
A Prompt-based Contrastive Learning

To construct domain-invariant representations efficiently for egocentric perception data in embodied
agent environments, we adopt contrastive tasks for visual prompt learning on the domain factors,
which can be learned from a few expert demonstrations.

When conducting prompt-based contrastive learning, as shown in Figure 1 and explained below, we
specifically adopt several methods to generate positive visual observation pairs for different domain
factors.

Consider a pretrained model Tϕ parameterized by ϕ that maps observations o ∈ Ω to the embedding
space Z . The contrast function P : Ω × Ω → {0, 1} discriminates whether an observation pair is
positive or not. Then, we fine-tune Tϕ by learning a visual prompt pv through contrastive learning,
where the contrastive loss function [1] is defined as Equation (2) in the main manuscript.

Visual encoder 𝒯𝜙 (𝑜, 𝑝𝑖
𝑣)

Turn right 𝑝𝑖
𝑣

Cabinet Cabinet Table

++ +

Positive Negative Embedding space 𝒵

Turn right Turn left Behavior-driven Contrast

𝓏 𝓏′ 𝓏′′

Visual encoder 𝒯𝜙 𝑜, 𝑝𝑖
𝑣

+ + +

𝑝𝑖
𝑣

Embedding space 𝒵

⋯

Embedding space 𝒵

+

𝑝𝑖
𝑣

Augmentation-driven Contrast

Timestep-driven Contrast

⋯
Visual encoder 𝒯𝜙 𝑜, 𝑝𝑖

𝑣

𝑝𝑖
𝑣 𝑝𝑖

𝑣

𝑝𝑖
𝑣 𝑝𝑖

𝑣

+

𝑝𝑖
𝑣

+

𝑝𝑖
𝑣

ℒ𝐶𝑂𝑁ℒ𝐶𝑂𝑁

Figure 1: Prompt-based Contrastive Learning with
Different Contrastive Tasks

Behavior-driven Contrast. Similar to [2],
we exploit expert actions to obtain positive
sample pairs from expert trajectories of dif-
ferent domains. With observation and ac-
tion pairs (o, a), (o′, a′), a behavior-driven
contrast function is defined as Pbeh(o, o

′) =
1a=a′ . If the environment has a discrete ac-
tion space, the behavior-driven contrast can
be applied immediately to obtain positive
sample pairs; otherwise, it can be applied
after discretizing continuous actions with
unsupervised clustering algorithms such as
k-means clustering [3].

Augmentation-driven Contrast. Similar to
visual domain randomization techniques [4,
5], we use data augmentation (e.g., color
perturbation [6]) for unstructured pixel-level
visual domain factors such as illumination.
An augmentation-driven contrast function is
defined as Paug(o, o

′) = 1o′=AUG(o), where
AUG augments o.

Timestep-driven Contrast. Similar to [7],
we exploit timesteps of expert trajectory to
obtain positive sample pairs across different
domains. With observation and timestep pairs (o, t), (o′, t′), a timestep-driven contrast function is
defined as Ptim(o, o

′) = 1t=t′ , where t− k ≦ t′ ≦ t+ k and k is hyperparameter.

B Prompt Ensemble with a Pretrained Policy

As mentioned in the main manuscript, we devise an optimization method to update G specifically
for a pretrained policy π. Specifically, we use a policy prompt pvpol that focuses on task-relevant
features from observations for π. By incorporating the prompted embedding z̃0, which contains these
task-relevant features, into the guided-attention-based ensemble, we can effectively integrate the
policy π with the attention module, resulting in π(G(z̃0, z)). Here, z̃0 is obtained by applying the
transformation to the observation o using the policy prompt pvpol.

As such, CONPE enables efficient adaptation of the attention module to a pretrained policy by fine-
tuning only a small number of parameters. This achieves robust zero-shot performance for unseen
domains in different tasks.

