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A EXPERIMENT DETAILS

In the synthetic experiments, V̂ is initialized randomly so M ∈ R50×50 is constructed as a diagonal
matrix without loss of generality. The linear spectrum ranges from 1 to 1000 with equal spacing. The
exponential spectrum ranges from 103 to 100 with equal spacing on the exponents.

A.1 CLARIFICATION OF OJA VARIANTS

As discussed in Section 5, it is easy to confuse the various Oja methods. In our experiments, Oja’s
algorithm refers to applying Hebb’s rule vi ← vi + ηMvi followed by an orthonormalization step
computed with QR as in Algorithm 3:

Algorithm 3 Oja’s Algorithm

Given: data stream, Xt ∈ Rm×d, T , V̂ 0 ∈ Sd−1×. . .×Sd−1, step size η
V̂ ← V̂ 0

mask← LT(2Ik − 1k)
for t = 1 : T do

V̂ ← V̂ + ηX>t XtV̂

Q,R← QR(V̂ )
S = sign(sign(diag(R)) + 0.5)

V̂ = QS
end for
return V̂

where 1k is a k × k matrix of all ones, LT returns the lower-triangular part of a matrix (includes

the diagonal), and sign =


−1 if x < 0

0 if x = 0

1 if x > 0

. Oja’s algorithm is the standard nomenclature for this

variant in the machine learning literature (Allen-Zhu and Li, 2017).

In the scaled-down RESNET experiments (see Section H.3), we use Hebb’s rule with deflation, also
sometimes referred to as Oja’s. Deflation is accomplished by directly subtracting out the parent
vectors from the dataset. In detail, each batch of data samples, Xt ∈ Rm×d, is preprocessed
as X(i),t ← Xt(I −

∑
j<i v̂j v̂

>
j ). Then to learn each v̂i, we repeatedly apply Hebb’s rule with

Mt = X>(i),tX(i),t and then v̂i ← v̂i
||v̂i|| to project v̂i back to the unit-shere. After several iterations t

and once v̂i’s Rayleigh quotient appears to have stabilized, we move on to v̂i+1.
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Figure 6: Approximate Eigenvalue Spectrum of RESNET-200 Activations.
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Figure 6 shows a scree plot of the Rayleigh quotients recovered by EigenGame and the respective
utility achieved by each player. The two curves almost perfectly overlap. The mean relative
magnitude of the penalty terms to the respective Rayleigh quotient in the utility is 0.025 indicating
that the solutions of each player are close to orthogonal with respect to the generalized inner product
(Equation (6)). This implies that that the solutions are indeed eigenvectors. The scree plot has two
distinct elbows at PC2 and PC6, corresponding to the differences in filters observed in Figure 5b.

C SYNTHETIC EXPERIMENTS—FIGURES ENLARGED
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Figure 7: The longest streak of consecutive vectors with angular error less than π
8 radians is plotted

versus algorithm iterations for a matrix M ∈ R50×50 with a spectrum decaying from 1000 to 1
linearly (a) and exponentially (b). Average runtimes are reported in milliseconds next to the method
names.9 We omit Krasulina’s as it is only designed to find the top-k subspace. Both EigenGame
variants and GHA achieve similar asymptotes on the linear spectrum. Learning rates were chosen
from {10−3, . . . , 10−6} on 10 held out runs. Solid lines denote results with the best performing
learning rate. Dotted and dashed lines denote results using the best learning rate × 10 and 0.1. All
plots show means over 10 trials. Shaded regions highlight ± standard error of the mean for the best
performing learning rates.

D MNIST EXPERIMENTS—FIGURES ENLARGED

See Appendix I.

9EigenGame runtimes are longer than those of EigenGameR in the synthetic experiments despite strictly
requiring fewer FLOPS; apparently this is due to low-level floating point arithmetic specific to the experiments.
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E RESNET-200 EXPERIMENTS—FIGURES ENLARGED

Figures 8 and 9 show enlarged versions of Figures 5a and 5b from the main body.
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Figure 8: Top-8 principal components of the activations of a RESNET-200 on IMAGENET ordered
block-wise by network topology (dimension of each block on the right y-axis). Block 1 is closest to
input and Block 5 is the output of the network. Color coding is based on relative variance between
blocks across the top-8 PCs from blue (low) to red (high).
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Figure 9: Block 1 mean activation maps of the top-32 principal components of RESNET-200 on
IMAGENET computed with EigenGame.

F EIGENGAME VECTORIZED FOR CPU

Algorithm 4 presents Algorithm 2 in a vectorized form for implementation on a CPU. LT returns the
lower-triangular part of a matrix (includes the diagonal). sum(A,dim = 0) sums over the rows of A.
norm(A,dim = 0) returns an array with the L2-norm of each column of A. � denotes elementwise
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multiplication. 1k is a square k× k matrix of all ones. Ik is the k× k identity matrix. When dividing
a matrix by a vector (A/v), we assume broadcasting. Specifically, v is interpreted as a row-vector
and stacked vertically to match the dimensions of A; the two matrices are then divided element wise.

Algorithm 4 EigenGame & EigenGameR—Vectorized

Given: data stream, Xt ∈ Rm×d, T , V̂ 0 ∈ Sd−1×. . .×Sd−1, step size α
V̂ ← V̂ 0

mask← LT(2Ik − 1k)
for t = 1 : T do

R← (XtV̂ )>(XtV̂ )
Rnorm ← R/diag(R)

Gs ← V̂ (Rnorm � mask)>

∇V̂ ← X>t (XtGs)

∇R
V̂
−= V̂ sum(∇V̂ � V̂ ,dim = 0)

V̂ ← V̂ + α∇R
V̂

V̂ ← V̂ /norm(V̂ ,dim = 0)
end for
return V̂

G SMALLEST EIGENVECTORS

EigenGame can be used to recover the k smallest eigenvectors as well. Simply use EigenGame
to estimate the top eigenvector with eigenvalue Λ11. Then run EigenGame on the matrix M ′ =
Λ11I −M . The top-k eigenvectors of M ’ are the bottom-k eigenvectors of M . For example, the dth
eigenvector of M , vd, is the largest eigenvector of M ′: M ′vd = Λ11vd −Mvd = (Λ11 − Λdd)vd.

H FREQUENT DIRECTIONS

A reviewer from a previous submission of this work requested a comparison and discussion with
Frequent Directions (Ghashami et al., 2016), another decentralized subspace-error minimizing k-PCA
algorithm. Frequent Directions (FD) is a streaming algorithm that maintains an overcomplete sketch
matrix with the goal of capturing the subspace of maximal variance within the span of its vectors.
Each step of FD operates by first replacing a row of the sketch matrix with a single data sample. It
then runs SVD on the sketch matrix and uses the resulting decomposition to construct a new sketch.
Note that FD relies on SVD as a core inner step. In theory, EigenGame could replace SVD, however,
we do not explore that direction here.

H.1 RECOVERING PRINCIPAL COMPONENTS FROM PRINCIPAL SUBSPACE

FD returns a sketch B = V̂ > of size R2l×d where l ≥ k. The rows of FD are not principal
components, but they should approximate the top-k subspace of the dataset. To recover approximate
principal components, the optimal rotation of the vectors can be computed with Q← SV D(XB>).
This can be shown by inspecting R (as defined in Section 2) with rotated vectors:

(V̂ Q)>M(V̂ Q) = Q>V̂ >MV̂ Q = Q>(XV̂ )>(XV̂ )Q = Q>M ′Q. (9)

By inspection, the problem of computing the optimal Q reduces to computing the eigenvectors of
M ′ ∈ Rk×k. This requires projecting the dataset into the principal subspace, (XV̂ ), to compute M ′
however, this is typically a desired step anyways when performing PCA.
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H.2 COMPLEXITY ANALYSIS

We base our analysis on Section 3.1 of (Ghashami et al., 2016) which discusses parallelizing FD. Let
b be number of shards to split the original dataset X ∈ Rn×d into, each shard being in Rn

b×d. Let k
be the number of principal components sought. Finally, let l = dk + 1

ε e be the sketch size where
ε� 1 is a desired tolerance on the Frobenius norm of the subspace approximation error.

The runtime of FD isO(nld); call this Anld for some A. To decentralize FD, (Ghashami et al., 2016)
instructs to

1. Split X into b shards and run FD on each individually in parallel.

• total runtime: A(nb )ld = Anld( 1
b )

• output: b sketches (Bi ∈ R2l×d)

2. Merge sketches and run FD on the merged sketch to produce sketch B.

• total runtime: A(2lb)ld = Anld( 2bl
n )

• output: 1 sketch (B ∈ R2l×d)

Finally, normalize the rows of B, project the dataset Y ← XB>, compute the right-singular
vectors of the projected dataset, Q ∈ R2l×2l ← SV D(Y ), compute V̂ ← B>Q, and compute the
corresponding Rayleigh quotients V̂ >MV̂ = (Y Q)>(Y Q) to determine the top-k eigenvectors with
error within the desired tolerance. We assume this final step takes negligible runtime because we
assume 2l� d, however, for datasets with many samples (large n), this step could be nonnegligible
without further approximation.

Using the runtimes listed above, we can determine the potential runtime multiplier from decentraliza-
tion is ( 1

b + 2bl
n ) which is convex in b. If we minimize this w.r.t. b for the optimal number of shards,

we find b∗ =
√

n
2l . Plugging this back in gives an optimal runtime multiplier of 2

√
2
√

l
n .

The analysis above only considers one recursive step. Step 1) can be decentralized as well. For
simplicity, we assume the computation is dominated by Step 2), the merge step. Note these relaxations
result in a lower bound on FD runtime, i.e., they favor FD in a comparison with EigenGame.

