
Appendices for Safe Explicable Planning

Paper ID: 86

The document includes three appendices. First, the complete proofs for Lemma. 1,
Lemma. 2, Theorem 1, and Theorem 2 are presented in Appendix A. Second, the domain
descriptions for the small cliff world (CS), large cliff world (CL), wumpus world (W), and
the physical robot experiments are presented in Appendix B. Appendix B also includes the
link to the demo of the physical robot experiments. Lastly, the link to the code of SEP is
present in Appendix C, which will be made available if accepted.

1 Appendix A: Proofs

Lemma 1. The set of policies after action pruning based on Eqn. (4) is a superset of the

set of policies that satisfy the constraint in Eqn. (2), i.e., Π̃ ⊇ Πδ.

Proof. To prove this we show that an action pruned by any state per Eqn. (4) is guaranteed
to introduce policies that do not satisfy the constraint in Eqn. (2). Consider any state s ∈ S
and any pruned action a′ ∈ A(s)\Ã(s) in that state. Consider choosing a′ in s once and
thereafter choosing actions as per the optimal policy. The expectation for this is given by

Qπ∗

MR
(s, a′)=Eπ∗

TR [rR(s
1) + γRV

π∗

MR
(s1)|s0=s, a0=a′].

From Eqn. (4), w.k.t.

Qπ∗

MR
(s, a′) < δEπ∗

TR [rR(s
1) + γRV

π∗

MR
(s1)|s0=s, a0=π∗(s)]

Since the future states already choose the optimal actions, there is no room to improve the
value of Qπ∗

MR
(s, a′) and hence cannot satisfy δ. Thus, any policy that chooses a′ for s cannot

satisfy the constraint in that state.

Lemma 2. Let π and π′ be two deterministic policies that differ by only a single action
in some state i.e., ∃si ∈ S [π′(si) ̸= π(si)] ∧ ∀sj ∈ S \ {si} [π′(sj) = π(sj)] and satisfy
Qπ

MR
(si, π

′(si)) ≤ V π
MR

(si). Then, policy π′ is a descendant of π in PDT, i.e., policy π′ is

no better than π, or more formally, ∀s ∈ S [V π′
MR

(s) ≤ V π
MR

(s)].

Proof. This is an extension of the policy improvement theorem (Sutton and Barto 2018) but
in the opposite direction (hence referred to as a policy descent). We know that ∀s ∈ S,

Qπ
MR

(s, π(s)) = V π
MR

(s)

Eπ
TR [rR(s

1) + γRV
π
MR

(s1)|s0=s, a0=π(s)] = V π
MR

(s)
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Consider a temporary non-stationary policy π′
1 that chooses the action as per π′ once in the

initial state s0 and follows π thereafter. ∀s ∈ S,

Q
π′
1

MR
(s, π′

1(s)) ≤ Qπ
MR

(s, π(s))

Q
π′
1

MR
(s, π′

1(s)) ≤ V π
MR

(s)

Eπ′
1

TR [rR(s
1) + γRV

π′
1

MR
(s1)|s0=s, a0=π′

1(s)] ≤ V π
MR

(s)

This is because s0 can either be si ∈ S or any sj ∈ S\{si}.
If s0=si then, Q

π
MR

(si, π
′(si)) ≤ V π

MR
(si) (given).

If s0=sj then, Q
π
MR

(sj, π
′(sj)) = V π

MR
(sj) as π

′
1 differs from π only in one action in one state

si and follows π in all future states.
Similarly, consider another temporary non-stationary policy π′

2 that chooses the actions as
per π′ once in s0, again in s1, and follows π thereafter. ∀s ∈ S,

Q
π′
2

MR
(s, π′

2(s)) ≤ Q
π′
1

MR
(s, π′

1(s))

Q
π′
2

MR
(s, π′

2(s)) ≤ Qπ
MR

(s, π(s))

Eπ′
2

TR [rR(s
1) + γRV

π′
2

MR
(s1)|s0=s, a0=π′

2(s)] ≤ V π
MR

(s)

Consider repeating this until we always choose actions as per π′.

Eπ′

TR [rR(s
1) + γRrR(s

2) + γ2
RrR(s

3) + ...|s0=s, a0=π′(s)] ≤ V π
MR

(s)

V π′

MR
(s) ≤ V π

MR
(s)

Theorem 1. PDT+ returns all Pareto optimal policies in Π∗
E .

