency Type Known  Regularly

sbj-0 M R >40 180-189 70-79 5 Cycling 5 0
sbj-1 M R 25-29  170-179 60-69 3 Hiking 11 0
sbj-2 M R 25-29  180-189 80-89 5 Gym, Cardio 18 9
sbj_3 M R 35-39 170-179 70-79 4-5 Gym, Basketball, Cardio 18 9
sbj4 M R 25-29 180-189 60-69 0 Table-tennis 18 0
sbj_5 F R 30-34 160 -169 N/A 2-3 Freeletics 16 9
sbj-6 F R 25-29  150-159 50-59 1 Gym 9 0
sbj_7 M R 30-34  180-189 80-89 5 Gym, Cardio 18 5
sbj_8 F R 25-29 170-179 60-69 2-3 Volleyball, Yoga 15 7
sbj-9 F R 25-29 150-159 50-59 7 Gym, Bicycling, Cardio, Ballet 18 7
sbj-10 F R 20-24  160-169 50-59 5 Gym, Dancing, Yoga 15 7
sbj-11 F R 25-29  160-169 50-59 3 Volleyball, Cardio, Yoga 18 11
sbj-12 F R 20-24  170-179 60-69 4 Gym 17 8
sbj-13 M R 20-24  >190 90-99 2 Gym, Cardio 16 8
sbj_14 M R 30-34  170-179 80-89 0 N/A 11 2
sbj-15 F L 25-29 180-189 60-69 8 Rowing, Gym, Cycling, Cardio 18 9
sbj-16 M R 20-24  180-189 60-69 2-3 Gym 15 3
sbj_17 M R 25-29 180-189 70-79 4 Badminton, Bouldering, Hiking 15 5
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Figure 2: Snapshot along with descriptions of the annotation process using Final Cut Pro. Importing
the converted video and inertial data (as ’.wav’-files) allowed for an easy validation of the synchro-
nization process. Labels were added via subtitles, exported as ’.srt’-files and converted such that
they can be appended to the respective ’.csv’-files.

(Van Laerhoven et al., [2022) provides for each file a timestamp that was set by the on-board real-
time clock, which allows correcting individual times of all delta-compressed samples. Therefore,
in order to obtain the true sampling rate and correct the timestamps of the concatenated CSV-file,
synchronisation jumps were performed by each participant at the start and end of each session. The
synchronization jumps involved participants move in front of the tripod-mounted camera, stand still
for approximately 10 seconds, jump three times while raising the arms while jumping and stand still
for another 10 seconds. This allowed to map peaks in the inertial sensor streams to be mapped to
points in the video stream and thus obtain a start and end point within both modality data streams.
Lastly, assuming recorded inertial data records are equidistant, all records within the span of the
start and end-point were evenly distributed across the experiment’s duration and, as a final step,
resampled to have a sampling rate of 50 Hz via linear interpolation. Similar to the inertial data, the
video data recorded by the head-mounted GoPro was not recording at a true frame rate of 60 FPS,
but slightly deviated from that (i.e. 59.94 FPS). We therefore also resampled the egocentric videos
to be of a frame rate of 60 FPS.

In order to validate our synchronization process we made use of the similarities between sensor and
audio data and converted each axis of the 3D accelerometer as well as their combined magnitude to
four separate WAV-files. This approach is inspired by the works of [Scholl et al| (2019) and Morshed
et al] (2022). We calculated the magnitude as the summed norm of each individual inertial sensor
channels, i.e. \/ 22 4 y2 + 22 with x, y and z being the x-, y- and z-axis of the 3D accelerometer
data. Having converted the CSV data to WAV files allowed us to import both video data and inertial
data into a standard video editing tool, in our case we used Final Cut Pro (see Figure[2). The user
interface of Final Cut offers to see previews of sound files being in our case equivalent to a graph-
like visualization of the acceleration data. This feature enabled us to have a visualised data stream
of all modalities simultaneously while annotating. On average, the combined magnitude proved to
be most useful when verifying the correctness of our synchronization across time. Labels of the
activities were added by a single expert annotator as subtitles in SRT-format. A final script then
converted the exported SRT-file to CSV-format, filling gaps within the subtitles with a NULL label
and appended this to the respective final inertial sensor data CSV-file.

C SUPPLEMENTARY EXPERIMENTS AND FIGURES

C.1 ATTEND-AND-DISCRIMINATE IMPROVEMENTS

Instead of employing a plain Attend-and-Discriminate model as proposed by |Abedin et al.| (2021)),
we incorporate architecture improvements suggested by [Bock et al.| (2021). Said architecture im-
provements are (1) using one instead of two recurrent layers, (2) increasing the amount of hidden
units in the recurrent layer from 128 to 1024 and (3) scaling the convolutional kernel by the same
factor the window size increases or decreases. Table [5] shows performance difference gained from
employing the improved Attend-and-Discriminate architecture by comparing it to the original ar-
chitecture. Note that results were obtained using longer training times along with a learning rate
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Table 5: Results demonstrating the effectiveness of made modifications to the Attend-and-
Discriminate model (Abedin et al., 2021)). We compare the plain original model with an optimised
version (1-layered LSTM with 1024 hidden units and an adjusted convolutional kernel sizes). We
report results on the three employed window sizes (0.5, 1.0 and 2.0 seconds) each with a 50% over-
lap. Note that results are reported with no postprocessing applied.

Model P R F1 mAP

0.3 0.4 0.5 06 07 Avg

2 Original A-and-D 71.87 7278 7163 186 154 135 1.07 087 134
< Optimised A-and-D  76.29 69.08 71.60 169 1.14 083 063 048 0.96
& Original A-and-D 7237 7238 7160 3.07 246 196 149 131 206
—  Optimised A-and-D 7890 7325 7522 435 338 276 222 176 2.90
& Original A-and-D 7448 7399 7326 8.5 7.1 594 485 395 6.12
o Optimised A-and-D  81.13 76.47 7790 11.13 935 742 6.04 517 7.82

Table 6: Results demonstrating the effectiveness of longer training times on the inertial-based mod-
els. Compared are the shallow DeepConvLSTM (Bock et al., 2021) and improved Attend-and-
Discriminate (Abedin et al, |2021) model using either a short training time (30 epochs and no step-
wise learning rate schedule (LRS)) or long training time (300 epochs and LRS). We report results
on the three employed window sizes (0.5, 1.0 and 2.0 seconds) each with a 50% overlap. Note that
results are reported with no postprocessing applied.

Model Epochs LRS P R F1 mAP
0.3 0.4 0.5 06 07 Avg
Shallow D. 30 7051 7292 7071  2.13 1.82 155 133 122 1.61
gz ShallowD. 300 v 7729 69.13 7191 250 197 165 137 116 1.73
S A-and-D 30 72.15 7187 7124 197 1.61 133 1.04 0.84 136
A-and-D 300 v 76.29 69.08 71.60 1.69 1.14 083 0.63 048 096
Shallow D. 30 73.35 7625 7378 4.83 401 338 281 232 347
2 Shallow D. 300 v 81.09 7207 7529 571 450 366 277 250 3.83
= A-and-D 30 74.00 7496 73.70 4.48 347 3.00 235 201 3.06
A-and-D 300 v 7890 7325 7522 435 338 276 222 176 290
Shallow D. 30 7497 7821 7563 11.68 1044 871 78 642 9.01
2z Shallow D. 300 v 8295 74.63 77.60 1324 11.1 879 777 6.77 9.53
o A-and-D 30 77.04 79.01 7729 1055 874 721 6.17 508 7.55
A-and-D 300 v 81.13 7647 7790 11.13 935 742 6.04 517 782

schedule (see Section [C.2] for more details) and are reported without having applied any postpro-
cessing.