H.3 SMALL IMAGENET EXPERIMENTS

Consider running on a scaled down RESNET-50 experiment which has approximately 1.2M images
(n = 1.2× 106, 24TB) and searching for the top-25 eigenvectors (k = 25). Using a modest ε = 0.25

k
implies l = 5k = 125 with optimal batch size b∗ ≈ 70. Therefore, running FD on n

b samples with a
sketch size of 125 should give a rough lower bound on the runtime for an optimally decentralized FD
implementation. The runtime obtained was 9 hours for FD vs 2 hours for EigenGame which actually
processes the full dataset 3 times.
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Figure 10: Comparison of mean activation maps between Oja’s with deflation, EigenGame, and FD
for a section of the top principal components of RESNET-50 on IMAGENET.

The reason we run FD on a scaled down RESNET-50 experiment as opposed to the RESNET-200 is
that the algorithm requires a final SVD step to recover the actual eigenvectors and we were not able
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to run SVD on a sketch of size k× d where d = 20× 106 for the full scale experiment. That is to say
FD is not applicable in this extremely large data regime. In contrast, EigenGame handles this setting
without modification.

To obtain an approximate “ground truth” solution for the principal components we run Oja’s algorithm
with a low learning rate with a batch size of 128 for 3 epochs to extract the first eigenvector. We find
successive eigenvectors using deflation. By running each step for many iterations and monitoring
the convergence of the Rayleigh quotient (eigenvalue) v>i Mvi, we can control the quality of the
recovered eigenvectors. This is the simplest and most reliable approach to creating ground truth on a
problem where no solution already exists. See Section A.1 for further details.

I GRADIENT BIAS

As expected, Figure 11 shows the performance of EigenGame degrades in the low batch size regime.
This is expected because we use the same minibatch for all inner products in the gradient which
contains products and ratios of random variables. GHA, on the other hand, is linear in the matrix
M and as such is naturally unbiased. However, GHA does not appear to readily extend to more
general function approximators, whereas EigenGame should. Instead we look to reduce the bias of
EigenGame gradients using larger batch sizes (current hardware easily supports batches of 1024 for
MNIST and 128 for IMAGENET). Further reducing bias is left to future work.

J TO PROJECT OR NOT TO PROJECT?

Projecting the update direction onto the unit-sphere, as suggested by Riemannian optimization
theory, can result in much larger update steps. This effect is due to the composition of the retraction
(z′ ← z̃/||z̃||) and update step (z̃ ← z+∆z). Omitting the projection can actually mimic modulating
the learning rate, decaying it near an equilibrium and improving stability.

K THEORETICAL COMPARISON WITH GHA

Proposition K.1. When the first i−1 eigenvectors have been learned exactly, GHA on v̂i is equivalent
to projecting the first term in∇v̂iui onto the sphere, but omitting to project the second set of penalty
terms.

Proof. The GHA update is

∆v̂i = 2
[
Mv̂i − (v̂>i Mv̂i)v̂i −

∑
j<i

(v̂>i Mv̂j)v̂j

]
. (10)

Plugging vj<i for v̂j<i into the GHA update, we find

∆i = 2
[
Mv̂i − (v̂>i Mv̂i)v̂i −

∑
j<i

(v̂>i Mvj)vj

]
(11)

= 2
[
Mv̂i − (v̂>i Mv̂i)v̂i −

∑
j<i

Λjj(v̂
>
i vj)vj

]
. (12)

Likewise for the gradient with the first term projected onto the tangent space of sphere:

2
[
(I − v̂iv̂>i )Mv̂i −M

∑
j<i

v̂>i Mvj
v>j Mvj

vj

]
= 2
[
(I − v̂iv̂>i )Mv̂i −M

∑
j<i

(v̂>i vj)vj

]
(13)

= 2
[
Mv̂i − (v̂>i Mv̂i)v̂i −

∑
j<i

Λjj(v̂
>
i vj)vj

]
. (14)

Proposition K.2. The GHA update for v̂i is not the gradient of any function.
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(b) Subspace Distance

Figure 11: (a) The longest streak of consecutive vectors with angular error less than π
8 radians is

plotted vs algorithm iterations on MNIST for minibatch sizes of 1024 (top), 512 (middle), and 256
(bottom). Shaded regions highlight ± standard error of the mean for the best performing learning
rates. Average runtimes are reported in seconds next to the method names. (b) Subspace distance
on MNIST. (a,b) Learning rates were chosen from {10−3, . . . , 10−6} on 10 held out runs. All plots
show means over 10 trials.

Proof. The Jacobian of ∆v̂i w.r.t. v̂i is

Jac(∆v̂i) = 2
[
M − (v̂>i Mv̂i)I − 2v̂iv̂

>
i M −

∑
j<i

v̂j v̂
>
j M

]
. (15)

The sum of the v̂v̂>M terms are not, in general, symmetric, therefore, the Jacobian is not symmetric.
The Jacobian of a gradient is the Hessian and the Hessian of a function is necessarily symmetric,
therefore, the GHA update is not the gradient of any function.

K.1 DESIGN DECISIONS

We made a number of algorithmic design decisions that led us to the proposed algorithm. The first to
note is that a naive utility that simply subtracts off

∑
j<i〈v̂i, v̂j〉 will not solve PCA. This is because

large 〈v̂i,Mv̂i〉 (read eigenvalues) can drown out these penalties. The intuition is that including M
in the inner product gives the right boost to create a natural balance among terms. Next, it is possible
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Figure 12: (a) When the v̂i is near the optimum of its utility and its gradient is nearly orthogonal to
the sphere, pointing directly away from the center (@ 90◦), the combination of updating using the
projected gradient (∇R) and the retraction can result in a large update, possibly moving v̂i away from
the optimum. (b) Diagram presenting Riemannian optimization terminology. The retraction is not a
projection in general although our specific choice appears that way for the sphere. A retraction applied
at v̂i takes as input a scaled projected gradient and returns a vector on the manifold: v̂′i ← Rv̂i(α∇R).

to formulate the utilities without normalizing the terms as we did, however, this is harder to analyze
and is akin to minimizing (err)4 instead of (err)2 which generally has better convergence properties
near optima. Also, while updates formed using the standard Euclidean Gram-Schmidt procedure will
solve the PCA problem, they are not the gradients of any utility function. Lastly, our formulation
consists entirely of generalized inner products: 〈v̂i,Mv̂j〉 = 〈Xv̂i, Xv̂j〉. Each Xv̂i can be thought
of as a shallow function approximator with weights v̂i. This means that our formulation is readily
extended to more general function approximation, i.e., Xv̂i → fi(X)10. Note that any formulation
that operates on 〈v̂i, v̂j〉 instead is not easily generalized.

L NASH PROOF

Let V̂ be a matrix of arbitrary unit-length column vectors (v̂j) and let M (symmetric) be diagonalized
as UΛU> with U a unitary matrix. Then,

R
def
= V̂ >MV̂ = V̂ >UΛU>V̂ = (U>V̂ )>Λ(U>V̂ ) = Z>ΛZ (16)

where Z is also a matrix of unit-length column vectors because unitary matrices preserve inner
products (〈U>v̂i, U>v̂i〉 = v̂>i UU

>v̂i = v̂>i v̂i = 1). Therefore, rather than considering the action
of an arbitrary matrix V̂ on M , we can consider the action of an arbitrary matrix Z on Λ. This
simplifies the analysis.

In light of this reduction, Equation (22) of Theorem L.1 can be rewritten as

ui(v̂i|vj<i) = w>Λjj≥iiw (17)

= v̂>i Λjj≥iiv̂i (18)

because V is identity w.l.o.g. Therefore, player i’s problem is simply to find the maximum eigenvector
of a transformed matrix Λjj≥ii, i.e., Λ with the first i− 1 eigenvalues removed.
Theorem L.1 (PCA Solution is the Unique strict-Nash Equilibrium). Assume that the top-k eigen-
values of X>X are positive and distinct. Then the top-k eigenvectors form the unique strict-Nash
equilibrium of the proposed game in Equation (6).

Proof. In what follows, let p, q = {1, . . . , d} and i ∈ {1, . . . , k}. We will prove optimality of vi
by induction. Clearly, v1 is the optimum of u1 because u1 = 〈v1,Mv1〉 = 〈v1,Mv1〉

〈v1,v1〉 = Λ11 is the
Rayleigh quotient which is known to be maximized for the maximal eigenvalue (Horn and Johnson,

10Empirically, replacing ||v̂i|| = 1 with ||v̂i|| ≤ 1 does not harm performance while the latter is easier to
enforce on neural networks for example (Virmaux and Scaman, 2018).
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2012). Now, Consider v̂i =
∑d
p=1 wpvp as a linear combination of the true eigenvectors. To ensure

||v̂i|| = 1, we require ||w|| = 1. Then,

ui(v̂i|vj<i) = v̂>i Mv̂i −
∑
j<i

(v̂>i Mvj)
2

v>j Mvj
= v̂>i Mv̂i −

∑
j<i

(v̂>i Mvj)
2

Λjj
(19)

=
(∑

p

∑
q

wpwqv
>
p Mvq

)
−
∑
j<i

(∑
p

wpv
>
p Mvj

)2

/Λjj (20)

=
(∑

p

∑
q

wpwqΛqqv
>
p vq

)
−
∑
j<i

(∑
p

wpΛjjv
>
p vj

)2

/Λjj (21)

=
∑
q

w2
qΛqq −

∑
j<i

Λjjw
2
j =

∑
p≥i

Λppzp (22)

where zp = w2
p, and z ∈ ∆d−1 which is a linear optimization problem over the simplex. For distinct

Λpp with Λii > 0, z∗ = arg max(Λpp≥ii) = ei is unique. Assume each player i plays ei. Any player
j that unilaterally deviates from ej strictly decreases their utility, therefore, the Nash is unique up to a
sign change due to z∗ = ei = w2

i . This is expected as both vi and −vi are principal components.