Proof. To prove this, we show that there exists a policy descent path from any optimal policy
(denoted by π∗) in MR (i.e., the root node in PDT) to any Pareto optimal policy (denoted
by π∗

E) in Π∗
E by induction. Let n denote the number of actions a policy differs from π∗.

When n = 1, i.e. π∗
E differs from π∗ in a single action i.e. ∃si ∈ S [π∗

E(si) ̸= π∗(si)] ∧
∀sj ∈ S\{si} [π∗

E(si) = π∗(si)] then, ∀s ∈ S Qπ∗
MR

(s, π∗
E(s)) ≤ V π∗

MR
(s) as π∗ is the optimal

policy. This makes π∗
E one of the direct descendants of π∗ (by Lem. 2). Hence, π∗

E is expanded
by PDT.

When n = k, i.e. π∗
E differs from π∗ in any k actions i.e. ∃Sk ⊆ S ∀si ∈ Sk [π

∗
E(si)̸=π∗(si)]

∧ ∀sj ∈ S\Sk [π∗
E(sj)=π∗(sj)], assume π∗

E is expanded by PDT.
When n = k + 1, i.e. π∗

E differs from π∗ in any k + 1 actions i.e. ∃Sk+1 ⊆ S ∀si ∈ Sk+1

[π∗
E(si) ̸=π∗(si)] ∧ ∀sj ∈ S\Sk+1 [π

∗
E(sj)=π∗(sj)], there must be at least one action out of the

k + 1 actions aligning with π∗ that improves, or is same as, the value of π∗
E .

Assume this is false i.e. all the k + 1 actions aligning with π∗ worsen π∗
E . The policy

introduced by aligning all k+1 actions with π∗ is π∗ itself (as all actions other than the k+1
actions in π∗

E are same as π∗). W.k.t. π∗ is optimal and cannot be worse than π∗
E , which is a

contradiction. Thus, ∃π ∃si ∈ Sk+1 [π
∗
E(si) ̸= π(si) = π∗(si)] ∧ ∀sj ∈ S\{si} [π(sj) = π∗

E(sj)]

that satisfies Q
π∗
E

MR
(si, π(si)) ≥ V

π∗
E

MR
(si) and by Lem. 2, π is no-worse than π∗

E . W.k.t. π is
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expanded (induction assumption). Consequently, π∗
E must be one of the direct descendants

of π in PDT and hence π∗
E is expanded.

Therefore, the result holds for any n by the principle of induction. Finally, the same
conclusion holds for PDT+ (by Lem. 1).

Theorem 2. PAG+ returns a policy in the Pareto set Π∗
E .

Proof. The PAG search process stops when it can no longer improve or find a policy that is
equivalent in values to πE under MH

R while satisfying the safety constraint. This translates
to that there does not exist a state-action update that implements a policy ascent step under
the constraint i.e., ¬∃(s′ ∈ S, a′ ∈ A)
[QπE

MH
R
(s′, a′=π′(s)) ≥ QπE

MH
R
(s′, πE(s

′)), s.t. ∀s′ ∈ S [V π′
MR

(s′) ≥ δV π∗
MR

(s′)]]. However, if

πE /∈ Π∗
E , there must exist another policy π ∈ Π∗

E that dominates πE i.e. ∃(s ∈ S, a ∈ A)
[QπE

MH
R
(s, a=π(s)) > QπE

MH
R
(s, πE(s)), s.t. ∀s ∈ S [V π

MR
(s) ≥ δV π∗

MR
(s)]]. This contradicts with

the fact that no policy ascent step exists.
Therefore, πE ∈ Π∗

E .
Finally, the same conclusion holds for PAG+ (by Lem. 1).

2 Appendix B: Domain Descriptions

2.1 Simulations

1) Cliff Worlds (CS & CL): In the cliff worlds, the agent is required to navigate alongside
the edge of a cliff to reach the goal. We created a small 4× 5 grid, referred to as CS (shown
in Fig. 5) to evaluate exact methods and a large 4 × 100 grid, referred to as CL (shown in
Fig. 4) to evaluate approximate methods. To apply approximate methods to CL, the states
were aggregated based on features such as distance to the cliff, and agent’s position in the
grid (e.g., along the edge or at the ends). For CL, we aggregated all non-terminal states into
10 clusters and retained the terminal states (cliffs and goal) as is.