C.2 LONGER VS. SHORTER TRAINING RUNS

As mentioned in the main paper, all inertial-based architectures are trained for 300 epochs as com-
pared to 30 epochs reported in Bock et al.|(2021). These longer training times are inspired by the
training reported in |Abedin et al.| (2021). To compensate for longer training times we employ a
step-wise learning rate schedule as seen in /Abedin et al.| (2021) with a step size of 10 epochs and a
decay rate of 0.9. Table [6] shows the improvement gained from using such longer training times by
comparing it to a shorter training time of 30 epochs.

C.3 ABLATION STUDY ON POSTPROCESSING

The following details ablation experiments conducted to demonstrate the effectiveness and validity
of the applied postprocessing described in the experiments section of the main paper.

Figure3]illustrates the effect the majority vote filter has on the prediction stream of the inertial-based
models. One can see that without applying a majority vote filter, inertial-based architectures produce
a large amount of non-coherent segments. This is due to the fact that during training, inertial models
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@ push-ups Q push-ups (complex) @ sit-ups @ sit-ups (complex) @ burpees @ lunges @ lunges (complex) @ bench-dips

Figure 3: Color-coded comparison of the ground truth data (top row) with the raw and postprocessed
(15 sec majority vote filter) activity streams of the shallow DeepConvLSTM and
Attend-and-Discriminate (Abedin et all 2021) (A-and-D) model. The illustrated activity stream is
of a sample subject having trained using inertial data which is windowed using a 1 second sliding
window with 50% overlap.

such as [Bock et al.| (2021) and |Abedin et al.| (2021) are not explicitly trained to predict coherent
segments, but rather predict a continuous stream of windowed data. The models therefore tend to

show a lot of intermediate switches in-between activity labels which causes mAP scores of inertial-
based architectures to be substantially lower than scores of vision-based models. We therefore make
use of a majority vote filter to erase short activity-label switches. Table [7]and [§] shows experimental
results of applying different-sized majority vote filters (5, 10, 15, 20 and 25 seconds) compared to
applying no filter. Interestingly, results (see Table[7]and [8) not only demonstrate the effectiveness of
the majority vote filter through a substantial increase in mAP scores, yet also show that said increase
does not come at the cost of a decreased F1-score, but rather an increase. Table[7]and[§]further show
a majority vote filter of 15 seconds being most effective resulting in the highest F1-score.

Temporal action localization models such as the ActionFormer (Zhang et al 2022) and TriDet
architecture (Shi et all, 2023)) are not trained on an explicitly modelled NULL-class. This means,
that unlike Bock et al.[{(2021)) and|Abedin et al.| (2021), models are only able to predict segments with
activity labels other than the NULL-class. With both models being set to predict up to 2000 action
segments per video, the unprocessed prediction results resulted in activity streams such as illustrated
in Figure @] One can see that almost all samples have been assigned an activity label, leaving
only a few data to be predicted as NULL, ultimately resulting in a substantially lower NULL-class
accuracy than compared to inertial-based models mentioned in this paper. We therefore increased
the score-threshold of both the ActionFormer and TriDet model, eliminating low-scoring segments
and replacing them with NULL (see Figure [d). This improved classification performance of the
ActionFormer (see Table [9) and TriDet model (see Table significantly across all experiments
(i.e. using inertial, vision and a combined setup as input data), while only marginally decreasing
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Table 7: Ablation experiments on the effect of different-sized majority vote (MV) filters (5, 10, 15,
20 and 25 seconds) on the raw prediction results (0 seconds) of the shallow DeepConvLSTM model
(Bock et al., 2021)). We report results on the three employed window sizes (0.5, 1.0 and 2.0 seconds)
each with a 50% overlap. Best results per clip-length are in bold.

MV filter P R F1 mAP
0.3 0.4 0.5 0.6 0.7 Avg
z Osec 7729 69.13 7191 2.50 1.97 1.65 1.37 1.16 1.73
S 5sec 85.87 75.63 79.04 37.83 36.02 3430 3248 29.89 34.10
§ 10 sec 86.63 75.81 79.38 5043 4792 46.17 4386 4194 46.06
w 15sec 86.77 7542 79.18 5436 51.67 4942 4740 4470 49.51
S 20 sec 86.72 7471 78.66 56.90 5397 51.65 49.06 46.25 51.57
25 sec 86.56 73.89 78.02 57.22 54.16 5220 49.56 45.89 51.81
z Osec 81.09 72.07 7529 5.71 4.50 3.66 2.77 2.50 3.83
S 5sec 8727 7721 80.73 4292 40.25 38.10 3538 3251 37.83
§ 10 sec 87.87 7735 81.05 52.02 49772 4721 4442 4194 47.06
~ 15sec 88.02 77.03 80.86 57.09 5532 53.61 50.59 47.85 52.89
— 20 sec 8798 7644 80.44 59.24 5728 5549 52.17 50.07 54.85
25 sec 87.74 7581 7993 6150 59.63 5741 53.88 51.13 56.71
z Osec 8295 74.63 77.60 13.24 11.10 8.79 7.77 6.77 9.53
S 5sec 86.92 77.88 81.08 4244 4053 3792 35.18 32.81 37.78
§ 10 sec 87.80 78.37 81.71 5551 52.62 4975 47.09 44.87 49.97
o 15sec 87.92 78.16 81.60 59.89 57.00 54.69 51.77 48.99 5447
o 20 sec 8790 77.74 81.32 61.04 5899 57.05 5331 5049 56.18

25 sec 87.70 77.22 80.89 6235 60.18 5795 54.64 5097 57.22

Table 8: Ablation experiments on the effect of different-sized majority vote (MV) filters (5, 10,
15, 20 and 25 seconds) on the raw prediction results (0 seconds) of the improved Attend-and-
Discriminate model (Abedin et al., 2021). We report results on the three employed window sizes
(0.5, 1.0 and 2.0 seconds) each with a 50% overlap. Best results per clip length are in bold.