M WITHOUT THE HIERARCHY

In Section 2, we defined utilities to respect the natural hierarchy of eigenvectors sorted by eigenvalue
and mentioned that this eased analysis. Here, we provide further detail as to the difficulty of analyzing
the game without the hierarchy. Consider the following alternative definition of the utilities:

ui(v̂i|v̂−i) = v̂>i Mv̂i −
∑
j 6=i

(v̂>i Mv̂j)
2

v̂>j Mv̂j
(23)

where the sum is now over all j 6= i instead of j < i as in Equation (6). With this form, the game is
now symmetric across all players i. Despite the symmetry of the game, we can easily rule out the
existence of a symmetric Nash.
Proposition M.1. The EigenGame defined using symmetric utilities in Equation (23) does not contain
a symmetric Nash equilibrium (assuming k ≥ 2 and rank(M) ≥ 2).

Proof by Contradiction. Assume a symmetric Nash exists, i.e., v̂i = v̂j for all i, j. The utility of a
symmetric Nash using equation Equation (23) is

ui(v̂i|v̂−i) = (1− (n− 1))(v̂>i Mv̂i) = (2− n)(v̂>i Mv̂i) ≤ 0. (24)

Consider a unilateral deviation of v̂i to a direction orthogonal to v̂i, i.e., v̂⊥ ⊥ v̂i such that

ui(v̂⊥, v̂−i) = (v̂>⊥Mv̂⊥) > 0. (25)

This utility is positive because rank(M) ≥ 2 and therefore, always greater than the supposed Nash.
Therefore, there is no symmetric Nash.

We can also prove that the true PCA solution is a Nash of this version of EigenGame.
Proposition M.2. The the top-k eigenvectors of M form a strict-Nash equilibrium of the EigenGame
defined using symmetric utilities in Equation (23) (assuming rank(M) ≥ k).

Proof. Let v̂i = vi. We will assume this standard ordering, however, the proof follows through
for any permutation of the eigenvectors. Clearly, the largest eigenvector is a best response to the
spectrum because the penalty term (2nd term in Equation (23)) cannot be decreased below zero and
the Rayliegh term (first term) is maximal, i.e., v1 = arg maxv̂1 u1(v̂1, v−1). So assume vi is another
eigenvector and consider representing v̂i as v̂i =

∑d
p=1 wpvp as before in Section L. Repeating those

same steps, we find

ui(v̂i, v−i) =
∑
q

w2
qΛqq −

∑
j 6=i

Λjjw
2
j = Λiizi (26)

20



Published as a conference paper at ICLR 2021

where zk = w2
k, z ∈ ∆n−1. Assuming Λii > 0, this objective is uniquely maximized for zi = 1 and

zk = 0 for all k 6= i. Therefore, vi = arg maxv̂i ui(v̂i, v−i).

However, we were unable to prove that it is the only Nash. It is possible that other Nash equilibria
exist. Instead of focusing on determining whether a second Nash equilibrium exists (which is NP-
hard (Daskalakis et al., 2009; Gilboa and Zemel, 1989)), we learned through experiments that the
EigenGame variant that incorporates knowledge of the hierarchy is much more performant. We leave
determininig uniquess of the PCA solution for the less performant variant as an academic exercise.
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N ERROR PROPAGATION

N.1 GENERALITIES

Notation. We can parameterize a vector on the sphere using the Riemannian exponential map, Exp,
applied to a vector deviation from an anchor point. Formally, let v̂j = Expvj (θj∆j) = cos(θj)vj +

sin(θj)∆j where vj is the jth largest eigenvector and ∆j ∈ Sd−1 is such that 〈∆j , vj〉 = 0.
Therefore, θj measures how far v̂j deviates from vj in radians and ∆j denotes the direction of
deviation.

Let Λii denote the ith largest eigenvalue and vi the associated eigenvector. Also define the eigenvalue
gap gi = Λii − Λi+1,i+1. Finally, let κi = Λ11

Λii
denote the ith condition number.

The following Lemma decomposes the utility of a player when the parents have learnt the preceding
eigenvectors perfectly.
Lemma N.1. Let v̂i = cos(θi)vi + sin(θi)∆i without loss of generality. Then

ui(v̂i, vj<i) = ui(vi, vj<i)− sin2(θi)
(

Λii −
∑
l>i

zlΛll

)
. (27)

Proof. Note that ∆i can also be decomposed as ∆i =
∑d
l=1 wlvl, ||w|| = 1 without loss of generality

and that by Theorem L.1, this implies ui(∆i, vj<i) =
∑
l≥i zlΛll. This can be simplified further

because 〈∆i, vi〉 = 0 by its definition, which implies that zi = 0. Therefore, more precisely,
ui(∆i, vj<i) =

∑
l>i zlΛll. Continuing we find

ui(v̂i, vj<i) = 〈v̂i,Λv̂i〉 −
∑
j<i

〈v̂i,Λvj〉2

〈vj ,Λvj〉
(28)

= 〈v̂i,Λv̂i〉 −
∑
j<i

Λjj〈v̂i, vj〉2 (29)

= (cos2(θi)Λii + sin2(θi)〈∆i,Λ∆i〉)−
∑
j<i

Λjj〈cos(θi)vi + sin(θi)∆i, vj〉2 (30)

= (cos2(θi)Λii + sin2(θi)〈∆i,Λ∆i〉)−
∑
j<i

Λjj sin2(θi)〈∆i, vj〉2 (31)

= Λii − sin2(θi)Λii + sin2(θi)
[
〈∆i,Λ∆i〉 −

∑
j<i

Λjj〈∆i, vj〉2
]

(32)

= ui(vi, vj<i)− sin2(θi)
(

Λii − ui(∆i, vj<i)
)

(33)

= ui(vi, vj<i)− sin2(θi)
(

Λii −
∑
l>i

zlΛll

)
. [TL.1] (34)

N.2 SUMMARY OF ERROR PROPAGATION RESULTS

Player i’s utility is sinusoidal in the angular deviation of θi from the optimum. The amplitude of
the sinusoid varies with the direction of the angular deviation along the sphere and is dependent on
the accuracy of players j < i. In the special case where players j < i have learned the top-(i− 1)
eigenvectors exactly, player i’s utility simplifies (see Lemma N.1) to

ui(v̂i, vj<i) = Λii − sin2(θi)
(

Λii −
∑
l>i

zlΛll

)
. (35)

Note that sin2 has period π as opposed to 2π, which simply reflects the fact that vi and −vi are both
eigenvectors.

The angular distance between vi and the maximizer of player i’s utility with approximate parents has
tan−1 dependence (i.e., a soft step-function; see Lemma N.5). Figure 13 plots the dependence for a
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synthetic problem. This dependence reveals that there is an error threshold players j < i must fall
below in order for player i to accurately learn the i-th eigenvector.

0 18 30 60 90
| j| in degrees

0

30

60

90

|
i| 

in
 d

eg
re

es

Error Propagation of vj < i to vi

Figure 13: Example 1 demonstrates that the angular error (x-axis) in the learned parents v̂j<i must
fall below a threshold (e.g., ≈ 18◦ here) in order for the maximizer of player i’s utility to lie near the
true ith eigenvector (y-axis). The matrix M for this example has a condition number κi = Λ11

Λii
= 10.

N.3 THEOREM AND PROOFS

In Theorem N.2, we prove that given parents close enough to their corresponding true eigenvectors,
the angular deviation of a local maximizer of a child’s utility from the child’s true eigenvector is
below a derived threshold. In other words, given accurate parents, a child can succesfully proceed
to approximate its corresponding eigenvector (its utility is well posed). We prove this theorem in
several steps.

First we show in Lemma N.3 that the child’s utility function can be written as a composition of
sinusoids with dependence on the angular deviation from the child’s true eigenvector. The amplitude
of the sinusoid depends on the directions in which the child and parents have deviated from their
true eigenvectors along their spheres. We then simplify the composition of sinusoids to a single
sinusoid in Lemma N.4. Any local max of a sinusoid is also a global max. Therefore, to upper bound
the angular deviatiation of the child’s local maximizer from its true corresponding eigenvector, we
consider the worst case direction for the maximizer to deviate from the true eigenvector.

In Lemma N.5, we give a closed form solution for the angular deviation of a maximizer of a child’s
utility given any parents and deviation directions. This dependence is given by the arctan function
which resembles a soft step function with a linear regime for small angular deviations, followed by a
step, and then another linear regime for large angular deviations. The argument of the arctan is a
ratio of terms, each with dependence on the parents’ angular deviations and directions of deviation.
We establish two minor lemmas, Lemma N.6 and Lemma N.7, to help bound the denominator in
Lemma N.8. We then tighten the bounds on the ratio assuming parents with error below a certain
threshold (“left” of the step) in Lemmas N.9, N.10, and N.11. Finally, using these bounds on the
argument to the arctan, we are able to bound the angular deviation of any maximizer of the child’s
utility in Lemma N.2 given any deviation direction for the child or parents.

Theorem N.2. Assume it is given that |θj | ≤ cigi
(i−1)Λ11

≤
√

1
2 for all j < i with 0 ≤ ci ≤ 1

16 . Then

|θ∗i | = | arg max
θi

ui(v̂i(θi,∆i), v̂j<i)| ≤ 8ci. (36)

Proof. By Lemma N.11, A < 0 for ci < 1
8 . Therefore, |θ∗i | = 1

2 tan−1
∣∣∣BA ∣∣∣ by Lemma N.5. Also,

note that for z ≤ 1
2 , tan−1(|z|) ≤ |z|. Setting ci ≤ 1

16 to ensures z = |BA | ≤
1
2 . Then,

|θ∗i | =
1

2
tan−1

∣∣∣B
A

∣∣∣ ≤ 1

2
|B
A
|
LN.11
≤ 1

2

8c

1− 8ci
≤ 8ci. (37)
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Lemma N.3. Let v̂j = cos(θj)vj + sin(θj)∆j for all j ≤ i without loss of generality. Then

ui(v̂i, v̂j<i) = A(θj ,∆j ,∆i) sin2(θi)−B(θj ,∆j ,∆i)
sin(2θi)

2
+ C(θj ,∆j ,∆i) (38)

where

A(θj ,∆j ,∆i) = ||∆i||Λ−1 − Λii (39)

−
∑
j<i

Λ2
jj cos2(θj)〈∆i, vj〉2 − Λ2

ii sin2(θj)〈∆j , vi〉2 + sin2(θj)〈∆i,Λ∆j〉2

Λjj cos(θj)2 + ||∆j ||Λ−1 sin2(θj)
(40)

−
∑
j<i

Λjj sin(2θj)〈∆i, vj〉〈∆i,Λ∆j〉
Λjj cos(θj)2 + ||∆j ||2Λ−1 sin2(θj)

(41)

B(θj ,∆j ,∆i) =
∑
j<i

ΛiiΛjj sin(2θj)〈∆j , vi〉〈∆i, vj〉+ 2Λii sin2(θj)〈∆j , vi〉〈∆i,Λ∆j〉
Λjj cos(θj)2 + ||∆j ||2Λ−1 sin2(θj)

(42)

C(θj ,∆j ,∆i) = Λii −
∑
j<i

Λ2
ii sin2(θj)〈∆j , vi〉2

Λjj cos(θj)2 + ||∆j ||2Λ−1 sin2(θj)
. (43)

We abbreviate the above to A, B, C to avoid clutter in all upcoming statements and proofs. These
functions are dependent on all variables except θi.