Algorithm 1 shows the procedures of CONPE to adapt the attention module for a pretrained policy.
The first half corresponds to prompt-based contrastive learning and the other half corresponds to
learning of the attention module G with a pretrained policy π(Z). This is slightly extended from
the algorithm in the main manuscript, where joint learning of the attention module and a policy is
explained.
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Figure 2: Guided-Attention-based Prompt Ensemble. The cosine similarity-guided attention module
G generates task-specific state representations by combining multiple prompted embeddings, and it is
learned with a policy network π. The left part of the figure illustrates prompt ensemble adaptation to
a pretrained policy, while the right part shows the semantic regularized data augmentation scheme.

Algorithm 1 Procedure in CONPE with a Pretrained Policy
Dataset D = {(o1, o′1), ...}, replay buffer ZD ← ∅, pretrained vision-language model Tϕ
Visual prompt pool pv = [pv1, ..., p

v
n], attention module G

Pretrained policy π

1: /* Prompt-based Contrastive Learning */
2: for i = 1, ..., n do
3: while not converge do
4: Sample a batch BPi

= {(oj , o′j)}j≤m ∼ D
5: Update prompt pvi ← pvi −∇LCON(p

v
i ,BPi

) using main manuscript Equation (3)
6: end while
7: end for
8: /* Prompt Ensemble Learning with a Pretrained Policy */
9: for each environment step do

10: Sample action a = π(G(Tϕ(o), z)) using main manuscript Equation (5), (6)
11: Store ZD ← ZD ∪ {(z, a, r)}
12: Optimize module G on {(zj , aj , rj)}j≤m ∼ ZD

13: end for

C Semantic Regularized Data Augmentation

For a source environment that is sufficiently accessible, the attention module and policy network
can be jointly trained by RL algorithms. In this case, to address overfitting problems to the source
environment, data augmentation methods can be adopted. For example, when training a policy, it is
feasible to add Gaussian noise to each prompted embedding as part of data augmentation to avoid
overfitting [8, 9].

To enhance both policy optimization and zero-shot performance, we investigate semantic regular-
ization schemes in the CLIP embedding space, which are specific to the prompt ensemble-based
policy learning. Specifically, using a few object-level descriptions in datasets, we control the noise
effectively.

In our semantic regularization, the language prompt pli = [el1, e
l
2, ..., e

l
u′ ], eli ∈ Rd′

is pretrained with
description data and fixed pvi . Then, pli is used as a semantic regularizer, where eli is a continuous
learnable vector of the word embedding dimension d′ (e.g., 512 for CLIP language encoder) and u′ is
the length of a language prompt. Similar to [10], we adopt language prompt learning schemes. We
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also use the binary cross entropy loss for observations and object-level description pairs (o,m),

LBCE(p
v
i , p

l
i) =

n∑
k=1

∑
q∈Φ

[log f(Tϕ(ok, pvi ), Tϕ(q, pli))− 1q∈mk
log f(Tϕ(ok, pvi ), Tϕ(q, pli))] (1)

where Φ is the collection of object-level descriptions and f is a cosine similarity function.

Given representation zi = Tϕ(o, pvi ), we add a small Gaussian noise ϵ ∼ N (0, δ) with variance
δ to zi. For all object-level descriptions qi in the given Φ, we maintain regularizing augmented
representations to hold the below condition.

CL(zi + ϵ, Tϕ(qi, pli)) = CL(zi, Tϕ(qi, pli)), where CL(z, z′) = 1{σ(S(z,z′))≥0.5}. (2)

This tends to achieve more generalized representations for a specific domain that is relevant to the
object-level descriptions, while maintaining semantic information in the representations.

Algorithm 2 shows the procedure of CONPE with semantic regularized data augmentation. This
algorithm includes three steps: the first step corresponds to prompt-based contrastive learning (same
as the algorithm in the main manuscript), the second step corresponds to language prompt learning
(addition for this algorithm), and the third step corresponds to the modified process of joint learning
for policy π(Z) and the attention module G with semantic regularized data augmentation.