MV filter P R F1 mAP
0.3 0.4 0.5 0.6 0.7 Avg
0 sec 76.29 69.08 71.60 1.69 1.14 0.83 0.63 0.48 0.96
g Ssec 86.18 76.16 79.40 3638 34.07 31.09 28.14 2625 31.19
B 10sec 87.25 7631 79.78 49.15 46.28 4386 4141 39.61 44.06
E 15sec 87.54 7598 79.59 5357 51.08 4851 45.82 4287 4837
& 20sec 87.61 7538 7920 56.13 53.42 5090 47.50 4476 50.54
25 sec 87.40 7453 7852 59.00 5582 5345 4949 4590 52.73
0 sec 7890 7325 7522 435 3.38 2.76 2.22 1.76 2.90
g Ssec 86.58 7895 81.56 4043 37.88 3503 3222 29.61 35.03
B 10sec 87.61 79.24 82.09 51.81 4959 4773 4488 4155 47.11
E 15sec 87.87 79.02 82.01 5638 5447 5228 50.07 4692 52.03
S 20sec 87.94 7859 81.74 57.80 57.80 55.88 5295 4958 55.19
25 sec 87.82 7792 8123 61.65 59.71 58.10 54.85 51.44 57.15
0 sec 81.13 7647 7790 11.13 935 742 6.04 5.17 7.82
g Ssec 86.57 80.10 8222 38.81 36.58 33.69 31.05 2898 33.82
B 10sec 8791 80.71 83.06 52.89 5098 4832 4534 4249 48.00
E 15sec 88.24 80.55 83.08 5832 56.68 54.44 51.58 4834 53.87
g 20 sec 88.37 80.22 82.89 61.18 5997 5799 54.69 51.07 56.98

25 sec 8824 79.76 8251 62.83 61.06 5896 56.20 52.87 58.38
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Figure 4: Color-coded comparison of the ground truth data (top row) with the raw and score-
thresholded (0.2) activity streams of the TriDet model. The illustrated activity
stream is of sample subject having trained the model using both inertial and vision data which is
windowed using a 1 second sliding window with 50% overlap.

mAP scores. Table[I0]further shows 0.2 being the most effective identified threshold of our ablation
study, resulting in the highest F1-score of the temporal action localization models.
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Table 9: ActionFormer score thresholding results (Zhang et al., 2022) ablation experiments on the
effect of different score thresholds (0.05, 0.1, 0.15, 0.2 and 0.25) on the raw prediction results (0.0
threshold) of experiments involving the ActionFormer model. We report results on the ActionFormer
being applied to only inertial, camera and a combined (inertial + camera) features using three clip
length window sizes (0.5, 1.0 and 2.0 seconds) each with a 50% overlap. Best results per modality

are in bold.

Threshold CL P R Fl mAP
0.3 04 0.5 0.6 0.7 Avg
0.0 0.5s 5565 7750 6141 7355 7070 6251 4814 3202 5738
0.05 0.5s 6511 7853 6778 7261 6973 6160 4724 3125 5649
0.1 0.5s 7115 7777 7215 7028  67.59 5974 4525 29.67  54.51
0.15 0.5s 7627 7518 7396 6745 6489 57.02 4255 28.10  52.00
0.2 0.5s 7873 7050 7251 6371 6128 5390 39.81 2640  49.02
0.25 055 8176 6425 6946 59.09 5693 49.66 36.17 2436 4524
0.0 1.0s 5846 7894 6191 80.02 7814 7428 69.19 6132 7259
3 005 1.0s 6740 8021 7060 7924 7740 7355 6845 6059  71.85
£ 01 1.0s 7400 79.14 7472 7763 7580 7205 67.14 5934  70.39
Z 015 1.0s 7882 7721 7641 7515 7346 7003 6555 5790  68.42
0.2 1.0s  81.69 7537 7686 7290 7130 6828 64.14 5665  66.65
0.25 1.0s 8412 7338 7686 7025 69.01 66.15 6249 5535  64.65
0.0 20s 5447 7461 5784 7485 7116 67.88 63.67 5653  66.82
0.05 20s 6167 7541 6498 7392  70.13 6681 62.62 5569  65.84
0.1 20s 68.67 7372 6895 7170 6820 6500 61.01 5427 64.04
0.15 20s 7459 7178 7100 6922 6605 63.02 5922 5251  62.00
0.2 20s 7818  69.15 7115 6643 6330 6047 56.66 5026  59.43
0.25 20s 8099 6693 7090 6411 61.06 5831 5473 4847 57.34
0.0 0.5s 4981 7046 5424 6744 6510 59.96 47.89  31.61  54.40
0.05 0.5s 6074 7184 6194 6569 6330 5837 4642 3048  52.85
0.1 055 64.66 69.02 6390 6128 59.04 5471 4357 2840  49.40
0.15 0.5s 6639 6373 6219 5629 5418 50.10 39.76 2588 4524
0.2 0.5s 68.06 57.68 5847 5127 4945 4574 3610 2338  41.19
0.25 0.5s 6690 5137 5393 4581 4429 4092 3229 2096  36.85
0.0 1.0s 5509 7187 5596 7407 7205 69.54 6581 5928 68.15
g 005 1.0s 6574 7382 6565 7263 7060 68.14 6444 5804  66.77
E ol 1.0s  69.02 7232 6698 69.87 67.99 6571 6229 5617 6441
S 015 1.0s  71.61 7033 67.18 6659 6476 6283 5975 5423  61.63
0.2 1.0s  72.63 6887 6726 6399 6232 6062 57.88 5279  59.52
0.25 1.0s 7327 6699 6684 6176 6027 5878 5631 5142 5771
0.0 20s 5331 6890 5353 7161 6895 6586 6305 5653 6520
0.05 20s 5924 6998 5974 7045 6770 6452 6181 5538  63.97
0.1 20s 6435 6929 6297 6774 6515 6223 5979 5364 6171
0.15 20s 6697 6745 6383 6414 6231 599  57.64 5175  59.15
0.2 20s  69.67 6579 64.15 6132 5992 5796 5591 5039  57.10
0.25 20s 6990 6315 6300 5807 5688 5516 5331 4822 5433
0.0 0.5s 5849 8120 6460 7695 7525 69.60 5499 3862  63.08
0.05 0.5s 7050 8293 7357 7567 7392 6828 5351 3745 61.76
0.1 0.5s 7570 8032 7613 7235 7082 6552 50.69 3530  58.94
0.15 0.5s 7923 7595 7591 68.58 67.28 6202 4749 3352 5578
0.2 0.5s 8240 7096 7376 6495 63.89 5849 4467 3177 5275
L 025 0.5s 8387 6468 7006 60.10 5929 5392 4080 2937  48.70
g 00 1.0s 6091 8208 6496 8441 8267 7973 7601 68.01 78.16
& 005 1.0s 7245 8375 7561 8350 8177 7876 7507 67.02 77.22
+ 01 1.0s 7700 8296 7846 81.63 79.83 7697 7338 6552 7546
E 015 1.0s  79.84 81.61 7943 7970 77.92 7501 7170 6422 7371
5 02 1.0s 8238 8030 80.15 77.63 7597 7328 7031 63.04  72.05
S 025 1.0s 8448 7866 8020 7558 7402 7152 68.65 61.80  70.31
0.0 20s 5673 7766 6037 7890 7583 72.84  69.29  63.15  72.00
0.05 20s 6475 7875 6825 77.56 7455 7165 6811 6209  70.80
0.1 20s 7104 7783 7235 7564 7287 7007 6646 6054  69.12
0.15 20s 7527 7580 7375 7323 7066 63.04 6452 5882  67.06
0.2 20s  79.19 7388 7452 7110 6879 6638 63.00 5754  65.36
0.25 20s 8126 7213 7426 69.17 6679 6440 6118 5614  63.53
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Table 10: TriDet score thresholding results (Shi et al., |2023)) ablation experiments on the effect of
different score thresholds (0.05, 0.1, 0.15, 0.2 and 0.25) on the raw prediction results (0.0 threshold)
of experiments involving the TriDet model. We report results on the TriDet being applied to only
inertial, camera and a combined (inertial + camera) features using three clip length sizes (0.5, 1.0
and 2.0 seconds) each with a 50% overlap. Best results per modality are in bold.