Proof. Note that the true eigenvectors are orthogonal, so in what follows, any 〈vi, vj〉 = 0 where
j 6= i. Also, recall that 2 sin(z) cos(z) = sin(2z). We highlight some but not all such simplifications.
Finally, we recognize 〈∆i,Λ∆i〉 = ||∆i||Λ−1 as the generalized norm of ∆i or the Mahalanobis
distance from the origin.

ui(v̂i, v̂j<i) (44)

= 〈v̂i,Λv̂i〉 −
∑
j<i

〈v̂i,Λv̂j〉2

〈v̂j ,Λv̂j〉
(45)

= 〈cos(θi)vi + sin(θi)∆i,Λ
(

cos(θi)vi + sin(θi)∆i

)
〉

−
∑
j<i

〈cos(θi)vi + sin(θi)∆i,Λ
(

cos(θj)vj + sin(θj)∆j

)
〉2

〈cos(θj)vj + sin(θj)∆j ,Λ
(

cos(θj)vj + sin(θj)∆j

)
〉

(46)

= Λii cos(θi)
2 + 〈∆i,Λ∆i〉 sin2(θi)

−
∑
j<i

〈cos(θi)vi + sin(θi)∆i,Λ
(

cos(θj)vj + sin(θj)∆j

)
〉2

Λjj cos(θj)2 + 〈∆j ,Λ∆j〉 sin2(θj)
(47)

= Λii cos(θi)
2 + ||∆i||2Λ−1 sin2(θi)

−
∑
j<i

(
Λjj sin(θi) cos(θj)〈∆i, vj〉+ Λii sin(θj) cos(θi)〈∆j , vi〉+ sin(θi) sin(θj)〈∆i,Λ∆j〉

)2
Λjj cos(θj)2 + ||∆j ||2Λ−1 sin2(θj)

.

(48)
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Developing the numerator of the fraction, we obtain terms in sin and in sin2 that we later regroup to
obtain the result:

= Λii − Λii sin(θi)
2 + ||∆i||2Λ−1 sin2(θi)

−
∑
j<i

Λ2
jj sin2(θi) cos2(θj)〈∆i, vj〉2 + Λ2

ii sin2(θj) cos2(θi)〈∆j , vi〉2 + sin2(θi) sin2(θj)〈∆i,Λ∆j〉2

Λjj cos(θj)2 + ||∆j ||2Λ−1 sin2(θj)

(49)

− 2
∑
j<i

ΛiiΛjjsin(θi)sin(θj)cos(θi)cos(θj)〈∆j , vi〉〈∆i, vj〉
Λjj cos(θj)2 + ||∆j ||2Λ−1 sin2(θj)

(50)

− 2
∑
j<i

Λjj sin2(θi) sin(θj) cos(θj)〈∆i, vj〉〈∆i,Λ∆j〉
Λjj cos(θj)2 + ||∆j ||2Λ−1 sin2(θj)

(51)

− 2
∑
j<i

Λii sin(θi) cos(θi) sin2(θj)〈∆j , vi〉〈∆i,Λ∆j〉
Λjj cos(θj)2 + ||∆j ||2Λ−1 sin2(θj)

(52)

= Λii − Λii sin2(θi) + ||∆i||2Λ−1 sin2(θi)

−
∑
j<i

Λ2
jj sin2(θi) cos2(θj)〈∆i, vj〉2 + Λ2

ii sin2(θj) cos2(θi)〈∆j , vi〉2 + sin2(θi) sin2(θj)〈∆i,Λ∆j〉2

Λjj cos(θj)2 + ||∆j ||2Λ−1 sin2(θj)

(53)

− 1

2

∑
j<i

ΛiiΛjjsin(2θi)sin(2θj)〈∆j , vi〉〈∆i, vj〉
Λjj cos(θj)2 + ||∆j ||2Λ−1 sin2(θj)

(54)

−
∑
j<i

Λjj sin2(θi) sin(2θj)〈∆i, vj〉〈∆i,Λ∆j〉
Λjj cos(θj)2 + ||∆j ||2Λ−1 sin2(θj)

(55)

−
∑
j<i

Λii sin(2θi) sin2(θj)〈∆j , vi〉〈∆i,Λ∆j〉
Λjj cos(θj)2 + ||∆j ||2Λ−1 sin2(θj)

. (56)

Collecting terms, we find

ui(v̂i, v̂j<i) (57)

= sin2(θi)
[
||∆i||2Λ−1 − Λii (58)

−
∑
j<i

Λ2
jj cos2(θj)〈∆i, vj〉2 − Λ2

ii sin2(θj)〈∆j , vi〉2 + sin2(θj)〈∆i,Λ∆j〉2

Λjj cos(θj)2 + ||∆j ||2Λ−1 sin2(θj)
(59)

−
∑
j<i

Λjj sin(2θj)〈∆i, vj〉〈∆i,Λ∆j〉
Λjj cos(θj)2 + ||∆j ||2Λ−1 sin2(θj)

]
(60)

− sin(2θi)

2

[∑
j<i

ΛiiΛjj sin(2θj)〈∆j , vi〉〈∆i, vj〉+ 2Λii sin2(θj)〈∆j , vi〉〈∆i,Λ∆j〉
Λjj cos(θj)2 + ||∆j ||2Λ−1 sin2(θj)

]
(61)

+
[
Λii −

∑
j<i

Λ2
ii sin2(θj)〈∆j , vi〉2

Λjj cos(θj)2 + ||∆j ||2Λ−1 sin2(θj)

]
(62)

def
= A sin2(θi)−B

sin(2θi)

2
+ C. (63)

Lemma N.4. The utility function along ∆i, θ :7→ ui(v̂i(θi,∆i), v̂j<i), is sinusoidal with period π:

ui(v̂i(θi,∆i), v̂j<i) =
1

2

[√
A2 +B2 cos(2θi + φ) +A+ 2C

]
(64)

where φ = tan−1
(
B
A

)
.
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Proof. Starting from Lemma N.3, we find

ui(v̂i(θi,∆i), v̂j<i) = A sin2(θi)−B
sin(2θi)

2
+ C (65)

= A
1− cos(2θi)

2
−B sin(2θi)

2
+ C (66)

=
1

2

[
−A cos(2θi)−B sin(2θi) +A+ 2C

]
(67)

=
1

2

[√
A2 +B2 cos(2θi + φ) +A+ 2C

]
(68)

where φ = tan−1
(
B
A

)
.

Lemma N.5. The angular deviation, θi, of the vector that maximizes the mis-specified objective,
arg maxθi ui(v̂i(θi,∆i), v̂j<i), is given by

|θ∗i | =


1
2 tan−1

(
|BA |
)

if A < 0
π
4 if A = 0
1
2

[
π − tan−1

(
|BA |
)]

if A > 0

(69)

where A and B are given by Lemma N.3.

Proof. First, we identify the critical points:

∂

∂θi
ui(v̂i, v̂j<i) = 2A sin(θi) cos(θi)−B cos(2θi) = 0 (70)

= A sin(2θi)−B cos(2θi) = 0 (71)

=
1

cos(2θi)
[tan(2θi)A−B] = 0 (72)

tan(2θi) =
B

A
. (73)

Then we determine maxima vs minima:

∂2

∂θi
ui(v̂i, v̂j<i) =

2

cos(2θi)
[B tan(2θi) +A] =

2

cos(2θi)
[
B2

A
+A], (74)

therefore, sign( ∂
2

∂θi
ui) = sign(cos(2θi))sign(A) < 0 for θi to be a local maximum. If A < 0,

then θ∗i must lie within [−π4 ,
π
4 ]. IfA > 0, then θ∗i must lie within [−π2 ,−

π
4 ] or [π4 ,

π
2 ]. By inspection,

if A = 0, then ui is maximized at θi = −π4sign(B). In general, we are interested in the magnitude
of θi, not its sign.

Lemma N.6. The following relationship is useful for proving Lemma N.8:

b

a+ c
=
b

a

[
1− c

a+ c

]
(75)

Proof.

b

a+ c
=
b

a
+ x (76)

=⇒ x =
b

a+ c
− b

a
= b
[ 1

a+ c
− 1

a

]
(77)

= b
[a− (a+ c)

a(a+ c)

]
= − b

a

[ c

a+ c

]
. (78)

Lemma N.7. If 〈∆i, vi〉 = 0, then ui(∆i, vj<i) ≤ Λi+1,i+1.
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Proof. Recall the Nash proof in Appendix L:

ui(∆i, vj<i) =
∑
p≥i

Λppzp (79)

where zp = w2
p,∆i =

∑d
p=1 wpvp, and z ∈ ∆d−1. The fact that 〈∆i, vi〉 = 0 implies that zi = 0.

