
A Subset Sum Approximation

In the discussed LT constructions, we generally have multiple random neurons and parameters
available to approximate a target parameter z by bz up to error ✏ so that |z � bz|  ✏. Let us denote
these random parameters in the source network as Xi. If these contain a uniform distribution, as
defined below, we can utilize a subset of them for approximating z.
Definition A.1. A random variable X contains a uniform distribution if there exist constants ↵ 2
(0, 1], c, h > 0 and a distribution G1 so that X is distributed as X ⇠ ↵U [c� h, c+ h] + (1� ↵)G1.

[3] extended results by [30] to solve subset sum approximation problems if the random variables
are not necessarily identically distributed. In addition, they also cover the case |z| > 1. The general
statement follows below.
Corollary A.2 (Subset sum approximation [30, 3]). Let X1, ..., Xm be independent bounded random

variables with |Xk|  B. Assume that each Xk ⇠ X contains a uniform distribution with potentially

different ↵k > 0 (see Definition A.1) and c = 0. Let ✏, � 2 (0, 1) and t 2 N with t � 1 be given.

Then for any z 2 [�t, t] there exists a subset S ⇢ [m] so that with probability at least 1� � we have
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In the two-layers-for-one construction, each Xk is given by a product Xk = w
(l+1)
0,ik w

(l)
0,kj . Products of

uniform distributions or normal distributions generally contain a uniform distribution [37]. However,
↵i < 1 is smaller for such products. In consequence, we can utilize a higher fraction of available
parameters in case of a one-layer-for-one construction in comparison with a two-layers-for-one
construction. Yet, this insight only affects the universal constant and is thus of minor influence.

B Proofs

B.1 Proof of Lemma 2.4

Statement (Representation of the identity). For any ✏
0
> 0, for a function �(x) that fulfills Assump-

tion 2.3 with a = a(✏0) > 0, and for every x 2 [�a, a] we have
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Proof. According to Assumption 2.3, for any x 2 [�a(✏0), a(✏0)] we have |�(x)�(µ±(x)x+d)|  ✏
0,

where µ±(x) = m+x if x � 0 and µ±(x) = m�x otherwise. It follows that

|�(x)� �(�x)� (µ±(x)x+ d� µ±(�x)x� d)| |�(x)� µ±(x)x+ d)|
+ |�(�x)� µ±(�x)x+ d|  2✏0.

(3)

Note that µ±(x)x+ d�µ±(�x)x� d = µ±(x)�µ±(�x) = (m++m�)x. Thus, dividing Eq. (3)
by (m+ +m�) proves the statement.

B.2 Proof of Theorem 2.5

Statement (LT Existence (Two-for-One)). Assume that ✏0, �0 2 (0, 1), a target network layer ft(x) :
D ⇢ Rn0 ! Rn1 with ft,i(x) = �t

⇣Pn0
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, and two source network layers fs are

given with architecture [n0, ns,1, n1] and activation functions �0 in the first and �t in the second
layer. Let �0 fulfill Assumption 2.3 with a > 0 and d = 0, �t have modulus of continuity
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Then, with probability at least 1 � �
0, fs contains a subnetwork f✏0 ⇢ fs so that each output

component i is approximated as maxx2D |ft,i(x)� f✏0,i(x)|  ✏
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ns,1 � Cn0 log
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Proof. The construction of a LT consists of three main steps. First, we prune the hidden neurons of
fs to univariate form. Second, we identify neurons in the hidden layer for which we can approximate
�0 for small inputs according to Assumption 2.3. Third, if ns,1 is large enough, we can select
subsets Ij and Ib of the hidden neurons with small inputs so that we can use Thm. A.2 on subset sum
approximation to approximate the parameters of the target network. The resulting subnetwork of fs
is of the following form f✏0,i(x) = �t
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This also applies to the approximation of bt,i, respectively. To achieve this, we would like to
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Let us first focus on the subset sum approximation. It helps to split the index set Ij into indices I+j
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consequence, we have������
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Thm. A.2 can guaranty a small enough error with probability 1 � �
0. As we have to solve two

subset sum approximation problems per parameter and thus 2(n0 + 1)nt,1 in total, we need to
solve each of them successfully with probability at least 1 � �

0
/(2(n0 + 1)nt,1), which can be

seen with the help of a union bound. The random variables that are used in the approximation
are given by Xk = |m+ + m�|w(2)

ik w
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kj . The initial scaling of the random variables is exactly

chosen so that Xk is given by the product of two uniform random variables Xk ⇠ U [�1, 1]U [0, 1] or
Xk ⇠ U [�1, 1]U [�1, 0], which contain a normal distribution as shown by [36]. Therefore, Thm. A.2
states that if

n � C log

 
n0

min
�
�0/nt,1,!

�1
t (✏0) /M

 
!

(8)

random variables are available for each subset sum approximation and thus n �
Cn0 log

�
n0/min{�,!�1

t (✏0) /M}
�

in total, we can achieve the desired subset sum approxima-
tion error.

It is left to show how we can obtain the necessary activation function approximation in Eq. (7). The
relevant term vanishes for a(✏00) = 1 and the claim follows directly. In the following, we discuss
therefore only the case that a(✏00) is finite.������
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where we have used that
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M and the fact that the approximation
of the activation function is valid with ✏

00 by construction. Note that the required number of subset
elements |Ij | in the subset sum approximation is usually much smaller than the used upper bound of
the whole set size as given by Eq. (8). To arrive at the end of the proof, we only have to choose ✏
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We also need that lim✏00!0 g(✏00) = 0 to make sure that we can always find a suitable ✏
00 for any

choice of ✏0. Furthermore, note that, if m+ = m� = m, we do not need to distinguish w
(1)
kj > 0

and w
(1)
kj < 0 to do separate approximations. In this case, we only need to solve n0 + 1 subset sum

approximation problems.

To give an example for g, let us recall that for tanh (and sigmoids) we have a(✏00) = C✏
001/3. In

consequence, g(✏00) = ✏00
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002/3 and thus g
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3/2 so that ✏00 is of order ✏
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B.3 Proof of Thm. 2.6

Statement (LT Existence (Two-for-One) with Non-Zero Intercept). Thm. 2.5 applies also to activation
functions �0 that fulfill Assumption 2.3 with d 6= 0 if the parameters are initialized according to
Assumption 2.2 with M

(l)
0 distributed as the weights in Thm. 2.5.

Proof. We can closely follow the steps of the previous proof. The major difference is that we
approximate �0 (x) ⇡ µ±(x)x+ d. This turns the activation function approximation in Eq. 7 into
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In principle, we could have modified the bias subset sum approximation by approximating bt,i +
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with a smaller C than in Thm. 2.5 but we do not derive the precise constant anyways.

Note that even in the case m+ = m� = m, if d 6= 0, we distinguish the cases w(1)
kj > 0 and w
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to do separate approximations, as this leads to a vanishing
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B.4 Proof of Lemma 2.8

Statement (Error propagation). Let two networks f1 and f2 of depth L have the same architecture
and activation functions with Lipschitz constant T . Define Ml := supx2D
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Proof. Using the Lipschitz continuity of the activation function, we obtain for each component of the
difference between the two networks
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where we have assumed that each |w(L)
1,ij |  1. The above lemma further assumes that each parameter

in layer L of network 2 is maximally |w(L)
2,ij |  |w(L)
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We have to ensure that this expression is smaller or equal to ✏. This can by achieved by assigning to
each term that is related to a layer l the maximum error ✏/L. It follows that also ✏l  ✏/(Lnl) so that
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Solving the last inequality for ✏l proves our claim.