Threshold CL P R F1 mAP
0.3 0.4 0.5 0.6 0.7 Avg
0.0 0.5s 5494 7788 6153 7630 73.57 6790 59.18 49.16  65.22
0.05 0.5s  68.51 7926 7092 7539 7272 67.04 5834 4835 64.37
0.1 0.5s 7748 78.04 7626 7334 70.84 65.04 56.14 4643  62.36
0.15 0.5s 8256 7502 7719 7028 6793  62.10 53.15 4392 5948
0.2 0.5s  86.06 70.10 7525 @ 66.01 63.71 57770 4930 41.09  55.56
0.25 0.5s 8778 6397 71.09 60.73 5858 5294 4506 37.85 51.03
0.0 1.0s 5534  78.01 60.87 b 7845 7611 7294 6748  75.03
= 005 1.0s  66.81 7922 70.05 79.42  77.66 7528 7222  66.73  74.26
5 0.1 1.0s 7583 7789 7528 7792 7626 7395 70.86 6547  72.89
=015 1.0s  80.70 7594 7691 7597 7438 7216  69.09 64.04 71.13
0.2 1.0s 8385 7376 77.12 7327 71.66 69.83 6679 6225 68.76
0.25 1.0s 8573 7177 7659 7096 69.39  67.51 64.72 6043  66.60
0.0 2.0s 50.57 7556  58.19 7494 72,67 7035 67.05 61.67 69.33
0.05 20s 6335 7593 66.64 7377 7150 69.14  66.04 60.82  68.26
0.1 20s 7197 7406 71.04 7123 6899 6691 63.87  59.06 66.01
0.15 20s 7771 71.69 7247 68.04 6597 6404 61.08 56.62  63.15
0.2 20s 8172 6937 7253 6557 63.65 6186 59.07 5482  60.99
0.25 20s 84.13 67.14 7199  63.01 61.13  59.28 56.78 5298  58.64
0.0 0.5s  49.81 7046 5424 6744  65.10 5996 47.89 31.61 54.40
0.05 0.5s 60.74 71.84 6194 6569 6330 5837 4642 3048  52.85
0.1 0.5s 64.66 69.02 6390 6128 59.04 54.71 43.57 2840  49.40
0.15 0.5s 6639 6373 62.19 5629 54.18 50.10 39.76 2588  45.24
0.2 0.5s 68.06 57.68 5847 5127 4945 4574  36.10 2338  41.19
0.25 0.5s 6690 5137 5393 4581 4429 4092 3229 2096  36.85
0.0 1.0s 5509 71.87 5596 74.07 7205 69.54 6581 59.28  68.15
g 0.05 1.0s 6574 73.82 6565 72.63 7060 68.14 6444 58.04 66.77
E 0.1 1.0s  69.02 7232 6698 69.87 6799 6571 6229  56.17 64.41
O 015 1.0s  71.61 7033  67.18 6659 6476 6283 59.75 5423 61.63
0.2 1.0s  72.63 6887 6726 6399 6232 60.62 57.88 5279  59.52
0.25 1.0s 7327 6699 6684 61.76 6027 5878  56.31 5142 5771
0.0 2.0s 5331 68.90 53.53  71.61 6895 6586 63.05 5653 6520
0.05 20s 5924 6998 59.74 7045 67.70 6452  61.81 5538  63.97
0.1 20s 6435 6929 6297 67774 65.15 6223 59.79 53.64 61.71
0.15 20s 6697 6745 6383 64.14 6231 59.9 57.64  51.75  59.15
0.2 20s 69.67 6579 64.15 6132 5992 5796 55091 5039  57.10
0.25 20s 6990 63.15 63.00 58.07 56.88 55.16 5331 4822 5433
0.0 0.5s 5891 8098 64.74 8030 7852 7452 6753 5676 71.53
0.05 0.5s 7396 8269 7574 7895 77.12 73.10 66.16 5544  70.15
0.1 0.5s 81.07 79.82 7894 7531 73.67 69.70 6286 5232  66.77
0.15 0.5s 84.88 7543 7836 7195 7036 6635 59.14 4920  63.40
0.2 0.5s 87.85 7034 7590 67.65 66.05 6222 5555 46.12  59.52
- 0.25 0.5s 8898 6395 7124 6204 6046 5670 50.70 42.00 54.38
E’ 0.0 1.0s  58.69  81.51 64.16 8495 8377 82.05 7949 7419 80.89
§ 005 1.0s 71.84 8339 75.19 84.03 82.83 81.13 7855 7317 79.94
+ 0.1 1.0s  78.61 8279  79.37 8269 8148 7976  77.15 71.88  78.59
-E 0.15 1.0s  82.64 81.42 80.93 80.99 79.76  78.09 7560  70.57  77.00
§ 0.2 1.0s 8499 7955 81.08 78.64 7745 7574 7340 68.79  74.81
= 025 1.0s  86.81 77.11 80.38 7560 7439 72776 7040 6620  71.87
0.0 2.0s 51.17 7844 6046 79.51 7774 7556 7254 6828 7473
0.05 20s 66.62 79.44  70.01 78.08 7628 7417 7123  67.13  73.38
0.1 20s 7465 78.03 7443 7536 7374 7185 69.13 6512 71.04
0.15 20s 79.86 7649 7635 7339 7172 6995 67.56 6376  69.28
0.2 2.0s 83.10 7455 7672 7120 69.69 67.88 6549 61.77 67.20
0.25 2.0s 8429 7239 76.03 68.64 67.07 6530 63.02 5949 64.70
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C.4 SINGLE-STAGE TEMPORAL ACTION LOCALIZATION FOR INERTIAL DATA

In this paper we demonstrated the applicability of vision-based single-stage temporal action localiza-
tion models on a previously unexplored modality, i.e. inertial data. As the investigated architectures,
namely the TriDet (Shi et al.,[2023)) and ActionFormer (Zhang et al.,[2022)), both require clip-based,
one-dimensional feature embeddings as input, data of both camera and inertial sensors had to be
preprocessed. Figure [5] summarizes the applied preprocessing on both modalities. First step for
both modalities included windowing the data streams using a predefined clip length and overlap. In
total three different clip lengths were tested (0.5, 1 and 2 seconds). Having windowed the inertial
data left us with a 3-dimensional feature array, i.e. [no. windows, window length, no. sensor axis).
In order to obtain a vectorized feature embedding per sliding window, individual sensor axis were
concatenated. Depending on the window length this left us with a one-dimensional feature vector
of size 300 (0.5 second), 600 (1 second) and 1200 (2 seconds) per video clip, i.e. sliding window.
Contrarily, as also applied in [Shi et al.| (2023), we extracted two-stream 13D feature embeddings
(Carreira & Zisserman, 2017) pretrained on Kinetics-400 (Kay et al. [2017) from the raw video
stream, resulting in a vision-based embedding of size 2048 per video clip. Having vectorized both
modalities we were able to train both temporal action localization architectures on either (1) inertial,
(2) camera or (3) a concatenation of the two (inertial + camera). Even though our concatenation ap-
proach results in varying input dimensions, said change does not come at increased computational
costs. More specifically, while amount of learnable parameters marginally increases (not more than
10%) with an increased input dimension, unlike other approaches, no additional embedding needs
to be extracted from the inertial data and raw data streams can directly be used.