Therefore, the utility simplifies to

ui(∆i, vj<i) =
∑
p≥i+1

Λppzp (80)

which is upper bounded by Λi+1,i+1.

Lemma N.8. Assume |θj | ≤ ε for all j < i (implies sin2(θj) ≤ ε2). Then

A ≤ −gi + (i− 1)(Λ11 + Λii)
ε2

1− ε2
+ 2(i− 1)Λ11

ε√
1− ε2

. (81)

Proof.

A(θj<i)

= ||∆i||2Λ−1 − Λii

−
∑
j<i

Λ2
jj cos2(θj)〈∆i, vj〉2 − Λ2

ii sin2(θj)〈∆j , vi〉2 + sin2(θj)〈∆i,Λ∆j〉2

Λjj cos(θj)2 + ||∆j ||2Λ−1 sin2(θj)

−
∑
j<i

Λjj sin(2θj)〈∆i, vj〉〈∆i,Λ∆j〉
Λjj cos(θj)2 + ||∆j ||2Λ−1 sin2(θj)

(82)

= ||∆i||2Λ−1 −
∑
j<i

Λ2
jj cos2(θj)〈∆i, vj〉2

Λjj cos2(θj) + ||∆j ||2Λ−1 sin2(θj)
− Λii

−
∑
j<i

−Λ2
ii sin2(θj)〈∆j , vi〉2 + sin2(θj)〈∆i,Λ∆j〉2 + Λjj sin(2θj)〈∆i, vj〉〈∆i,Λ∆j〉

Λjj cos2(θj) + ||∆j ||2Λ−1 sin2(θj)
(83)

[LN.6]
= ||∆i||2Λ−1 −

∑
j<i

Λ2
jj cos2(θj)〈∆i, vj〉2

Λjj cos2(θj)

[
1−

||∆j ||2Λ−1 sin2(θj)

Λjj cos2(θj) + ||∆j ||2Λ−1 sin2(θj)

]
− Λii

−
∑
j<i

−Λ2
ii sin2(θj)〈∆j , vi〉2 + sin2(θj)〈∆i,Λ∆j〉2 + Λjj sin(2θj)〈∆i, vj〉〈∆i,Λ∆j〉

Λjj cos2(θj) + ||∆j ||2Λ−1 sin2(θj)
(84)

≤ ||∆i||2Λ−1 −
∑
j<i

Λ2
jj cos2(θj)〈∆i, vj〉2

Λjj cos2(θj)
+
∑
j<i

(
||∆j ||2Λ−1 sin2(θj)

)Λ2
jj cos2(θj)〈∆i, vj〉2

Λ2
jj cos4(θj)

− Λii

+
∑
j<i

Λ2
ii sin2(θj)〈∆j , vi〉2 + 2Λjj

√
sin2(θj)

√
cos2(θj)|〈∆i, vj〉||〈∆i,Λ∆j〉|

Λjj cos2(θj)
(85)

= ui(∆i, vj<i) +
∑
j<i

(
||∆j ||2Λ−1 sin2(θj)

) 〈∆i, vj〉2

cos2(θj)
− Λii

+
∑
j<i

Λ2
ii sin2(θj)〈∆j , vi〉2 + 2Λjj

√
sin2(θj)

√
cos2(θj)|〈∆i, vj〉||〈∆i,Λ∆j〉|

Λjj cos2(θj)
(86)

[LN.7]
≤ Λi+1,i+1 − Λii +

∑
j<i

(
||∆j ||2Λ−1 sin2(θj)

)
���

��: 1
〈∆i, vj〉2

cos2(θj)

+
∑
j<i

Λ2
ii sin2(θj)���

��: 1
〈∆j , vi〉2 + 2Λjj

√
sin2(θj)

√
cos2(θj)|〈∆i, vj〉||〈∆i,Λ∆j〉|

Λjj cos2(θj)
(87)
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≤ Λi+1,i+1 − Λii +
∑
j<i

ε2
Λ11 + Λii
cos2(θj)

+ 2
Λjj

√
sin2(θj)

√
cos2(θj)|〈∆i, vj〉||〈∆i,Λ∆j〉|
Λjj cos2(θj)

(88)

≤ Λi+1,i+1 − Λii +
∑
j<i

ε2
Λ11 + Λii
cos2(θj)

+ 2Λ11

√
sin2(θj)

cos2(θ)
(89)

≤ Λi+1,i+1 − Λii + (i− 1)(Λ11 + Λii)
ε2

1− ε2
+ 2(i− 1)Λ11

ε√
1− ε2

. (90)

Note Λ2
ii

Λjj
< Λii because Λii < Λjj for all j < i.

Lemma N.9. Assume ε2 ≤ 1
2 . Then

A ≤ −gi + 8(i− 1)Λ11ε. (91)

Assume ε2 ≤ 1
2 so ε√

1−ε2 ≤ 1. Then

A ≤ Λi+1,i+1 − Λii + (i− 1)(Λ11 + Λii)
ε2

1− ε2
+ 2(i− 1)Λ11

ε√
1− ε2

(92)

≤ −gi + (i− 1)
[ ε√

1− ε2
][

3Λ11 + Λii

]
(93)

≤ −gi + 4(i− 1)Λ11
ε√

1− ε2
(94)

≤ −gi + 8(i− 1)Λ11ε. (95)

Lemma N.10. Assume ε2 ≤ 1
2 . Then

|B| ≤ 8(i− 1)Λiiκi−1ε. (96)

Proof.

|B| =
∑
j<i

|ΛiiΛjj sin(2θj)〈∆j , vi〉〈∆i, vj〉+ 2Λii sin2(θj)〈∆j , vi〉〈∆i,Λ∆j〉|
Λjj cos(θj)2 + ||∆j ||Λ−1 sin2(θj)

(97)

≤
∑
j<i

ΛiiΛjj

√
sin2(2θj) + 2Λii sin2(θj)Λ11

Λjj cos(θj)2
(98)

≤
∑
j<i

ΛiiΛjj

√
4 sin2(θj) cos2(θj) + 2Λii sin2(θj)Λ11

Λjj cos(θj)2
(99)

≤ 2
∑
j<i

ΛiiΛjjε+ Λiiε
2Λ11

Λjj(1− ε2)
(100)

= 2Λii
ε

1− ε2
(

(i− 1) + ε
∑
j<i

κj

)
(101)

≤ 4Λiiε
(

(i− 1) + ε(i− 1)κi−1

)
(102)

= 4(i− 1)Λiiε
(

1 + εκi−1

)
(103)

≤ 4(i− 1)Λiiε
(

1 +
1√
2
κi−1

)
(104)

≤ 8(i− 1)Λiiκi−1ε. (105)

Lemma N.11. Let εi = cigi
(i−1)Λ11

with ci < 1
8 . Then
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(i) A ≤ 0,

(ii)
∣∣∣BA ∣∣∣ ≤ 8ci

1−8ci
.

Proof. Plugging in Lemma N.9 and εi, we find

A ≤ −gi + 8ci
(i− 1)Λ11gi
(i− 1)Λ11

= −gi + 8cigi = (8ci − 1)gi. (106)

Since we assumed ci < 1/8, this proves (i). Plugging in Lemma N.10 and εi solves (ii):

Equation (106) =⇒ |A| ≥ (1− 8ci)gi (107)

|B| ≤ 8ci
(i− 1)Λiiκi−1gi

(i− 1)Λ11
= 8cigi

Λii
Λi−1,i−1

≤ 8cigi (108)

=⇒ |B
A
| ≤ 8ci

1− 8ci
. (109)

Example 1. We construct the following example in order to concreteley demonstrate the arctan
dependence of a child (v̂i) on a parent (v̂1 in this case).

Let ∆1 = vi, ∆i = v1, ∆1<j<i = vi+1 and constrain all parents to have error sin(θj) = ε for all
j < i. Then the child’s optimum has an angular deviation from the true eigenvector direction of

|θ∗i | =


1
2 tan−1

(
|BA |
)

if A < 0
π
4 if A = 0
1
2

[
π − tan−1

(
|BA |
)]

if A > 0

(110)

where |BA | =
2ε
√

1−ε2
|1−ε2(κi+

1
κi

)| .

Proof. Note that 〈∆i, v1<j<i〉, 〈∆1<j<i, vi〉, and 〈∆i,Λ∆j〉 all equal 0 by design; and 〈∆i, v1〉 =
〈∆1, vi〉 = 1. Plugging into Lemma N.3, all elements of the sum disappear for j ≥ 1 and only the
blue terms survive for j = 1. We find

A = ||∆i||Λ−1 − Λii (111)

−
∑
j<i

Λ2
jj cos2(θj)〈∆i, vj〉2 − Λ2

ii sin2(θj)〈∆j , vi〉2 + sin2(θj)〈∆i,Λ∆j〉2

Λjj cos2(θj) + ||∆j ||2Λ−1 sin2(θj)
(112)

−
∑
j<i

Λjj sin(2θj)〈∆i, vj〉〈∆i,Λ∆j〉
Λjj cos2(θj) + ||∆j ||2Λ−1 sin2(θj)

(113)

= Λ11 − Λii −
Λ2

11(1− ε2)− Λ2
iiε

2

Λ11(1− ε2) + Λ11ε2
(114)

= Λ11 − Λii −
Λ2

11(1− ε2)− Λ2
iiε

2

Λ11
(115)

= Λ11 − Λii −
[
Λ11(1− ε2)− Λii

κi
ε2
]

(116)

= −Λii + ε2(Λ11 +
Λii
κi

) (117)
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and

B =
∑
j<i

ΛiiΛjj sin(2θj)〈∆j , vi〉〈∆i, vj〉+ 2Λii sin2(θj)〈∆j , vi〉〈∆i,Λ∆j〉
Λjj cos(θj)2 + ||∆j ||2Λ−1 sin2(θj)

(118)

=
ΛiiΛ11 sin(2θ1)

Λ11 cos(θ1)2 + ||∆1||2Λ−1 sin2(θ1)
(119)

= 2
ΛiiΛ11

√
ε2(1− ε2)

Λ11(1− ε2) + Λ11ε2
(120)

= 2Λiiε
√

1− ε2. (121)

Then

|B
A
| = 2Λiiε

√
1− ε2

|Λii − ε2(Λ11 + Λii
κi

)|
=

2ε
√

1− ε2
|1− ε2(κi + 1

κi
)|
. (122)
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O CONVERGENCE PROOF

O.1 NON-CONVEX RIEMANNIAN OPTIMIZATION THEORY

We repeat the non-convex Riemannian optimization rates here from (Boumal et al., 2019) for
convenience.
Lemma O.1. Under Assumptions O.2 and O.3, generic Riemannian descent (Algorithm 5) returns
x ∈M satisfying f(x) ≤ f(x0) and ||∇Rf(x)|| ≤ ρ in at most

df(x0)− f∗

ξ
· 1

ρ2
e (123)

iterations, provided ρ ≤ ξ′

ξ . If ρ > ξ′

ξ , at most d f(x0)−f∗
ξ′ · 1

ρe iterations are required.