Algorithm 2 Procedure of CONPE with Semantic Regularized Data Augmentation
Dataset D = {(o1, o′1,m), ...}, replay buffer ZD ← ∅, pretrained vision-language model Tϕ
Visual prompt pool pv = [pv1, ..., p

v
n], Language prompts pl1, ..., p

l
n

Attention module G, policy π

1: /* Prompt-based Contrastive Learning */
2: for i = 1, ..., n do
3: while not converge do
4: Sample a batch BPi = {(oj , o′j)}j≤m ∼ D
5: Update prompt pvi ← pvi −∇LCON(p

v
i ,BPi

) using main manuscript Equation (3)
6: end while
7: end for
8: /* Language Prompt Learning */
9: for i = 1, ..., n do

10: while not converge do
11: Sample a batch {(ok,mk)}k≤B ∼ D
12: Update prompt pli ← pli −∇LBCE(p

v
i , p

l
i) using (1)

13: end while
14: end for
15: /* Prompt Ensemble-based Policy Learning with Semantic Regularized Data Augmentation*/
16: for each environment step do
17: Sample ϵ = [ϵ1, ..., ϵn] satisfying the condition (2)
18: Compute zϵ = z+ ϵ = [z1 + ϵ1, ..., zn + ϵn]
19: Sample action a = π(G(Tϕ(o), z)) using main manuscript Equation (5), (6)
20: Store ZD ← ZD ∪ {(z, a, r)}
21: Jointly optimize policy π and module G on {(zj , aj , rj)}j≤m ∼ ZD

22: end for

D Environments and Datasets

D.1 AI2THOR

Environment settings. We use AI2THOR [11], a large-scale interactive simulation platform for
Embodied AI. In AI2THOR, we use iTHOR datasets that have 120 room-sized scenes with bedrooms,
bathrooms, kitchens, and living rooms. iTHOR includes over 2000 unique objects based on Unity 3D.
Among embodied AI tasks in AI2THOR, we evaluate our framework with object goal navigation and
point goal navigation tasks. We also test the image goal navigation task, a modified version of the
object goal navigation, as well as the room rearrangement task for adaptation to a pretrained policy.
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Table 1: AI2THOR Actions

Actions

Navigation
Move [Ahead/Left/Right/Back]
Rotate [Right/Left]
Look [Up/Down]
Done

Object
Interaction

PickUp [Object Type]
Open [Object Type]
PlaceObject

Object Goal Navigation. The object navigation task requires an agent to navigate through its
environment and find an object of a given category (e.g., apple). The agent is initially placed at a
random location in a near-photorealistic home, and it receives an egocentric viewpoint image and
one target object instruction for each timestep. The agent uses several navigation actions such as
MoveAhead and RotateRight to complete the task.

Point Goal Navigation. In the point goal navigation task, an agent is given a specific coordinate in
the environment as its target goal. Similar to the object goal navigation task, the agent receives an
egocentric viewpoint image and a target coordinate for each timestep.

Image Goal Navigation. In the image goal navigation task, an agent is provided with a target image
that represents a desired scene configuration. The agent’s goal is to navigate through the environment
and reach a location where the observed scene matches the target image. This task involves using
visual perception to compare the current scene to the target image and selects appropriate navigation
actions to achieve the desired scene configuration. The agent receives egocentric viewpoint images
and target image for each timestep. The task is considered successful when the agent reaches a
specific position where the observed scene closely resembles the target image.

Room Rearrangement. In the room Rearrangement task, the goal of an agent is to reach the goal
configuration by interacting with the environment. At each timestep, the images of both the current
state and goal state are given, and the agent uses navigation actions and higher-level semantic actions
(e.g., PickUp CUP) to rearrange the objects and recover the goal room configuration.

Our experiment settings. We adopt the similar configuration in [12] for our experiments, while
some settings are modified to evaluate zero-shot adaptation for different domains.

We use “FloorPlan21” as our default environment. For zero-shot adaptation scenarios, 75 different
domains are randomly generated with several predefined domain factors (i.e., camera field of views,
stride length, rotation degrees, look degrees and illuminations). These factors, previously examined in
embodied RL studies [13, 14, 15], can be characterized by either discrete or continuous values based
on their intrinsic properties. For instance, we treat rotation degrees as a discrete factor, determined
based on the feasibility of task success; conversely, brightness is treated as a continuous factor, with a
range extending from 0.0 to 1.0. Each of these domain factors is randomly selected from a uniform
distribution, leading to a combination of varied domains. Using the domain factors, we define several
seen domains that can be used for representation and policy learning as well as unseen domains for
evaluating the zero-shot adaptation performance.

