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1 RELATED WORKS

1.1 FEDERATED LEARNING

This scenario aims to learn a generic model for all distributed nodes via their collaboration when
avoiding private data leakage. The classical and representative FedAvg McMahan et al. (2017)
proposes to averagely integrate the client models in the server as the global model and conduct
multiple communication between server and clients to gradually learn high-generalization model.
The sequel advances FedAvg in either server model integration Chen & Chao (2020); Lin et al.
(2020); Yurochkin et al. (2019) or local training strategy Malinovskiy et al. (2020); Yuan & Ma
(2020); Durmus et al. (2021). Concretely, to attain the synchronous optimization across various
clients, FedProx Li et al. (2018) designs the specific regularization into the global model. Similarly,
SCAFFOLD Karimireddy et al. (2019) attempts to adjust the network parameters to control local
gradients. These FL methods indeed achieve knowledge sharing across different clients and assist
certain clients with insufficient training samples to obtain better performance. However, the generic
global model fails to produce identical positive influence on all clients when there exists considerable
data distribution divergence across various clients. This practical challenge motives the exploration
of personalized federated learning (PFL).

1.2 PERSONALIZED FEDERATED LEARNING

To overcome the FL problem, the efficiency adaptation manner is to fine-tune the generic model
received from the server with the local private data Yu et al. (2020); Arivazhagan et al. (2019). On
one hand, Ditto Li et al. (2021) develops the ell2-norm regularization over the difference between
global and local model parameters to customize the local network while indiscriminately preserving
extensive global knowledge. Similarly, T Dinh et al. (2020); Hanzely et al. (2020) also introduce other
regularizers to mitigate the model shift during local training stage. On the other hand, the mixture of
global and local networks has been a promising personalized manner Zec et al. (2020); Deng et al.
(2020). Due to the recent success of meta-learning on model generalization, several works share
the same spirit to learn the meta-model across different clients and then gradually adapt it to each
specific client Fallah et al. (2020). Moreover, FedRep Collins et al. (2021) conducts more explicit
personalization by decomposing the network architecture into global feature extractor and private
classifier. In fact, these methods perform model customization from the identical generic model for
all clients. Another direction is to first cluster clients into multiple groups and train group-wise global
models in the server Huang et al. (2021); Zhang et al. (2020).

Although the mentioned PFL strategies achieve appealing performances, they cannot clearly illustrate
why their model can conduct better model customization. To answer this question, we first attempt to
visualize the discriminative information learned by them over the original images and empirically
notice that certain methods are likely to discard important semantic when adapting from global
model. Thus, we claim that the ideal customization not only discovers the well-learned discriminative
knowledge from global model but also preserves personal information from local data to promote the
robustness of local model. With this motivation, this work proposes active knowledge imitation and
enhancement to better solve PFL challenges.
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2 THEORETICAL ANALYSIS

The objective function of our PSE:

min
Θ̃g,Θ̃c

L̃ =
∑

j
L(p̃j , yj) + L(pj , yj)︸ ︷︷ ︸

Obj 1

+
∑

l

∑
k

ξ

2
· I(∆kl ≥ ∆̄) · ∥W̃(l)

k −W
(l)
k ∥2ℓ2︸ ︷︷ ︸

Obj 2

. (1)

Assumption 1. In each client, the stochastic gradient gt = ∇L̃(Θ̃t,xt) at time t is an unbiased
estimator of the local gradient with the expectation as Ex∼D[gt] = ∇L̃(Θ̃t) = ∇L̃t and variance as
E[∥gt −∇L̃t∥22] ≤ δ2.

Assumption 2. The objective function optimized in each client is L1-Lipschitz smooth. In other
words, the gradient of Eq. (1) is L1-Lipschitz continuous Malherbe & Vayatis (2017), i.e., ∥∇L̃t1 −
∇L̃t2∥2 ≤ L1∥Θ̃t1 − Θ̃t2∥2, where Lt1/2 means the loss values at local iteration time t1/2.

Theorem 1. When assumption 1 and 2 hold, we have the following conclusion in any arbitrary client
after per communication round (r):

E[L̃(r+1)τ ] ≤ L̃rτ+1 − (η − L1η
2

2
)

τ−1∑
e=1

∥∇L̃rτ+e∥22 +
L1τη

2

2
δ2, (2)

where τ is the total iteration of local model update and η is the learning rate. This theorem suggests
that selecting appropriate η can achieve our expected gradient decrease in one communication round
so that it finally can guarantee the convergence of model.