The ground truth (MR) is that the agent can traverse alongside the edge without slipping
off the cliff. Accordingly, TR is designed such that the agent heads in the right direction
with a probability of 0.9 and remains in the same state with a probability of 0.1. The
human’s belief (MH

R ) is that the agent may slip off from the edge with some probability,
and the terrain closer to the cliff is more uneven and hence more difficult for the agent to
traverse. Accordingly, T H

R is designed such that the agent heads in the right direction with
a probability of 0.7, steers in either direction with a probability of 0.1 each, and remains in
the same location with a probability of 0.1.

The reward functions RR and RH
R are shown in Figs. 4(a) and 4(b) respectively for CL.

For CS, the rewards for non-terminal states remain the same but for the cliff states it is
−100 instead of −1000, and for the goal state it is 100 instead of 1000.

2) Wumpus World (W): In the wumpus world, we created a 5 × 5 grid referred to as
W (shown in Fig. 3). To apply approximate methods to W, the non-terminal states were
aggregated into 15 clusters based on features such as the relative direction of the wumpus
from agent and collection status of the gold coins. The agent is required to exit the 5 × 5
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cave while collecting gold coins on its way out and avoiding encounters with the wumpus
(i.e., staying in the same location). The cave has a moving wumpus, two gold coins, and an
exit location.

The ground truth (MR) is that the agent’s movement is deterministic and the wumpus’s
movement is stochastic. Accordingly, TR is designed such that the wumpus always chooses
to move toward the agent’s current location with uniform probability. The human’s belief
MH

R is that the actions of both agents are stochastic. Under such a belief, the human
would consider it dangerous for the agent to move close to the wumpus. Accordingly, T H

R is
designed such that the dynamics of the agent’s movement are the same as that in the cliff
world and the dynamics of the wumpus’s movement is to move close to the agent’s current
location with uniform probability.

In reward functions RR and RH
R , collecting each gold coin gives a reward of +30. The

game terminates if the agent encounters the wumpus with a reward of −100 or if it exits the
cave with a reward of +100. The living reward is −0.1.

2.2 Physical Robot Experiment

Robot Assistant Domain: In this domain, a Kinova MOVO robot is assisting a human user
with setting up the dining table (refer to Fig. 6). The state was modeled to include the
location of an object (which was a napkin in this experiment), the location of an obstacle
(which was a vase in this experiment), and the location of the robot. The possible locations
for the napkin are viz., on the side table (shown in the top sub-figures), on the front table
next to the vase which is away from the human, on the front table next to the plate which
is near the human (shown in the bottom sub-figures), and in the robot’s gripper (shown in
the middle sub-figures). The possible locations for the vase are near the robot (shown in left
sub-figures) and away from the robot (shown in right sub-figures), and fallen (if tipped over
which is not shown). The possible locations for the robot are close to the side table (shown
in the right sub-figures) and close to the human (shown in the middle-left and middle-right
sub-figures).

Figure 7: π∗ in MR

The robot is required to fetch a napkin for the user
from another table. In the robot’s model (MR), movement
of the arms is restricted by a vase on the table such that
placing the napkin close to the user may tip over the vase
containing water, resulting in a safety risk. Hence, the
robot’s optimal behavior is to pick the napkin from the
side table and place it next to the vase, which is further
away from the user as shown in Fig. 7. Accordingly, TR is
designed such that moving the napkin from the side table
directly toward the human with the obstacle in the way
(w.r.t. the robot position) will result in tipping the vase
with probability 1.0. However, clearing the vase could
successfully displace it with a probability of 0.9, tip it
over with a probability of 0.05 and leave it as is with a
probability of 0.05.

The user does not fully understand the kinematic con-
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straints of the robot arms and hence expects the robot to
place the napkin next to the plate which is close to her.
Accordingly, T H

R is designed such that the robot can access
any location on the table irrespective of its own location or the location of the obstacle. In
both TR and T H

R , the probability of executing an action successfully is 0.9 and the probability
of failing is 0.1.

The environment terminates when the napkin is placed in any location on the table or if
the flower vase is tipped over. In RR, there is an equal reward of 10 for placing the napkin
anywhere on the table and −10 for hitting the vase. In RH

R , there is a reward of 10 for
placing the napkin close to the human and 0 reward for placing the napkin anywhere else
on the table.

Please refer to this demo video for further illustration.

3 Appendix C: Code

The code for SEP is available in this repository.
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https://drive.google.com/file/d/1-hMhpIqrwj1ImMJcKIhqmTUEOKfJPKs4/view?usp=drive_link
https://anonymous.4open.science/r/SafeExplicablePlanning-ECDD/
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