Video Clip (e.g. 1 second)

Inertial Data Camera Data

8  RightArm Right Leg Left Leg Left Arm
g— T
©
n
(=3
w
g
g Two-Stream
® Inflated 3D Features

12 sensor axis per window [1 x 50 x 12]

concatenate/ vectorize
v
Right Arm RightLeg  LeftLeg Left Arm RGB Features Flow Features
P A Do A EEEEEEEEE L LT
[1 x1024] [1x1024]
: . : concatenate : .
Inertial Input Dimension: [1 x 600] Camera Input Dimension: [1 x 2048]

Combined Input Dimension: [1 x 2648]

Figure 5: Visualization of the applied preprocessing on inertial and camera data in order to make to
create a feature embedding which can be used to train the TriDet|Shi et al.| (2023) and ActionFormer
Zhang et al.| (2022) network.

C.5 ABLATION STUDY ON INFLUENCE OF FREQUENCY OF INPUTS

With the frequencies both the camera (60 FPS) and inertial sensors (50 HZ) being set fairly high, the
WEAR dataset allows to explore lower frequency experiments and their effect fewer datapoints per
second might have on the predictive quality of the trained models. Table[IT|summarizes experiments
conducted using only 50% and 20% of the available frequency for both types of sensors. Note that
a clip length of 0.5 seconds was not explored during experiments as it was not possible anymore to
extract two-stream 13D feature embeddings (Carreira & Zisserman, 2017)) as the amount of frames
was lower than the required minimum input frames. Looking at results presented in Table[IT|one can
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see that all models trained using only inertial data suffered from lower frequency inputs with both
classification and mAP scores decreasing. Contrarily, models trained using camera-based improved
when using features extracted from videos with a lower FPS, which might be caused by Kinetics-
400 (Kay et al.; [2017), which was used for pretraining the I3D extraction method, on consisting of
videos with a lower FPS than the WEAR dataset.

C.6 ABLATION STUDY ON INERTIAL SENSOR SELECTION

As reported experimental results are based on acceleration recordings of all limbs, the following
experiments investigate how the predictive performance of each algorithm is affected by using only
(1) acceleration recorded from the right wrist and (2) acceleration recorded from both the right
wrist and right ankle. Results in Table [T2]show that using only acceleration data obtained from the
right wrist significantly decreases predictive performance across all algorithms across all metrics.
Moreover, Table[I3|clearly underlines the value of additionally measuring acceleration at the ankles’
of participants, as results again significantly increase, being mostly on par compared to using all
four inertial sensor locations. Interestingly, unlike the inertial-based architectures, results of vision-
based models improve when excluding data captured by the left-wrist and left-ankle inertial sensors,
which could be caused by the dataset being biased towards right-handed participants (see Table [4)
and dominant hand movement might being overall more consistent. Figure [6] shows the per-class
results of the TriDet model (Shi et al., 2023) being trained using (1) data obtained from the right
wrist inertial sensor, (2) right wrist and right ankle inertial sensor and (3) all four inertial sensors
(right and left wrists and ankles).

True Labels (1) Right Wrist (2) Right Wrist and Ankle (3) All Inertial Sensors

.....Jogging

stretching

strength

vrcnaps Il

lunges |
lungingi~

burpees H
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Predicted Label

situps
lunges
situps
lunges

jogging stretching strength jogging Stretching strength jogging stretching strength

Figure 6: Confusion matrices of the TriDet model (Shi et al., 2023)) being applied using only inertial
obtained from the (1) right wrist, (2) right wrist and ankle and (3) right and left wrists and ankles
with a one second sliding window and 50% overlap.

C.7 ABLATION STUDY ON SECOND EXECUTION OF WORKOUT SESSIONS

In order to explore the robustness of obtained results, we recorded all activities of two participants
(sbj-0 and sbj_14) a second time in August. Both participants recording conditions significantly
differed from their first recording, with temperatures being around 25 degrees Celsius with overall
more sunny weather conditions. Further, as not all participants knew all activities beforehand (see
Table[), recording the same participants a second time would allow to analyse how a certain degree
of familiarity with the recording setup can be seen in altered movements (e.g., via a smoother execu-
tion of activities) as well as subject-specific finetuning affects the overall recognition performance.
Table[T4]compares validation results obtained on the original, first recording of sbj_0 and sbj_14 with
their second execution of the workout plan. Unlike our prior experiments, each algorithm is trained
using the data of all but the validation subjects’ recordings, ensuring the validation subjects (sbj_0
and sbj_14) remain unseen during the training of each algorithm. All results are postprocessed as
reported in the main paper. While, one can see improved results regarding sbj_0, this trend does not
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Table 11: Results of evaluating different frequencies (Freq.) as input for different clip lengths (CL)
on our WEAR dataset. Both inertial- and camera-based features were downsampled to be only 50%
(i.e. 30 FPS and 25 Hz) and 20% (i.e. 12 FPS and 10 Hz) of the original frequency input (i.e. 60 FPS
and 50 Hz). One can see that the predictive performance of inertial models decreases with a lower
frequency input. Interestingly camera and combined models increase in performance when lower
frequency inputs with I3D being calculated on 12 FPS videos resulting in the highest classification
and mAP scores during camera-based experiments. Experiments are evaluated in terms of precision
(P), recall (R), F1-score and mean average precision (mAP) for different temporal intersection over

union (tloU) thresholds. Best results per modality are in bold.