Proof. Given the assumption 2, we can rewrite the L1-Lipschitz continuous condition as:

L̃t1 − L̃t2 ≤ ⟨∇L̃t2 , (Θ̃t1 − Θ̃t2)⟩+
L1

2
∥Θ̃t1 − Θ̃t2∥22. (3)

With this formulation, we can deduce the upper bounder of loss function after one iteration by
allowing Θ̃rτ+2 = Θ̃rτ+1 − ηgrτ+1 as the following:

L̃rτ+2 ≤ L̃rτ+1 + ⟨∇L̃rτ+1, (Θ̃rτ+2 − Θ̃rτ+1)⟩+
L1

2
∥Θ̃rτ+2 − Θ̃rτ+1∥22

= L̃rτ+1 − η⟨∇L̃rτ+1,grτ+1⟩+
L1

2
∥ηgrτ+1∥22. (4)

And then, we calculate the expectation over both sides for the random variable x with the following:

E[L̃rτ+2] ≤ L̃rτ+1 − ηE[⟨∇L̃rτ+1,grτ+1⟩] +
L1η

2

2
E[∥grτ+1∥22] (5)

≤ L̃rτ+1 − η∥∇L̃rτ+1∥22 +
L1η

2

2
(∥∇L̃rτ+1∥22 + V ar(grτ+1)) (6)

≤ L̃rτ+1 − (η − L1η
2

2
)∥∇L̃rτ+1∥22 +

L1η
2

2
δ2, (7)

where V ar(·) means the variance of the variable. Finally, we repeat the above inequality for τ times
and achieve the conclusion.

Theorem 2. Given any ϵ, after R round communication, we infer that

1

Rτ

R−1∑
r=1

τ−1∑
e=1

E[∥∇L̃rτ+e∥22] ≤ ϵ, R ≥ 2(L̃1 − L̃∗)

τϵ(2η − L1η2)− τη2L1δ2
, (8)

where η < 2ϵ
L1(ϵ+δ2) and L̃∗ denotes the loss of the optimal solution for the local model. This theorem

illustrates the convergence rate of model, which is related to the overall communication round and
the expectation of ℓ2-norm of gradient. Sufficient communication rounds make the bound tighter.
Please refer to the supplementary material for the proofs of two theorems.
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Table 1: Average Recognition Accuracy (%) with standard deviation under novel joint label and data
shift scenarios.

Datasets FEMNIST FashionMNIST FashionMNIST
Modality (Gray, Color) (Gray, Color) (Color, Edge)
(#M, #C) (200,3) (200,4) (200,5) (100,3) (100,4) (100,5) (200,3) (200,4) (200,5)

Local 81.97±4.37 80.40±4.20 79.44±4.49 81.46±3.55 79.62±3.14 76.95±3.15 83.53±3.26 81.95±3.84 80.57±3.25
FedAvg+FT 83.17±3.04 81.97±2.75 81.53±3.12 84.28±3.31 82.36±2.85 79.80±3.12 86.39±3.33 84.08±3.42 82.99±3.25
FedProx+FT 82.87±3.65 81.36±3.44 81.03±3.25 84.51±2.74 82.31±2.70 79.50±2.97 87.05±3.09 84.25±2.79 83.09±2.88

SCAFFOLD+FT 84.00±3.62 81.54±2.97 82.04±3.64 84.79±3.43 82.12±2.75 79.94±2.85 85.54±3.05 83.19±3.26 83.05±3.07
Fed-MTL 81.14±2.62 80.30±2.90 79.24±2.90 78.70±1.88 77.14±2.58 78.39±2.37 81.12±2.14 79.49±2.11 79.89±2.40
LG-Fed 83.27±3.18 81.40±2.87 80.03±2.87 81.59±1.85 79.23±2.73 75.89±2.27 83.86±1.96 80.90±2.33 78.31±2.06
L2GD 81.88±3.02 80.53±3.18 79.68±2.93 80.16±2.26 78.90±2.78 77.46±1.96 81.75±2.66 80.86±2.44 79.52±2.18
APFL 82.85±2.50 81.17±2.74 81.14±2.38 85.25±2.33 81.16±1.93 78.73±1.81 85.96±2.59 82.46±1.97 79.22±2.45
Ditto 85.23±2.13 82.94±2.17 82.34±2.56 88.11±2.19 85.76±1.95 84.46±1.73 87.82±1.65 84.77±2.04 84.13±1.58

FedRep 84.43±3.00 83.54±2.03 83.51±2.88 86.71±2.25 83.01±1.58 83.49±2.41 84.78±2.33 85.10±2.50 84.46±1.94
Ours 88.81±1.47 87.86±0.99 87.98±1.17 89.58±0.43 88.12±1.45 86.61±0.31 89.97±1.23 87.95±1.28 85.69±1.34

Proof. According to the conclusion in Theorem 1, we can consider conducting R round communica-
tion between server and clients and easily obtain the expectation of Θ̃ on both side of Eq. 2 with the
formulation as:

R−1∑
r=1

E[L̃(r+1)τ+1] ≤
R−1∑
r=1

L̃rτ+1 − (η − L1η
2

2
)