B.5 Proof of Theorem 2.9

Statement (LT existence (L + 1 construction)). Assume that ✏, � 2 (0, 1), a target network ft(x) :
D ⇢ Rn0 ! RnL with architecture n̄t of depth L, Nt non-zero parameters, and a source network
fs with architecture n̄0 of depth L + 1 are given. Let �t be the activation function of ft and the
layers l � 2 of fs with Lipschitz constant T , �0 be the activation function of the first layer of
fs fulfilling Assumption 2.3, and M := max{1,maxx2D,l

���x(l)
t

���}. Let the parameters of fs be
conveniently initialized according to Assumption 2.1 for l � 2 and Thm. 2.5 or 2.6 for l  1. Then,
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with probability at least 1� �, fs contains a subnetwork f✏ ⇢ fs so that each output component i is
approximated as maxx2D |ft,i(x)� f✏0,i(x)|  ✏ if for l � 1

ns,l+1 � Cnt,l log

✓
1

min{✏l+1, �/⇢}

◆
,

where ✏l+1 is defined by Lemma 2.8 and ⇢ = CN
1+�
t log(1/min{minl ✏l, �}) for any � > 0.

Furthermore, we require ns,1 � Cnt,1 log
⇣

1
min{✏l+1,�/⇢}

⌘
.

Proof. The proofs of Thms. 2.6, 2.5, and 2.7 have already explained the main parts of the construction.
The missing piece is the choice of appropriate modification of � by ⇢ � ⇢

0 =
PL

l=1 ⇢
0
l, where ⇢

0

counts the increased number of required subset sum approximation problems to approximate the L

target layers with our lottery ticket and ⇢l counts the same number just for Layer l.

For each non-zero parameter, we will need two solve at least one subset sum approximation problem
or sometimes two in case of the first target layer. We denote the number of non-zero parameters in
Layer l as Nl. Thus, if our target network is fully-connected and all parameters are non-zero, we
have Nl = nt,l(nt,l�1 + 1) and in total Nt =

PL
l=1 nt,l(nt,l�1 + 1).

Let us start with counting the number ⇢0L of required subset sum approximation problems in the last
layer because it determines how many neurons we need in the previous layer. This in turn defines
how many subset sum approximation problems we have to solve to construct this previous layer.

The last layer requires us to solve exactly ⇢
0
L = NL subset sum problems, which can be solved

successfully with high probability if ns,L�1 � Cnt,L�1 log(1/min{✏L, �/⇢0}). We will only
need to construct a subset of these neurons with the help of Layer L � 2, i.e., exactly the neu-
rons that are used in the lottery ticket. If ns,L�1 is large, this might require only 2 � 3 neu-
rons per parameter. For simplicity, however, we bound this number by the total number of avail-
able neurons. To reconstruct one set of neurons, we need approximate NL�1 parameters. As
we have to maximally construct C log(1/min{✏L, �/⇢0}) sets of these neurons, we can bound
⇢
0
L�1  CNL�1 log(1/min{✏L, �/⇢0}.

Note that we can solve all of these subset sum approximation problems with the help of nt,L�2 �
CNL�2 log(1/min{✏L�1, �/⇢

0} neurons and this number does not increase by the fact that we have
to construct not only nt,L�1 neurons but a number of neurons that is increased by a logarithmic factor.
The higher number of required neuron approximations only affects the number of required subset sum
approximation problems and thus the needed success probability of each parameter approximation
via ⇢.

Repeating the same argument for every layer, we derive ⇢
0
l  CNl log(1/min{✏l+1, �/⇢

0},
which could also be shown formally by induction. In total we thus find ⇢

0 =
PL

l=1 ⇢
0
l 

CNl log(1/min{minl ✏l, �/⇢0})  CNt log(1/min{minl ✏l, �/⇢}). A ⇢ that fulfills ⇢ �
CNt log(1/min{minl ✏l, �/⇢}) would therefore be sufficient to prove our claim. ⇢ =
CN

1+�
t log(1/min{✏, �}) for any � > 0 works, as CN

�
t � log(Nt).
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