Threshold CL P R F1 mAP
0.3 0.4 0.5 0.6 0.7 Avg
Shallow D. Orig 1s 88.02 77.03 80.86 57.09 5532 53.61 50.59 47.85 52.89
Shallow D. 50% Is 87.02 7651 80.10 5533 5270  51.02 4830 45.67 50.61
Shallow D. 20% Is 8638 7610 79.59 5394 5195 50.05 47.60 45.19 49.75
A-and-D Orig 1s 87.87 79.02 8201 5638 5447 5228 50.07 4692 52.03
A-and-D 50% 1s  87.57 7825 8123 5588 5351 5133 4816 4478  50.73
A-and-D 20% 1s  86.10 79.88 81.67 56.76  54.87 53.03 49.85 4739 5238
ActionFormer ~ Orig 1s  81.69 7537 76.86 7290 7130 6828 64.14 56.65  66.65
ActionFormer  50% 1s 8093  73.66 75.62 7140 69.69 66.77 63.09 56.01 6539
ActionFormer  20% 1s  80.73 7243 7451 70.07 6834 6544 6083 5445  63.82
S TriDet Orig 1s 8385 7376 77.12 7327 71.66 69.83 66.79 62.25 68.76
E TriDet 50% Is 8452 7282 76.67 7201 70.62 6886 65.13 6032  67.39
= TriDet 20% s 8430 7172 7568 70.60 6938 6734 63775 57.61 6574
Shallow D. Orig 2s 8792 7816 81.60 59.890 57.00 54.69 51.77 4899 5447
Shallow D. 50% 2s 85.08 76.13  79.09 53.85 51.57 4930 4650 43779  49.00
Shallow D. 20% 2s 8459 7539 7833 5321 5098 48.66 4569 43.08 4832
A-and-D Orig 2s 8824 8055 83.08 5832 56.68 5444 5158 4834  53.87
A-and-D 50% 2s 8724 78.05 80.88 53.69 5136 4858 4599 4266  48.46
A-and-D 20% 2s 8698 7794 80.83 55.63 5332 49.76 4645 4374  49.78
ActionFormer ~ Orig  2s 7818 69.15 71.15 6643 6330 6047 56.66 50.26 59.43
ActionFormer  50% 2s 77.85 6746 70.24 6488 6247 5926 55.65 49.35 5832
ActionFormer  20% 2s  76.84 6571 68.69  62.51 59.90 56.87  52.64 4550 5548
TriDet Orig 2s 81.72 6937 7253 6557 63.65 6186 59.07 5482  60.99
TriDet 50% 2s  80.61 6551 69.77 6232 60.60 5820 5590 5150 57.71
TriDet 20% 2s 7859 6355 6779 59.87 5824 56.09 5333 4792  55.09
ActionFormer ~ Orig Is  72.63 68.87 6726 6399 6232 60.62 57.88 52.79  59.52
ActionFormer  50% Is 7462 6858  67.81 64.61 63.12 6128 5856 53.77  60.27
ActionFormer ~ 20% Is 7436 6782 6792 6592 6436 6298 5999 5531 61.71
TriDet Orig 1s 7532 68.07 6795 6436 6330 6138 59.13 5464 60.56
E TriDet 50% 1s 7721 6841 6882 66.01 6506 6346 61.53 5756 62.72
g TriDet 20% 1s 7595 6841 6910 66.61 6571 63.72 61.85 57.66 63.11
&}
ActionFormer  Orig  2s  69.67 6579 64.15 6132 5992 5796 5591 50.39 57.10
ActionFormer  50%  2s  72.64 6753 6643 6422 6225 60.65 57.71 5293 59.55
ActionFormer  20%  2s 7194 6539 6562 6194 5993 5810 5462 49.883  56.89
TriDet Orig 2s 7385 64.09 6425 6095 6003 57.75 5555 5219 57.30
TriDet 50% 2s  75.08 6627 67.10 64.18 6298 6137 5995 56.11  60.92
TriDet 20% 2s 7404 6320 6498 5948 5827 5682 5570 5205 5647
ActionFormer  Orig 1s 8238 8030 80.15 77.63 7597 7328 7031 63.04  72.05
ActionFormer  50% 1s  82.04 8024  79.84 7698 7534 7335 69.60 63.07 71.67
ActionFormer  20% 1s  81.89 7933 7924 7624 7492 7295 7043 63.08 71.52
<
g  TriDet Orig 1s 8499 7955 81.08 78.64 7745 7574 7340 6879 74.81
§  TriDet 50% Is 8625 7948 8146 77.68 77.07 7526 73.05 68.94 7440
+  TriDet 20% s 8479 79.13 8045 7755 7683 75.05 7194 68.19 7391
=
'g ActionFormer ~ Orig  2s  79.19 7388 7452 71.10 68.79 6638 63.00 57.54  65.36
£ ActionFormer 50% 2s 7924  75.14 7555 7084 68.13 6571 6277 5733  64.96
ActionFormer  20% 2s 7847 7378 7415 68.60 66.69 6324 60.14 5578  62.89
TriDet Orig 2s 83.10 7455 7672 7120 69.69 67.88 6549 61.77 67.20
TriDet 50% 2s  81.33 7358 7569 70.52 69.06 67.31 64.91 61.32  66.62
TriDet 20% 2s 8251 7291 7548  69.09 67.08 64.87 6259 5941  64.61
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Table 12: Results of using only inertial features captured by the sensor placed on the right wrist
for different clip lengths (CL) on our WEAR dataset evaluated in terms of precision (P), recall (R),
Fl-score and mean average precision (mAP) for different temporal intersection over union (tloU)
thresholds. One can see a clear overall decrease across all evaluation metrics. Best results per
modality are in bold.

Model CL P R F1 mAP
0.3 0.4 0.5 0.6 0.7 Avg
Shallow D. 0.5s 6454 68.08 64.23 2326 21.57 19.27 1731 16.00 19.48
A-and-D 0.5s 7534 64.09 6693 27.08 2533 2255 2053 1894 22.89
ActionFormer 0.5s 7296 63.59 6530 5445 5242 4570 34.82 22.11 41.90
TriDet 0.5s 7948 6289 6698 5432 52.10 47.57 4039 30.38 44.95
. Shallow D. 1s 6698 68.81 66.19 2553 2362 2211 1956 18.28 21.82
£  A-and-D Is 7556 6431 6721 29.18 2639 2352 21.60 19.57 24.05
E ActionFormer 1s 73.07 6551 6691 61.00 5805 52.69 47.32 39.82 51.78
—  TriDet Is 78.04 67.88 7044 63.08 62.09 60.07 57.07 5036 58.54
Shallow D. 2s 66.79 67.68 6534 2834 2646 24.05 21.58 1940 2397
A-and-D 2s 7671 65.87 68.63 3193 2851 2586 2346 2131 2621
ActionFormer 2s 69.44 61.33 63.06 5542 5322 5132 4734 3990 4944
TriDet 2s 7073 58.22 61.08 52.06 50.54 48.51 46.05 4093 47.62
ActionFormer 0.5s 7691 65.69 67.69 5860 5736 5130 3848 26.15 46.38
TriDet 0.5s 81.87 65.19 69.57 60.83 59.12 5557 48.84 40.71 53.01
O  ActionFormer 1s 79.62 77.00 76.56 72.06 70.65 6894 6626 60.49 67.68
1 TriDet Is 7996 7626 7645 7439 73,55 71.84 69.52 65.88 71.03
ActionFormer 2s 7443 7348 7201 68.87 6686 64.51 60.95 5589 63.42
TriDet 2s 77.07 71770 7243 67.87 6693 6493 62.12 5830 64.03

Table 13: Results using only inertial features captured by the sensor placed on the right wrist and
right ankle for different clip lengths (CL) on our WEAR dataset evaluated in terms of precision
(P), recall (R), Fl-score and mean average precision (mAP) for different temporal intersection over
union (tloU) thresholds. Comparing results to [I2] one can see the increase in performance one can
achieve when tracking acceleration measured at the ankle in addition to a wrist-worn inertial sensor.
Best results per modality are in bold.