Datasets. Using rule-based policies, we create expert datasets for contrastive representation learning.
The datasets comprise 28,464 samples for AI2THOR. Table 11 illustrates the examples of the expert
datasets in which the experts of each domain reflect external differences amongst domains and
physical differences of agents. SPL is the evaluation metric, success weighted by (normalized
inverse) path length [16]. LENGTH is the average episode length of entire trajectories.

D.2 Egocentric-Metaworld

Environment settings. The Metaworld benchmark [17] includes diverse table-top manipulation
tasks that require a Sawyer robot to interact with various objects. With different objects, such as door
and button, the robot needs to manipulate them based on the object’s affordance, leading to different
reward functions. At each timestep, the Sawyer robot conducts a 4-dimensional fine-grained action
that determines the 3D position movements of the end-effector and the variation of gripper openness.
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For embodied AI settings, we slightly modify Metaworld to have egocentric images as observations.
We use several tasks such as reach-v2, reach-wall-v2, button-press-topdown-v2 and door-open-v2 for
our experiments.

Reach. In the Reach task, the objective is to control a Sawyer robot’s end-effector to reach a target
position. The agent directly controls the XYZ location of the end-effector.

Reach-Wall. In the Reach-Wall task, the agent controls the Sawyer robot’s end-effector to reach a
target position in the presence of obstacles such as walls. The agent needs to plan and navigate a path
that avoids collisions to the walls while reaching the target.

Button-Press. In the Button-Press task, the agent is required to accurately guide the Sawyer robot’s
end-effector to a designated button and press it. This task involves precise control and coordination
to successfully interact with the button.

Door-Open. In the Door-Open task, the agent’s objective is to manipulate a Sawyer robot’s end-
effector to open a door. The agent needs to grasp and manipulate the door handle to open the
door.

Our experiment settings. For zero-shot adaptation scenarios, 70 different domains are randomly
generated with predefined domain factors such as camera positions, gravity, wind speeds, and illumi-
nations. Each domain factor can be represented as either discrete or continuous values, depending on
its inherent nature. Regarding sampling methods, these domain factors are individually drawn from a
uniform distribution to produce combinatorial domain variations.

Datasets. For predefined seen domains, we implement a rule-based expert policy to collect expert
trajectory data. The datasets comprise 3,840 samples for Metaworld. Table 12 illustrates a few
examples of our expert dataset where experts of each domain reflect external differences among
domains and physical differences in agents.

D.3 CARLA

Environment settings. CARLA [18] is a self-driving simulation environment where an agent
navigates to the target location while avoiding collisions and lane crossings. For experiments, we
use the CARLA simulator v0.9.13 and choose Town10HD as our map. For RL formulation, we
incorporate the RGB image data and sensor values (acceleration, velocity, angular velocity) into
states, and use control steer, throttle, and brake as actions. Each action ranges from -1 to 1. The
actions are automatically calibrated when the speed of the car reaches the maximum. The agent is
evaluated based on the reward function below that involves the desired velocity and goal distance,

reward = vt ·
vtarget
∥vtarget∥

− goal_distance
100

(3)

where vt denotes the agent’s current velocity and vtarget denotes the target velocity.

Table 2: CARLA Environment Configuration

Configures Value

Observation space Ω [0, 1]224×224×3 × [−1, 1]9

Action space A [−1, 1]2

Maximum speed 20km/h

Our experiment settings. To implement 50 different domains, we use camera positions, camera field
of views, weather conditions, times of day, and different ranges of action magnitude as domain factors.
Each domain factor can be represented as either discrete or continuous values, depending on its
inherent nature. For example, we treat weather conditions as a discrete factor, which can be classified
as either clear, rainy, cloudy, or other. Through these factors, we define several seen domains that can
be used for representation and policy learning as well as unseen domains for evaluating the zero-shot
adaptation performance. For prompt-based contrastive learning, the training dataset consists of a
single trajectory for each of 50 domains. In policy learning, we utilize 4 source domains across 2
different maps.
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Datasets. For predefined seen domains, we implement a rule-based expert policy to collect expert
trajectory data. The datasets comprise 7,394 samples for CARLA. The detailed information of the
expert dataset is explained in Table 13.