Proof. See Theorem 2.5 in (Boumal et al., 2019).

Assumption O.2. There exists f∗ > −∞ such that f(x) ≥ f∗ for all x ∈M . See Assumption 2.3
in (Boumal et al., 2019).
Assumption O.3. There exist ξ, ξ′ > 0 such that, for all k ≥ 0, f(xk) − f(xk+1) ≥
min(ξ||∇Rf(xk)||, ξ′)||∇Rf(xk)||. See Assumption 2.4 in (Boumal et al., 2019).

Algorithm 5 Generic Riemannian descent algorithm
Given: f :M→ R differentiable, a retraction Retr onM, x0 ∈M, ρ > 0
Init: k ← 0
while ||∇Rf(xk)|| > ρ do

Pick ηk ∈ TxkM
end while
return xk

O.2 CONVERGENCE OF EIGENGAME

Theorem O.4 provides an asymptotic convergence guarantee for Algorithm 1 (below) to recover the
top-k principal components. Assuming v̂i is initialized within π

4 of vi for all i ≤ k, Theorem O.5
provides a finite sample convergence rate. In particular, it specifies the total number of iterations
required to learn parents such that v̂k can be learned within a desired tolerance.

The proof of Theorem O.4 proceeds in several steps. First, recall that player i’s utility is sinusoidal
in its angular deviation from vi and therefore, technically, non-concave although it is simple in the
sense that every local maximum is a global maximum (w.r.t. angular deviation). Also, note that our
ascent is not performed on the natural parameters of the sphere (θi and ∆i), but rather on v̂i directly
with v̂i ∈ Sd−1, a Riemannian manifold.

We therefore leverage recent results in non-convex optimization, specifically minimization, for
Riemannian manifolds (Boumal et al., 2019), repeated here for convenience (see Theorem O.1).
Note, we are maximizing a utility so we simply flip the sign of our utility to apply this theory. The
convergence rate guarantee given by this theory is for generic Riemannian descent with a constant
step size, Algorithm 5, and makes two assumptions. One is a bound on the utility (Lemma O.2) and
the other is a smoothness or Lipschitz condition (Lemma O.3). The convergence rate itself states the
number of iterations required for the norm of the Riemannian gradient to fall below a given threshold.
The theory also guarantees descent in that the solution returned by the algorithm will have lower loss
(higher utility) than the vector passed to the algorithm.

The probability of sampling a vector v̂0
i at angular deviation within φ of the maximizer is given by

P [|θ0
i − θ∗i | ≤ φ] = Isin2(φ)(

d− 1

2
,

1

2
) =

Beta(sin2 φ, d−1
2 , 1

2 )

Beta(1, d−1
2 , 1

2 )
(124)

where Beta is the incomplete beta function, and I is the normalized incomplete beta function (Li,
2011). This probability quickly approaches zero for φ < π

2 as the dimension d increases. Therefore,
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for large d, it becomes highly probable that v̂i will be initialized near an angle π
2 from the true

eigenvector—in other words, all points are far from each other in high dimensions. In this case, v̂i lies
near a trough of the sinusoidal utility where gradients are small. Without a bound on the minimum
possible gradient norm, a finite sample rate cannot be constructed (how many iterations are required
to escape the trough?). Therefore, we can only guarantee asymptotic convergence in this setting.
Next, we consider the fortuitous case where all v̂i have been initialized within π

4 . This is both to
obtain a convergence rate for this setting, but also to highlight the Big-O dependencies. Note that the
utility is symmetric across π

4 and the number of iterations required to escape a trough and reach the
π
4 mark is equal to the number of iterations required to ascend from π

4 to the same distance from the
peak.

In order to ensure this theory can provide meaningful bounds for EigenGame, we first show, assuming
a child is within π

4 of its maximizer, that the norm of the Riemannian gradient bounds the angular
deviation of a child from this maximizer.

To begin the proof, we relate the error in the parents to a bound on the ambient gradient in Lemma O.8.
This bound is then tightened assuming parents with error below a certain threshold in Lemma O.9.
Using the fact that ui = v̂>i ∇v̂iui, this bound directly translates to a bound on the utility in
Corollary O.9.1, thereby satisfying Assumption O.2. Again, given accurate parents, Lemma O.10
proves Assumption O.3 on smoothness is satisfied and derives some of the constants for the ultimate
convergence rate.

Recall that we have so far been proving convergence to a local maximizer of a child’s utility, which,
assuming inaccurate parents, is not the same as the true eigenvector. Lemma O.11 upper bounds the
angular deviation of an approximate maximizer from the true eigenvector using the angular deviation
of a maximizer plus the approximate maximizer’s approximation error. Lemma O.12 then provides
the convergence rate for the child to approach the true eigenvector given accurate enough parents.
Finally, Theorem O.4 compiles the chain of convergence rates leading up the DAG towards v̂1 and
derives a convergence rate for child k given all previous parents have been learned to a high enough
degree of accuracy. The number of iterations required for each parent in the chain is provided.
Theorem O.4. Assume all spectral gaps are positive, i.e. for i = 1...k, gi > 0. Let θk denote the
angular distance (in radians) of v̂k from the true eigenvector vk. Let the maximum desired error for
θk = θtol ≤ 1 radian. Then set ck = θtol

16 , ρk = gk
2π θtol, and

ρi =
[ gigi+1

2πiΛ11

]
ci+1 (125)

ci ≤
(i− 1)!

∏k
j=i+1 gj

(16Λ11)k−i(k − 1)!
ck (126)

for i < k where the ci’s are dictated by each v̂i to its parents and represent fractions of a canonical
error threshold; for example, if v̂k sets ck = 1

16 , then this threshold gets communicated up the DAG
to each parent, each time strengthening.

Consider learning v̂i by applying Algorithm 1 successively, i.e., learn v̂1, stop ascent, learn v̂2, and
so on, each with step size 1

2L and corresponding ρi where L = 4
[
Λ11k + (1 + κk−1) gk16

]
. Then the

top-k principal components will be returned, each within tolerance θtol, in the limit.

Proof. In order to learn v̂k, we need |θj | ≤ ckgk
(k−1)Λ11

with ck ≤ 1
16 for all j < k. If this requirement

is met, then by Lemma O.11, the angular error in v̂k after running Riemannian gradient ascent is
bounded as

|θk| ≤ ε̄+ 8ck (127)

where ε̄ denotes the convergence error and the error propagated by the parents is 8ck. The quantity,
gk

(k−1)Λ11
, in the parents bound is � 8, so the parents must be very accurate to reduce the error

propagated to the child. Each parent must then convey this information up the chain, strengthening
the requirement each hop.

Let half the error in |θk| come from mis-specifying the utility with imperfect parents, v̂j<k, and the
other half from convergence error. The error after learning v̂k−1 via Riemannian gradient ascent must
be less than the threshold required for learning the kth eigenvector. Assuming v̂k−1’s parents have
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been learned accurately enough, |θj<k−1| ≤ ck−1gk−1

(k−2)Λ11
, and that v̂j≤k were initialized within π

4 of
their maximizers, we require:

|θk−1|
LO.12
≤ π

gk−1
ρk−1 + 8ck−1 ≤

ckgk
(k − 1)Λ11

. (128)

More generally, the error after learning v̂i−1 must be less than the threshold for learning any of its
successors:

|θi−1| ≤
π

gi−1
ρi−1 + 8ci−1 ≤ min

i−1<l≤k

( clgl
(l − 1)Λ11

)
. (129)

Assume for now that the arg min of the expression is i, the immediate child. First we bound the error
from v̂i−1’s parents:

8ci−1 ≤
cigi

2(i− 1)Λ11
(130)

=⇒ ci−1 ≤
cigi

16(i− 1)Λ11
. (131)

Note the 2 in the denominator of Equation (130) which appears because we desired half the error to
come from the parents (half is an arbitrary choice in the analysis). Continuing this process recursively
implies

ci−2 ≤
ci−1gi−1

16(i− 2)Λ11
≤ cigi−1gi

162(i− 2)(i− 1)Λ2
11

(132)

=⇒ ci−n ≤
[ (i− n− 1)!

∏i
j=i−n+1 gj

(16Λ11)n(i− 1)!

]
ci. (133)

One can see that cj<i is strictly smaller than ci because each additional term added to the product
is strictly less than 1—the assumption of the arg min above is therefore correct. In particular, this
requires the first eigenvector to be learned to very high accuracy to enable learning the kth:

c1 ≤
[ ∏k

j=2 gj

(16Λ11)k−1(k − 1)!

]
ck. (134)

More generally

ci ≤
(i− 1)!

∏k
j=i+1 gj

(16Λ11)k−i(k − 1)!
ck (135)

This completes the requirement for mitigating error in the parents.