Model CL P R F1 mAP
0.3 0.4 0.5 0.6 0.7 Avg
Shallow D. 0.5s 78.73 7471 7524 42,19 4040 37.77 3494 3207 3747
A-and-D 0.5s 81.88 6935 73.02 41.76 3942 3594 3248 3029 3598
ActionFormer 0.5s 78.62 7439 7447 6828 6452 54770 39.06 2595 50.50
TriDet 0.5s 84.83 73.00 7638 68.73 6580 60.60 5099 4043 57.31
_. Shallow D. 1s 80.63 74.87 7632 4449 4287 40.70 37.12 3495 40.03
2 A-and-D 1s 82.83 7272 75777 4375 41.17 3826 34.65 3220 38.00
E ActionFormer 1s 81.33 78.60 78.64 76.64 7460 7097 6588 58.13 69.24
—  TriDet 1s 84.03 78.16 79.75 77.84 7593 73.69 70.80 64.39 72.53
Shallow D. 2s 80.41 7562 76.76 46.07 4436 4152 3850 3563 41.21
A-and-D 2s 84.56 76.65 79.07 50.25 4727 4327 40.19 3696 43.59
ActionFormer  2s 7772 7334  73.63 70.06 6729 6445 60.00 52.62 62.88
TriDet 2s 79.75 72770 7449 68.19 6631 6434 61.33 57.12 63.46
ActionFormer 0.5s 81.20 73.51 75.19 6699 65.65 60.32 4459 30.61 53.63
TriDet 0.5s 8697 71.16 7578 6741 65.68 61.54 5314 4345 5824
O  ActionFormer 1s 83.01 8235 8147 79.17 7784 7534 71.12 6554 73.80
: TriDet 1s 85.39 81.59 8247 80.22 79.12 77.01 7381 71.07 76.25
ActionFormer  2s 7822 77.84 7653 73.87 7183 69.07 6491 5947 67.83
TriDet 2s 8093 77.67 7790 73.47 7201 70.12 6821 6443 69.65
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Table 14: Comparison of obtained results of repeated sessions for participants sbj_0 and sbj_14 for
different clip lengths (CL) on our WEAR dataset evaluated in terms of F1-score and mean average
precision (mAP). The two participants were invited to perform the recording plan a second time.
While one can see that improved results regarding sbj_0, suggesting potential learning effects of
the correct execution of activities, this trend does not apply to sbj_14. Note that weather conditions
(temperature and sunlight) significantly differ amongst the recordings — winter (first recording) com-
pared to summer (2nd recording). These figures are, as in the earlier results, averaged across 3 runs
using 3 different random seeds. For the first recording, both subjects’ best results per modality are
in underlined. For the second recording, both subjects’ best results per modality are in bold. Unlike
our prior experiments, each algorithm is trained using the data of all but the validation subjects’
recordings, ensuring the validation subjects (sbj-0 and sbj_14) remain unseen during the training of
each algorithm. All results are postprocessed as reported in the main paper.

Model CL sbj-0 sbj-14
1st Recording 2nd Recording 1st Recording 2nd Recording

F1 mAP F1 mAP Fl1 mAP F1 mAP
Shallow D. 0.5s 69.75 42.18 85.15 7520 7752  65.18  77.60 62.40
A-and-D 0.5s 7351 38.02  84.10  70.60 79.09 5926  75.88 61.70
ActionFormer 0.5 76.05 69.17 8198  72.68 79.02  78.01  69.09 62.24
TriDet 0.5s 7484 6757 80.07 7497 81.59 8567 7229 67.90
_ Shallow D. Is 7372 49.62 8546  76.47 82.77 6930  77.15 62.19
g A-and-D Is 78.08  48.78 8452 7140 7975 6244  76.24 63.27
2 ActionFormer Is 7798 7522 7537 8392 84.01 9139  75.67 80.49
~  TriDet Is 76.54 7568  72.88  81.31 84.92 9381 7475 80.08
Shallow D. 28 69.75 42.18 85.01 77.84 84.60 7336  79.72 67.69
A-and-D 2s 78.33 5022 84.78  73.66 82.12 6543  85.40 71.87
ActionFormer 2s 6120 59.68 6856  70.85 7872 8725 7291 81.73
TriDet 2s 6830 6251 69.88  74.12 82.09 91.70  74.04 79.84
ActionFormer ~ 0.5s 4897 4298 6839  62.88 58.60 5370  70.43 73.19
< TriDet 0.5s 5125 50.85 7096  69.08 6098 5552 68.52 66.87
©  ActionFormer Is 6429 6262 7737 87.25 74.11 7820  63.00 82.72
£ TriDet Is 60.74  62.18 76.84 87.84 66.60  73.17 6231 84.26
©  ActionFormer 2s 59.88 5727 7676  90.20 73.65 8232 71.78 78.15
TriDet 2s 5554  58.63 7639 8431 6691 7875  61.31 75.83
ActionFormer 0.5 79.81  69.93  80.94  74.64 81.65 8412 7143 75.35
TriDet 05s 7998 7120 7435 69.08 84.83 8585  71.16 80.15
©  ActionFormer Is 83.55 80.74 8730 94.12 8571 9471 7598 82.18
X TriDet Is 81.75 8390 86.51 9222 88.27  97.60  75.16 80.27
ActionFormer 2s 6790 6920  80.19 91.18 8272 9450 7135 88.00
TriDet 2s 70.16 7256 7835  87.84 8330 9462 7697 85.00

apply to sbj_14. More specifcially, improvements and decline rates between the two recordings lie
within the expected standard deviation across participants (between 15% to 20%). Though being a
small sample size of only two participants, the results suggest that in order to guarantee a reliable
detection of activities, each participant would need to be recorded multiple times under different
conditions. Nevertheless, in order to come up with reliable conclusions, future extensions of the
WEAR dataset would need focus on re-recording more participants multiple times under varying
conditions.

C.8 ADDITIONAL VISUALIZATIONS OF FINAL RUNS

In addition to the visualisations supplied in the main paper, the following provides supplementary
visualizations for further analysis. All models mentioned in this section were trained using a clip
length of 1.0 second with a 50% overlap. Predictions made by the temporal action localization mod-
els (Zhang et al.l 2022} |Shi et al., [2023) were filtered using a score threshold of 0.2 and predictions
made by inertial-based architectures (Bock et al.| [2021; |Abedin et al., |2021)) were filtered using a
majority vote filter of 15 seconds. Figure[7|provides confusion matrices of the ActionFormer (Zhang
et al., |2022) being applied using inertial, camera and combined (inertial + camera) features. Fig-
ureB]provides Confusion matrices of the shallow DeepConvLSTM (Bock et al.,[2021)) and improved
Attend-and-Discriminate (Abedin et al.l 2021) applied on inertial data. Figure[9]shows a color-coded
visualisation of predictions streams of all models mentioned in the results table of the main paper.
Figure [I0] delivers a side-by-side comparison of the confusion matrices of all models involved in
the Oracle-late-fusion-approach analysis mentioned in the main paper. Figure|10|shows that a joint

17



Under review as a conference paper at ICLR 2024

True Labels
null

rotating ams

iogging

skipping

sidesteps
butt-kicks

ticeps
lunging
shoulders

stretching

hamstings

situps H

strength

burpees ||
lunges

situps (complex) i 016

lunges (complex) o1

‘push-ups (complex) i ocs

(1) Inertial

(3) Inertial + Camera

benchips il oo 'ﬂ . W nﬂ
[P v e K s s e 5 == e S e e e
g3z ¢c¢ e 2 e T 8388z sisizegedigee 83 838838 3T ¢ g2t 585883 2
§EEE 8 Ees IER R IR AR Rl BRI R R R R IR RS ENES
S 2% 28 §°§3° 88 fgisziF: 2§ 52758 °¢ =2 s5°52°§5¢
3 K w b < wg H - ® S b 3 S g K a S £ k3 £ 3
ki e g g 8 e g 8 8 e 8 8 8
3 2 2 g z 2 g z 2 g
& i 2 g s H g @ 5
jogging stretching strength jogging stretching strength jogging stretching strength