(a) Source Domain (b) Seen Target Domain (c) Unseen Target Domain

Figure 3: Examples from the Source, Seen Target, and Unseen Target Domains. (a) represents the
source domain, (b) depicts the seen target domain with an altered camera position, and (c) showcases
the unseen target domain, differing from both the source and seen target domains.

E Implementation Details

In this section, we present the implementation details of our proposed framework CONPE and each
baseline method. CONPE is implemented using Python v3.7, Jax v0.3.4, and PyTorch v1.13.1, and is
trained on a system of an Intel(R) Core (TM) i9-10980XE processor and an NVIDIA RTX A6000
GPU.

E.1 LUSR

LUSR is a domain adaptation method that utilizes the latent embedding of encoder-decoder models to
extract generalized representations. LUSR uses β-VAE to learn disentangled representations of differ-
ent visual domains. For implementation, we use the open source (https://github.com/KarlXing/LUSR).
When implementing LUSR, we use a CNN encoder for both DAE and β-VAE. We conduct online
policy learning with PPO algorithms [19]. The hyperparameter settings are summarized in Table 3.

Table 3: Hyperparameter Settings for LUSR
(a) Hyperparameters for Representation Learning

Hyperparameters Value
image size (3, 224, 224) RGB
batch size 10
train epochs 200
optimizer Adam
learning rate 1e− 4
beta β 10
latent size 32

(b) Hyperparameters for Policy Learning

Hyperparameters Value
observation (3, 224, 224) RGB
discount factor 0.99
GAE parameter 0.95
clipping parameter 0.1
value loss coefficient 0.5
entropy loss coefficient 0.01
learning rate 3e− 4
optimizer Adam
training steps 3M
steps per rollout 500

E.2 CURL and ATC

CURL and ATC are a contrastive learning based framework for visual RL. CURL uses con-
trastive representation learning to extract discriminative features from raw pixels which greatly
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enhance sample efficiency in RL training. ATC enables the training of an encoder to associate
pairs of observations separated by short time difference, leading to RL performance enhance-
ment. For implementation, we use the open source (https://github.com/facebookresearch/moco)
and (https://github.com/astooke/rlpyt/tree/master/rlpyt/ul). The hyperparameter settings of CURL
and ATC are summarized in Table 4 and 5, respectively, where the other settings are the same as in
Table 3(b).

Table 4: Hyperparameter Settings for CURL

Hyperparameters Value
image size (3, 224, 224) RGB
batch size 256
model architecture ViT-B/32
train epochs 500
optimizer sgd
learning rate 1e− 3

Table 5: Hyperparameter Settings for ATC

Hyperparameters Value
image size (3, 224, 224) RGB
batch size 256
model architecture ViT-B/32
train epochs 500
optimizer sgd
timestep k 3
learning rate 1e− 3

E.3 ACO

ACO utilizes augmentation-driven and behavior-driven contrastive tasks in the context of RL. For
implementation, we use the open source (https://github.com/metadriverse/ACO). The hyperparameter
settings are summarized in Table 6, where other settings are the same as in Table 3(b).

Table 6: Hyperparameter Settings for ACO

Hyperparameters Value

image size (3, 224, 224) RGB
batch size 256
model architecture ViT-B/32
train epochs 500
optimizer sgd
learning rate 1e− 3

E.4 EmbCLIP

EmbCLIP is a state-of-the-art model for embodied AI tasks. By using CLIP as the visual
encoder, EmbCLIP extracts generalized representation which is useful for an embodied agent,
enabling the agent to effectively generalize to different environments and tasks. We use the
open source (https://github.com/allenai/embodied-clip) for the implementation of AI2-THOR
environments. To evaluate this with the CARLA simulator, we also use the open source
(https://github.com/openai/CLIP). The configurations for policy learning are the same as in Ta-
ble 3(b).