The convergence error from gradient ascent must also be bounded as (again, note the 2)
π

gi
ρi ≤

ci+1gi+1

2iΛ11
(136)

=⇒ ρi ≤
[ gigi+1

2πiΛ11

]
ci+1 (137)

which requires at most

ti = d5
( πiΛ11

gigi+1

)2 1

c2i+1

e (138)

iterations. Given v̂i is initialized within π
4 of its maximizer, it follows that learning each v̂j<k

consecutively via Riemannian gradient ascent for at most
∑k−1
i=1 ti iterations is sufficient for learning

the k-th eigenvector. Riemannian gradient ascent on v̂k then returns (Lemma O.12)

|θk| ≤
π

gk
ρk + 8ck ≤

π

gk
ρk +

θtol

2
(139)

after at most

tk =
⌈5

4
· 1

ρ2
k

⌉
=
⌈ 5π2

(θtolgk)2

⌉
(140)
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iterations.

We can relax the assumption that v̂i is initialized within π
4 of its maximizer and obtain global

convergence. Assume that π
2 − |θ

0
i | ≤ π

4 and let ||∇v̂0i || be the initial norm of the Riemannian
gradient. The utility function ui(v̂i, v̂j<i) is symmetric across π

4 . Therefore, the number of iterations
required to ascend to within π

4 is given by Lemma O.12:

t+i =
⌈5

4

( π
gi

)2 1

(π2 − |θ
0
i |)2

⌉
. (141)

Alternatively, simply set the desired gradient norm to be less than the initial. This necessarily requires
iterates to ascend to past π4 . As long as v̂i is not initialized to exactly π

2 from the maximum (an event
with Lebesgue measure 0), the ascent process will converge to the maximizer.

Theorem O.5. Apply the algorithm outlined in Theorem O.4 with the same assumptions. Then with
probability

P [|θ0
i − θ∗i | ≤

π

4
] = I 1

2
(
d− 1

2
,

1

2
) (142)

where I is the normalized incomplete beta function, the max total number of iterations required for
learning all vectors to adequate accuracy is

Tk =
⌈
O
(
k
[ (16Λk11)(k − 1)!∏k

j=1 gj

1

θtol

]2)⌉
. (143)

Discussion. In other words, assuming all v̂i are fortuitously initialized within π
4 of their maximizers,

then we can state a finite sample convergence rate. The first k in the Big-O formula for total iterations
appears simply from a naive summing of worst case bounds on the number of iterations required to
learn each v̂j<k individually. The constant 16 is a loose bound that arises from the error propagation
analysis. Essentially, parent vectors, v̂j<i, must be learned to under 1

16 a canonical error threshold for
the child v̂i, gi

(i−1)Λ11
. The Riemannian optimization theory we leverage dictates that 1

ρ2i
iterations

are required to meet a O(ρi) error threshold. This is why the squared inverse of the error threshold
appears here. Breaking down the error threshold itself, the ratio Λ11

gi
says that more iterations are

required to distinguish eigenvectors when the difference between them (summarized by the gap gi) is
small relative to the scale of the spectrum, Λ11. The (k − 1)! term appears because learning smaller
eigenvectors requires learning a much more accurate v̂1 higher up the chain.

Proof. Assume v̂i is sampled uniformly in Sd−1. Note this can be accomplished by normalizing a
sample from a multivariate Gaussian. We will prove

(i) the probability of the event that v̂0
i is within π

4 of the maximizer of ui(v̂i, v̂j<i),

(ii) an upper bound on the number of iterations required to return all v̂i with angular error less than
θtol.

The probability of sampling a vector v̂0
i at angular deviation within π

4 of the maximizer is given by
twice the probability of sampling from one of the spherical caps around vi or −vi. This probability is

P [|θ0
i − θ∗i | ≤ φ] = Isin2(φ)(

d− 1

2
,

1

2
) =

Beta(sin2(φ), d−1
2 , 1

2 )

Beta(1, d−1
2 , 1

2 )
(144)

where Beta is the incomplete beta function, and I is the normalized incomplete beta function (Li,
2011). This probability quickly approaches zero for φ < π

2 as the dimension d increases. This proves
(i).

Plugging the bound on ci

ci ≤
(i− 1)!

∏k
j=i+1 gj

(16Λ11)k−i(k − 1)!
ck (145)
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into the bound on iterations

ti = d5
( πiΛ11

gigi+1

)2 1

c2i+1

e (146)

we find

ti =
⌈
5
( πiΛ11

gigi+1

)2 (16Λ11)2(k−i−1)((k − 1)!)2

(i!)2
∏k
j=i+2 g

2
j

1

c2k

⌉
(147)

=
⌈
5π2 162(k−i)Λ

2(k−i)
11 ((k − 1)!)2(∏k

j=i g
2
j

)
((i− 1)!)2

1

(16ck)2

⌉
(148)

≤
⌈
5π2
[ (16Λ11)k−1(k − 1)!∏k

j=1 gj

1

16ck

]2⌉
[Λ11 ≥ gi ∀i] (149)

=
⌈
O
([ (16Λ11)k(k − 1)!∏k

j=1 gj

1

16ck

]2)⌉
(150)

which is now in a form independent of i (worst case). It can be shown that tk ≤ t1 by taking their
log and applying Jensen’s inequality. The total iterations required for learning v̂j<k is at most k − 1
times this. Therefore,

Tk =
⌈
O
(
k
[ (16Λ11)k(k − 1)!∏k

j=1 gj

1

16ck

]2)⌉
. (151)

Corollary O.5.1 (PC Convergence =⇒ Subspace Convergence). Convergence of V̂ to the top-k
principal components of X with maximum angular error θtol implies convergence to the top-k
subspace of X in the following sense11:

||V̂ >V¬k||2F ≤ k(d− k)θ2
tol. (152)

where the columns of V¬k comprise the bottom d− k eigenvectors of M = X>X .

Proof. Recall that the true principal components, vi, are all orthogonal. If the angle between v̂i
and vi is less than or equal to θtol for every i, then the angle between v̂i and vj for any j 6= i

must be greater than or equal to π
2 − θtol. The entries in V̂ >V¬k are equal to the cosines of the

angles between each of the columns in V̂ and V¬k. Therefore, all entries are less than or equal to
| cos(π2 − θtol)| = | sin(θtol)| ≤ θtol. This implies the squared Frobenius norm of this matrix is less
than or equal to the number of entries times the maximum value squared: k(d− k)θ2

tol.

Lemma O.6. Assume v̂i is within π
4 of its maximizer, i.e., |θi − θ∗i | ≤ π

4 . Also, assume that

|θj<i| ≤ cigi
(i−1)Λ11

≤
√

1
2 with 0 ≤ ci ≤ 1

16 . Then the norm of the Riemannian gradient of ui upper
bounds this angular deviation:

|θi − θ∗i | ≤
π

gi
||∇Rv̂iui(v̂i, v̂j<i)||. (153)

Proof. The Riemannian gradient measures how the utility ui changes while moving along the
manifold. In contrast, the ambient gradient measures how ui changes while moving in ambient
space, possibly off the manifold. Rather than bounding the angular deviation using the projection
of the ambient gradient onto the tangent space of the manifold, (I − v̂iv̂

>
i )∇v̂iui, we instead

reparameterize v̂i to ensure it lies on the manifold, v̂i = cos(θi)vi + sin(θi)∆i where ∆i is a unit
vector and 〈vi,∆i〉 = 0. Computing gradients with respect to the new unconstrained arguments
allows recovering a bound on the Riemannian gradient via a simple chain rule calculation.

11See Allen-Zhu and Li (2017) for more details on this measure of subspace error.
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We lower bound the norm of the Riemannian gradient as follows:
∂ui
∂θi

= ∇Rv̂iui(v̂i, v̂j<i)
> ∂v

∂θi
(154)

=⇒ ||∂ui
∂θi
|| ≤ ||∇Rv̂iui(v̂i, v̂j<i||||

∂v̂i
∂θi
|| (155)

=⇒ ||∇Rv̂iui(v̂i, v̂j<i|| ≥
||∂ui/∂θi||
||∂v̂i/∂θi||

. (156)

Note that ||∂v̂i/∂θi|| = 1 by design. And the numerator can be bounded using Lemma N.4 as

||∂ui/∂θi|| =
√
A2 +B2| sin(2

(
θi − θ∗i )

)
| (157)

where θ∗i = −φ2 and φ = tan−1
(
B
A

)
. Furthermore, assume |θi − θ∗i | ≤ π

4 . Then

| sin(2
(
θi − θ∗i )

)
| ≥

∣∣∣ 2
π

(
θi − θ∗i )

∣∣∣. (158)

Combining the results gives

||∇Rv̂iui(v̂i, v̂j<i|| ≥
||∂ui/∂θi||
||∂v/∂θi||

(159)

= ||∂ui/∂θi|| (160)

≥ 2

π

√
A2 +B2|θi − θ∗i | (161)

≥ 2

π
|A||θi − θ∗i | (162)

LN.11
≥ 2

π
(1− 8c)gi|θi − θ∗i | (163)

≥ gi
π
|θi − θ∗i | (164)

completing the proof.