R−1∑
r=1

τ−1∑
e=1

E[∇L̃rτ+e∥22] +
RτL1η

2

2
δ2. (9)

To this end, we can obtain the following formulation:

1

Rτ

R−1∑
r=1

τ−1∑
e=1

E[∇L̃rτ+e∥22] ≤
1
Rτ

∑R−1
r=1 (L̃rτ+1 − E[L̃(r+1)τ ]) +
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2

2 δ2
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. (10)

On the other hand, we have
∑R−1

r=1 (L̃rτ+1 − E[L̃(r+1)τ ]) < L̃1 − L̃∗. Thus, for arbitrary ϵ, we have

1
Rτ (L̃1 − L̃∗) +

L1η
2

2 δ2

η − L1η2
< ϵ. (11)

Thus, we can achieve the the condition of communication round as

R ≥ 2(L̃1 − L̃∗)

τϵ(2η − L1η2)− τη2L1δ2
. (12)

Since the τϵ(2η − L1η
2) − τη2L1δ

2 > 0, we have η < 2ϵ
L1(ϵ+δ2) . Theorem 2 provides the del-

icate convergence rate for our PSE method. Given any bound ϵ, we can select the appropriate
communication round and the learning rate to adjust the rate and achieve the training convergence.

3 ADDITIONAL EMPIRICAL ANALYSIS

Due to the limited space of main manuscript, we only visualize the attention maps of a few samples,
which are drawn by multiple personalized federated learning methods. To fully understand how each
method conducts the customization, we show more examples in Figure 1. Compared with others,
our method can capture more important discriminative information and utilize them to do the final
decision. In other words, our PSE enables the model to adapt the distribution property of each client
and conduct better personalization. Moreover, we also report the standard deviation of experimental
results in Table 1 and Table 2 corresponding to that of manuscript.

4 DISCUSSION

Our method aims to achieve knowledge sharing across numerous distributed clients without private
data leakage and customizes local model to adapt their own data distribution. Thus, our method has
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Figure 1: Attention Maps drawn by multiple personalized federated learning methods.

Table 2: Recognition Accuracy (%) with standard deviation under conventional label shift scenarios.
Datasets CIFAR-10 CIFAR-100 FashionMNIST

(#M, #C) (20,2) (20,3) (20,4) (50,5) (50,10) (50,15) (100,3) (100,4) (100,5)

Local 79.65±4.03 73.97±3.97 67.54±4.03 73.35±4.24 58.76±4.11 49.79±4.72 89.65±3.08 86.37±3.40 85.75±3.26

FedAvg+FT 82.94±2.43 78.23±2.98 74.62±2.26 77.01±2.26 61.96±2.22 55.40±2.32 91.43±3.30 89.00±2.68 87.36±2.64

FedProx+FT 82.44±2.18 76.74±2.44 73.63±2.41 74.10±2.60 60.40±2.12 53.35±2.42 88.35±2.93 87.05±2.76 85.51±3.37

SCAFFOLD+FT 82.03±2.90 76.51±2.11 72.92±2.59 75.09±2.71 59.92±2.30 51.54±2.51 90.33±3.41 87.68±2.65 85.22±3.08

Fed-MTL 83.19±1.59 75.81±1.53 69.57±1.99 65.28±1.96 54.84±2.02 48.72±2.12 84.65±2.35 82.59±2.42 82.86±2.20

LG-Fed 84.24±1.76 77.1±2.43 71.23±2.08 67.17±2.46 54.31±1.73 50.63±2.18 87.07±1.94 84.51±2.15 81.19±1.88

L2GD 83.76±1.62 76.26±2.09 69.8±1.73 67.15±1.88 55.30±2.08 50.12±1.73 85.50±1.99 83.88±2.23 82.84±2.28

APFL 82.09±2.30 78.80±2.23 74.29±1.74 72.81±2.05 61.77±1.99 54.04±1.90 90.58±2.65 86.83±2.31 85.67±2.04

Ditto 84.74±1.68 80.34±1.25 76.25±2.39 75.23±1.33 65.40±1.64 56.14±1.38 91.21±1.62 89.91±1.74 88.81±1.55

FedRep 84.12±2.48 80.39±2.35 76.28±2.24 78.30±1.54 63.52±2.08 58.94±2.14 92.71±1.68 90.73±1.92 89.56±2.40

Ours 86.95±0.73 82.98±1.38 78.03±1.19 79.58±1.53 67.10±1.46 62.46±1.68 94.03±1.43 91.77±0.89 90.47±0.89

positive influence on solving data privacy protection and fairness, which are the raised concerns in
real-world applications. Definitely, since our method conducts model transmission between clients
and server, it can leak out certain information of client in implicit manner. This is a common challenge
in current PFL setting, which is an important research direction. Our all experiments are performed
with Pytorch platform in one Nvidia GeForce RTX 3090 (24GB).
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