E.5 ConPE

The procedure of our CONPE consists of prompt learning and policy learning steps.

Prompt-based Contrastive Learning. In prompt learning step, for sample-efficiency, CONPE
conducts prompt-based contrastive learning, exploiting the pretrained CLIP model. We set the length
of visual prompts to be 8 for each contrastive learning with Equation (2) in the main manuscript. In
cases when metadata is available (the cases of using the semantic regularized data augmentation), 8
language prompts are used for (1). The hyperparameter settings are summarized in Table 7.

Prompt Ensemble-based Policy Learning. CONPE obtains domain-invariant states from observa-
tions using the ensemble of multiple prompts. The prompt attention module G consists of as many
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Table 7: Hyperparameter Settings for CONPE’s Prompt-based Contrastive Learning
(a) Augmentation-driven

Hyperparameters Value
image size (3, 224, 224) RGB
batch size 256
visual prompt length 8
pretrained model CLIP ViT-B/32
train epoch 1000
optimizer Adam
learning rate 1e− 2

(b) Behavior-driven
Hyperparameters Value
image size (3, 224, 224) RGB
batch size 64
visual prompt length 8
pretrained model CLIP ViT-B/32
train epoch 500
optimizer Adam
learning rate 1e− 2

(c) Timestep-driven
Hyperparameters Value
image size (3, 224, 224) RGB
batch size 64
visual prompt length 8
pretrained model CLIP ViT-B/32
train epoch 500
optimizer Adam
timestep k 3
learning rate 1e− 2

MLP(Multi-Layer Perceptron) layers as the number of the prompts and it is learned jointly with a
policy network for a given task. The hyperparameter settings for policy learning are the same as in
Table 3(b).

F Additional Experiments

F.1 Zero-shot Performance for Seen Domains Factors

Table 8 presents the zero-shot performance of CONPE across specific domain factors (DF). For
example, DF0 refers to various domains where the camera position is a domain factor of interest,
and LUSR’s 48.5 in DF0 indicates the success rate of LUSR for the domains generated by different
camera positions.

As shown, CONPE maintains robust zero-shot performance for all the cases (DF0∼ DF9), compared
to the baselines. Additionally, as shown in Figure 5 where a specific domain factor is changed, the
attention weights assigned to the prompted embedding (denoted as Pn, where n = {0..9}) that is
trained for the corresponding domain factor are high (in the bright color).

Table 8: Zero-shot Performance for Seen Domains Factors

Method DF0 DF1 DF2 DF3 DF4 DF5 DF6 DF7 DF8 DF9

LUSR 48.5 37.2 27.5 66.4 69.5 41.6 11.7 40.6 26.8 48.1
CURL 28.6 27.3 8.4 28.3 13.0 14.9 2.2 13.2 11.8 26.6
ATC 73.2 84.9 73.1 89.8 95.4 79.8 55.8 89.8 69.0 88.1
ACO 38.3 39.6 36.0 37.2 35.9 30.8 21.5 31.1 24.1 41.1
EmbCLIP 71.6 79.3 83.5 92.3 96.8 90.8 62.0 92.7 75.8 92.4
CONPE 78.1 90.9 93.2 95.5 97.0 88.2 68.7 93.9 67.0 93.7

(a) Domain Factor 1 (b) Domain Factor 2 (c) Domain Factor 3

Figure 4: Intra Prompted Embeddings. Two distinct domains, represented in blue and red dots in
the figures, are chosen based on different configurations of the same domain factor to assess their
embedding alignment.
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Figure 5: Prompt Ensemble Attention Weight Matrix for Seen Domains Factors.