Lemma O.7. Let |θj | ≤ ε < 1 for all j < i. Then the ratio of generalized inner products is bounded
as

〈v̂i,Λv̂j〉
〈v̂j ,Λv̂j〉

≤ 1 + (1 + κj)ε√
1− ε2

. (165)

Proof. We write v̂j≤i = cos(θj)vj + sin(θj)∆j where 〈∆j , vj〉 = 0 without loss of generality. Note
that |θj | ≤ ε implies | sin(θj)| ≤ ε. Then
〈v̂i,Λv̂j〉
〈v̂j ,Λv̂j〉

(166)

=
〈cos(θi)vi + sin(θi)∆i,Λ

(
cos(θj)vj + sin(θj)∆j

)
〉

〈cos(θj)vj + sin(θj)∆j ,Λ
(

cos(θj)vj + sin(θj)∆j

)
〉

(167)

=
〈cos(θi)vi + sin(θi)∆i,Λ

(
cos(θj)vj + sin(θj)∆j

)
〉

Λjj cos(θj)2 + 〈∆j ,Λ∆j〉 sin2(θj)
(168)

=
Λjj sin(θi) cos(θj)〈∆i, vj〉+ Λii sin(θj) cos(θi)〈∆j , vi〉+ sin(θi) sin(θj)〈∆i,Λ∆j〉

Λjj cos(θj)2 + ||∆j ||2Λ−1 sin2(θj)
(169)

≤ Λjj | sin(θi)|
√

1− ε2 + Λiiε| cos(θi)|+ | sin(θi)|εΛ11

Λjj(1− ε2)
(170)

≤ Λjj
√

1− ε2 + Λiiε+ εΛ11

Λjj(1− ε2)
(171)

=
1√

1− ε2
+
( Λii

Λjj
+ κj

) ε√
1− ε2

(172)

≤ 1 + (1 + κj)ε√
1− ε2

. (173)
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Lemma O.8 (Lipschitz Bound). Let |θj | ≤ ε < 1 for all j < i. Then the norm of the ambient
gradient of ui is bounded as

||∇v̂iui(v̂i, v̂j<i)|| ≤ 2Λ11

[
1 + (i− 1)

1 + (1 + κi−1)ε√
1− ε2

]
. (174)

Proof. Starting with the gradient (Equation 7), we find

||∇v̂iui(v̂i, v̂j<i)|| = ||2M
[
v̂i −

∑
j<i

v̂>i Mv̂j
v̂>j Mv̂j

v̂j

]
|| (175)

≤ 2||Mv̂i||+ 2
∑
j<i

|| v̂
>
i Mv̂j
v̂>j Mv̂j

Mv̂j || (176)

≤ 2||Mv̂i||+ 2
∑
j<i

|| v̂
>
i Mv̂j
v̂>j Mv̂j

||||Mv̂j || (177)

LO.7
≤ 2Λ11 + 2

∑
j<i

1 + (1 + κj)ε√
1− ε2

Λ11 (178)

= 2Λ11

[
1 + (i− 1)

1 + (1 + κi−1)ε√
1− ε2

]
. (179)

Lemma O.9 (Lipschitz Bound with Accurate Parents). Assume |θj | ≤ ε ≤ cigi
(i−1)Λ11

≤
√

1
2 for all

j < i with 0 ≤ ci ≤ 1
16 . Then the norm of the ambient gradient of ui is bounded as

||∇v̂iui(v̂i, v̂j<i)|| ≤ 4
[
Λ11i+ (1 + κi−1)cigi

]
def
= Li. (180)

Proof. Starting with Lemma O.8, we find

||∇v̂iui(v̂i, v̂j<i)|| ≤ 2Λ11

[
1 + (i− 1)

1 + (1 + κi−1)ε√
1− ε2

]
(181)

≤ 2Λ11

[
1 + 2(i− 1)

(
1 + (1 + κi−1)ε

)]
(182)

assumption
≤ 2Λ11

[
1 + 2(i− 1) + 2

(1 + κi−1)cgi
Λ11

]
(183)

≤ 4
[
Λ11

(
1 + (i− 1)

)
+ (1 + κi−1)cgi

]
(184)

= 4
[
Λ11i+ (1 + κi−1)cgi

]
. (185)

Corollary O.9.1 (Bound on Utility). Assume |θj | ≤ cigi
(i−1)Λ11

≤
√

1
2 for all j < i with 0 ≤ ci ≤ 1

16 .
Then the absolute value of the utility is bounded as follows

|ui(v̂i, v̂j<i)| = |v̂>i ∇v̂i | ≤ ||v̂i||||∇v̂i || = ||∇v̂i || ≤ Li, (186)

thereby satisfying Assumption O.2.

Lemma O.10. Assume |θj | ≤ cigi
(i−1)Λ11

≤
√

1
2 for all j < i with 0 ≤ ci ≤ 1

16 . Then Assumption O.3

is satisfied with ξ = ξ′ = 8
5Li.
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Proof. Let η = α∇Rv̂iui = α(I − v̂iv̂
>
i )∇v̂iui, α > 0, and η̂ = η

||η|| . Let v̂′i = v̂i+η
γ where

γ = ||v̂i + η||.

ui(v̂
′
i) =

1

γ2

[
(v̂i + η)>Λ(v̂i + η)−

∑
j<i

(
(v̂i + η)>Λv̂j

)2

v̂>j Λv̂j

]
(187)

=
1

γ2

[
v̂>i Λv̂i −

∑
j<i

(v̂>i Λv̂j)
2

v̂>j Λv̂j
+ η>Λη −

∑
j<i

(η>Λv̂j)
2

v̂>j Λv̂j
+ 2η>Λv̂i − 2

∑
j<i

(v̂>i Λv̂j)(η
>Λv̂j)

v̂>j Λv̂j

]
(188)

=
1

γ2

[
ui(v̂i) + ui(η) + 2η>∇v̂iui(v̂i)

]
(189)

=
1

γ2

[
ui(v̂i) + ||η||2ui(η̂) + 2η>∇v̂iui(v̂i)

]
(190)

The vectors v̂i and ∇v̂iui(v̂i) define a 2-d plane in which v̂′i lies independent of the step size α.
Therefore, we can consider gradients confined to a 2-d plane without loss of generality. Specifically,

let v̂i =

[
0
1

]
and ∇ = ∇v̂iui(v̂i) = β

[
cos(ψ)
sin(ψ)

]
. Then ∇R = ∇Rv̂iui(v̂i) = β

[
cos(ψ)

0

]
and

γ =
√

1 + ||η||2 =
√

1 + α2β2 cos2(ψ). Also, let z = β cos(ψ) and α < 1
Li

(see Equation (180)
for definition) which implies α2||∇R||2 < 1. Then

ui(v̂
′
i)− ui(v̂i) (191)

=

≤0︷ ︸︸ ︷
(

1

γ2
− 1)ui(v̂i) +

1

γ2
(||η||2ui(η̂) + 2η>∇v̂iui(v̂i)) (192)

CO.9.1
≥ (

1

γ2
− 1)Li +

1

γ2
(α2||∇R||2ui(η̂) + 2α∇>∇R) (193)

CO.9.1
≥ (

1

γ2
− 1)Li +

1

γ2
(2α∇>∇R + α2||∇R||2(−Li)) (194)

= (
1

1 + α2β2 cos2(ψ)
− 1)Li +

α

1 + α2β2 cos2(ψ)
(2− αLi)β2 cos2(ψ) (195)

= (
1

1 + α2z2
− 1)Li +

α(2− αLi)
1 + α2z2

z2 (196)

=
1

1 + α2z2
(Li − Liα2z2 − L+ α(2− αLi)z2) (197)

=
1

1 + α2z2
(−2Liα

2z2 + 2αz2) (198)

=
2αz2

1 + α2z2
(1− αLi) > 0 (199)

where the assumption that |θj | ≤ cigi
(i−1)Λ11

was used to leverage Corollary O.9.1. Let α = 1
2Li

. Then
||η||2 = α2z2 ≤ 1

4 and

ui(v̂
′
i)− ui(v̂i) ≥

2αz2

1 + α2z2
(1− αLi) (200)

=
2α2z2

1 + α2z2

1− αLi
α

(201)

=
2Liα

2z2

1 + α2z2
(202)

=
2Li||η||2

1 + ||η||2
(203)

≥ min(ξ||η||2, ξ′||η||) (204)

with ξ = ξ′ = 8
5Li.
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Lemma O.11 (Approximate Optimization is Reasonable Given Accurate Parents). Assume |θj | ≤
cigi

(i−1)Λ11
≤
√

1
2 for all j < i with 0 ≤ c ≤ 1

16 , i.e., the parents have been learned accurately.

Then for any approximate local maximizer (θ̄i, ∆̄i) of ui(v̂i(θi,∆i), v̂j<i), if the angular deviation
|θ̄i − θ∗i | ≤ ε̄ where θ∗i forms the global max,

|θ̄i| ≤ ε̄+ 8ci (205)

where θ̄i denotes the angular distance of the approximate local maximizer to the true eigenvector vi.

Proof. Note that the true eigenvector occurs at θ̄i = 0. The result follows directly from Theorem N.2:

|θ̄i| = |θ̄i − 0| ≤ |θ̄i − θ∗i |+ |θ∗i − 0| ≤ ε̄+ 8ci. (206)

Lemma O.12. Assume v̂i is initialized within π
4 of its maximizer and its parents are accurate enough,

i.e., that |θj<i| ≤ cigi
(i−1)Λ11

≤
√

1
2 with 0 ≤ ci ≤ 1

16 . Let ρi be the maximum tolerated error desired
for v̂i. Then Riemannian gradient ascent returns

|θi| ≤
π

gi
ρi + 8ci (207)

after at most

d5
4
· 1

ρ2
i

e (208)

iterations.

Proof. Note that the assumptions of Lemma O.1 are met by Corollary O.9.1 and Lemma O.10 with
ξ = ξ′ = 8

5 and Riemannian gradient ascent. Plugging into Lemma O.1 ensures that Riemannian
gradient ascent returns unit vector v̂i satisfying u(v̂i) ≥ u(v̂0

i ) and ||∇R|| ≤ ρi in at most

du(v̂∗i )− u(v̂0
i )

8
5Li

· 1

ρ2
i

e (209)

iterations (where v̂i is initialized to v̂0
i ). Additionally, note that for any v̂i, ui(v̂∗i )− ui(v̂i) ≤ 2Li

where Li bounds the absolute value of the utility ui (see Corollary O.9.1) and v̂∗i = arg maxui(v̂i).
Combining this with Lemma O.6 gives

|θi − θ∗i | ≤
π

gi
ρi (210)

after at most

d5
4
· 1

ρ2
i

e (211)

iterations. Lastly, translating |θi − θ∗i | to |θi| using Lemma O.11 gives the desired result.
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