Figure 7: Confusion matrices of the ActionFormer (Zhang et all, 2022)) being applied using only

inertial, vision (camera) and both combined (inertial + camera).
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Figure 8: Confusion matrices of the shallow DeepConvLSTM (Bock et al [2021) and improved
Attend-and-Discriminate (Abedin et al.l 202T).

learning of both modalities particularly improves differentiation between the NULL-class and the
activity classes resulting in better action boundaries, i.e. higher mAP scores, and classification

SCOres.
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Figure 9: Color-coded comparison of the ground truth data (top row) with the shallow DeepConvL-

STM (Bock et al} [2021)), improved Attend-and-Discriminate (Abedin et al. [2021)), ActionFormer
(Zhang et al.,|2022)) and TriDet (Shi et al.,2023) model on varying input modalities.
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Figure 10: Confusion matrices of the best (1) inertial model (Attend-and-Dicriminate (Abedin et al.|
2021))), (2) vision model (TriDet (Shi et al., [2023)) and (3) combined model (vision + inertial)

compared with (4) an Oracle-combination of the inertial and camera as well (5) Oracle-combination
of the previous oracle with the combined approach.
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D FULL-TEXT RECORDING PLAN

Outdoor Activities Dataset Recording Plan

Setup:
- 4 Bangle.js Smartwatches on each limb
- Sampling rate at 50 Hz with +8g
- 2 GoPros (head-mounted)
- Static (GoPro Hero 5):
- Mounted on Tripod of CV group; observing whole scene
- For labeling purposes
- 1080p 30 FPS Superview FOV (no video stabilization)
- Head-mounted (GoPro Hero 8):
- Hands & feet centrally visible in frames; roughly 45° downward
- Optional: straps for fixation (additional velcro tape needed)
- 1080p 60 FPS Superview FOV (auto low light + video stabilization)
- Repetitions on different days/times

Equipment List:
- 4 Bangle.js Smartwatches
- 2 GoPros + Head-Mount + Tripod
- Bench/ Box/ Chair
- Optional:

- Stopwatch 6 & = Head-mounted GoPro

- Yoga Mat m| =Banglejs Smartwatch

NOTE THE BANGLE

" BUTTON ORIENTATION
& ID!
1a3e ba11
2bof alcf

Figure 11: First page of the recording plan of the WEAR dataset.
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1st Session (ca. 30 min)

=> Each activity 3 sets a repetitions at will (ca. 30 sec); short break after each set (ca. 30 sec)

Activity Sub-Activity | Description Normal Variant Easy Variant

Running Sidestep Start with both feet
together; jump on one
foot to the side and
repeat same motion for
other foot to create a
jumping motion; repeat

Butt-Kicks Fold hands on butt; jog
while trying to lift
alternating each heel
as close to butt as
possible
(“kicking” it)

Stretching | Shoulder Start by standing
straight; stretch left arm
to the right while
keeping it parallel to
the ground; use lower
right arm to press
against left arm upper
left arm (close to the
elbow) trying to move it
closer to the body; hold
stretch; repeat by
switching arms

Hamstrings Start by sitting down;
have left leg stretched
out straight in a 45°
angle to the left side
and keep right leg as
sitting cross-legged
with right foot touching
the left knee’s side; try
to reach for left foot;
hold stretch; repeat by
switching legs

Lumbar Start by laying on back;
Rotation reach out with both
arms to the side; raise
legs; move legs to the
left side as close as
possible to the ground
while keeping them
straight; do not move
torso; hold stretch;
repeat by moving legs
to opposite side

Figure 12: Second page of the recording plan of the WEAR dataset. Note that pictures are blurred
for anonymization and are short video-clips in the original document.
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Burpees Normal Start by standing
straight; put your hands
on the ground and
jump back with your
feet into a push-up
position; do a push-up;
jump forward with your
feet into the starting
position and jump up
with raised arms;

No Push Up, but lay flat on ground; get up by
standing up instead of jumping

repeat
Walking Normal Stand straight; Keep
Lunges your hands crossed in

front of your torso;
move your right foot
forward, bending your
left knee to the ground
and right knee into a
90° angle; step your
left foot forward going
back into the position
your started in; repeat
to create walking
motion

Complex Stand straight; keep
your arms raised in
front of you pointing

forward parallel to the
floor; do a lunge, but
when at the bottom

turn your torso to the

side of the foot being
forward; repeat to

create walking motion

Bench Normal Stand with your back
Dips facing a chair; go into
dip position with your
hands on the chair and
your legs straight in
front of you; move your
body downwards by
bending your arms into
a90° angle; keep legs
and back as straight as
possible; move up
again; repeat

Figure 13: Third page of the recording plan of the WEAR dataset. Note that pictures are blurred for
anonymization and are short video-clips in the original document.
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2nd Session (ca. 30 min)

=> Each activity 3 sets a repetitions at will (ca. 30 sec); short break after each set (ca. 30 sec)

rotating arms

arms backwards; first

only left arm; then only
right arm; then both
arms simultaneously

Activity Sub-Activity | Description Normal Variant Easy Variant
Running Jogging Normal jogging Wz % “
i
4 v
Jogging with Jogging while rotating

Skipping

Alternate between
jumping from left leg
while lifting the right

knee high; land on the
left leg; repeat by
switching legs to create
running motion

Triceps

Start by standing
straight; raise left arm
behind head and try to

touch the right
shoulder; use right arm
to grab left elbow trying
to move left hand
further down the
shoulder; hold stretch;
repeat by switching
arms

Lunging

Start by standing in a
split stance with right
front forward and left
foot straight back; bend
right knee about 90°;
place hands on your
forward knee; hold
stretch; repeat by
switching legs

Figure 14: Fourth page of the recording plan of the WEAR dataset. Note that pictures are blurred

for anonymization and are short video-clips in the original document.

24




Under review as a conference paper at ICLR 2024

Push-ups Normal Normal Push-Up On knees

Complex Move into a push-up On knees
position; do a push-up
by lowering your body
to the ground; after
moving it back up,
reach out with the right
arm to the sky, opening
your torso so that it
faces to the right; move
back into push-up;
repeat for left arm;
repeat sequence

Sit-ups Normal Lay on your back; have Straight legs
your hands touch the
sides of your head;
move your legs into a
90° angle with your feet
on the ground; move
your torso towards your
knees while keeping
the legs in place;

repeat
Complex Lay on your back with First move up with upper body; then with lower
your hands touching body so that legs are straight during situp

the sides of your head;
move your legs into a
90° angle (feet on the
ground) while also (!)
moving your torso
towards your knees;
when reaching highest
point, touch first your
right heel with your
right hand; and left heel
with left hand; repeat

Figure 15: Fifth page of the recording plan of the WEAR dataset. Note that pictures are blurred for
anonymization and are short video-clips in the original document.
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