F.2 Prompt Ensemble with a Pretrained Policy

Table 9 reports detailed zero-shot performance for the scenarios when a pretrained policy is given.
We additionally test widely used baselines that leverage large pretrained models in the fields of
vision and natural language, specifically in the context of prompt-meta learning. ATTEMPT [20]
is a parameter-efficient multi-task language model tuning method that transfers knowledge across
different tasks via a mixture of soft prompts. SESoM [21] is a soft prompts ensemble method that
leverages multiple source tasks and effectively improves few-shot performance of prompt tuning
by transferring knowledge from the source tasks to a target task. CONPE demonstrates the ability
to effectively improve zero-shot performance with a small number of samples, especially when a
pretrained policy is given. As shown in Figure 7 (a) and (b), prompt ensemble adaptation demonstrates
an increase in success rate with a small number of samples in both the train and unseen environments
of the pretrained policy, compared to other baselines. This results present the sample-efficiency of
our prompt ensemble adaptation method.

Table 9: Prompt Ensemble with a Pretrained Policy.
(a) Zero-shot Performance in AI2THOR with Visual Navigation and Room Rearrangement Tasks

Method ObjectNav. (Aln.) PointNav. (Not Aln.) ImageNav. (Not Aln.) RoomR. (Not Aln.)

Source Target Source Target Souce Target Scoure Target

Pretrained 87.5±17.2 65.8±19.1 95.3±4.6 80.9±1.6 77.2±3.3 56.2±2.2 87.3±3.1 75.2±13.2
ATTEMPT 2.85±0.4 3.24±0.3 20.2±0.5 20.7±0.3 13.8±3.0 15.0±2.3 5.3±1.2 3.6±1.6
SESoM 2.0±6.6 3.4±5.0 19.7±0.5 20.6±0.1 11.2±2.4 8.9±1.2 60.0±2.0 44.2±14.0
CONPE 88.4±1.7 72.8±3.1 98.9±1.0 84.4±1.0 79.2±1.4 61.6±1.1 93.3±1.2 82.2±14.4

(b) Zero-shot Performance in Egocentric-Metaworld with 4 Different Robot Manipulation Tasks

Method Reach (Aln.) Reach-Wall (Not Aln.) Button-Press (Not Aln.) Door-Open (Not Aln.)

Source Target Source Target Source Target Source Target

Pretrained 100.0±0.0 65.7±6.4 100.0±0.0 58.0±5.8 100.0±0.0 16.8±2.3 100.0±0.0 35.6±6.2
ATTEMPT 73.3±5.8 33.7±7.7 76.7±15.3 38.0±4.0 100.0±0.0 25.7±8.3 100.0±0.0 44.0±7.4
SESoM 16.7±5.8 9.3±2.1 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
CONPE 100.0±0.0 74.7±5.0 100.0±0.0 75.7±9.0 100.0±0.0 73.7±8.3 100.0±0.0 93.2±1.1

F.3 Semantic Regularized Data Augmentation

Table 10 shows the zero-shot performance for semantic regularized data augmentation in CONPE,
where language data is additionally used. As shown, CONPE with language data (w Semantic Reg.)
consistently yields better performance over CONPE without language data (w/o Semantic Reg.)
across various noise scales (δ). As the deviation (δ) of the Gaussian noise varies, it is observed
that larger deviation does not necessarily lead to performance improvement. This indicates that
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Figure 6: Sample-efficiency of Prompt Ensemble-based Policy Learning (up to 1 million timesteps).
These detailed evaluation graphs focused on the initial part of the training, are consistent with the
experiment in Figure 4 of the manuscript.
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Figure 7: Sample-efficiency of Prompt Ensemble with a Pretrained Policy. The pretrained policy is
learned on the Object Goal Navigation task and then adapted to the Point Goal Navigation task with
policy prompt.

enhancing data augmentation diversity through higher noise deviation may not always be beneficial.
However, when maintaining the semantics (w Semantic Reg.), the performance can improve with
larger deviation.

Table 10: Semantic Regularized Data Augmentation.

δ
w/o Semantic Reg. w Semantic Reg.

Source Seen Target Unseen Target Source Seen Target Unseen Target

0 90.8±10.9% 72.1±6.5% 80.0±7.2% 90.8±10.9% 78.0±9.6% 80.0±7.2%
0.1 97.4±3.8% 84.5±8.3% 82.7±9.4% 100.0±0.0% 86.0±6.2% 82.1±14.2%
0.2 94.7±0.0% 82.1±9.5% 73.1±16.1% 94.8±7.4% 84.2±6.2% 75.1±11.9%
0.3 84.2±3.7% 77.4±6.6% 73.1±10.9% 96.1±1.9% 86.1±4.7% 80.1±15.2%
0.4 80.3±16.2% 75.8±12.1% 72.2±17.7% 86.9±3.8% 80.5±8.6% 76.0±15.8%
0.5 71.1±9.6% 64.5±12.8% 59.1±14.2% 73.7±3.8% 68.4±4.6% 66.7±9.8%
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Table 11: AI2THOR Expert Dataset

ID Observation Environmental Difference Physical Property Expert Episode

Brightness Contrast Saturation Hue Camera Step Size Rotation Degree Look Degree SPL Length

1 1.0 1.0 1.0 0.0 63.5 0.25 30.0° 30.0° 0.90 9.58

2 1.0 1.0 1.0 0.0 29.7 0.25 30.0° 30.0° 0.92 23.30

3 1.0 1.0 1.0 0.4 63.5 0.25 30.0° 30.0° 0.90 9.50

4 1.0 1.0 1.0 0.0 63.5 0.25 5.0° 30.0° 0.91 24.90

5 1.0 1.0 1.0 0.0 46.0 0.25 30.0° 30.0° 0.88 35.80

6 1.0 1.0 1.7 0.0 63.5 0.25 30.0° 30.0° 0.90 9.58

7 1.0 1.0 1.0 0.0 63.5 0.01 30.0° 30.0° 0.97 110.0

8 1.0 3.3 1.0 0.0 63.5 0.25 30.0° 30.0° 0.90 9.58

9 1.0 1.0 1.0 0.0 92.9 0.25 30.0° 30.0° 0.84 8.82

10 1.0 1.0 1.0 0.0 127.0 0.25 30.0° 30.0° 0.82 8.58
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Table 12: Egocentric-Metaworld Expert Dataset

ID Observation Environmental Difference Physical Property Expert Episode

Brightness Contrast Saturation Hue Camera Position Wind Gravity Rewards Length

1 1.0 1.0 1.0 0.0 1.0 0.0 0.0 315.48 48.00

2 1.0 1.0 1.0 0.0 2.0 0.0 0.0 315.48 48.00

3 1.0 1.0 1.0 0.0 2.0 0.0 9.0 199.14 35.00

4 1.0 1.0 1.0 0.0 3.0 0.0 1.0 315.48 48.00

5 1.0 3.3 1.0 0.0 2.0 0.0 1.0 315.48 48.00

6 1.0 1.0 1.7 0.0 2.0 0.0 1.0 315.48 48.00

7 1.0 1.0 1.0 0.0 2.0 8.0 1.0 387.49 56.00

8 1.0 1.0 1.0 0.4 2.0 0.0 1.0 315.48 48.00

9 1.5 1.0 1.0 0.0 2.0 0.0 1.0 315.48 48.00

10 1.0 1.0 1.0 0.0 2.0 0.0 1.0 252.86 41.00
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Table 13: CARLA Expert Dataset

ID Observation Environmental Difference Physical Property Expert Episode

Weather Daytime Control Sensitivity Camera Position Field of View Rewards Length

1 Clear Sunset (100%, 100%, 100%) high 75 ° 2691.8 758

2 Clear Noon (100%, 85%, 100%) low 60 ° 2713.2 749

3 Cloudy Night (85%, 100%, 85%) low 90 ° 2747.9 733

4 Clear Sunset (100%, 100%,100%) high 110 ° 2742.8 733

5 Cloudy Noon (100%, 85%, 100%) low 60 ° 2746.6 736

6 MidRainy Sunset (70%, 70%, 85%) low 60 ° 2736.9 734

7 MidRainy Noon (100%, 85%, 70%) low 60 ° 2735.2 736

8 SoftRainy Nigjht (70%, 70%, 70%) low 60 ° 2716.8 746

9 Cloudy Sunset (70%, 70%, 100%) low 60 ° 2739.8 731

10 Clear Sunset (100%, 100%, 100%) high 95 ° 2725.7 738
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