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DATABASE DEEP LEARNING

Physics-guided deep learning
Emerging alternative technique for accelerated MRI [1-4]
Supervised PG-DLR requires fully-sampled data for training

Self-supervised learning via data undersampling (SSDU)

enables MRI reconstruction without fully-sampled data [5-6]
Challenges:

1) Lack of large datasets due to physiological and physical

constraints

2) Risk of generalization due to mismatch between training

and test data (e.g. anatomy shift, SNR, sampling pattern)

ZERO-SHOT SELF-SUPERVISED LEARNING (ZS-SSL)

Enable subject-specific training without any external dataset

ZS-SSL partitions available measurements into three disjoint
sets that are respectively used in PG-DLR network, to define

training loss and to establish an early stopping strategy

/S-SSL self-validation strategy tackles overfitting seen in

zero-shot learning frameworks

In presence of pretrained models it can be combined with

transfer learning to tackle database associated challenges [7]

DISCUSSION & CONCLUSION
We proposed to perform subject-specific training with a

well-defined stopping criterion
Results on knee and brain MRI shows that ZS-SSL.:

o achieves on-par performance with supervised PG-DLR

when training & testing data follow same distribution

o outperforms supervised PG-DLR if there is a mismatch

between training & testing data

Zero-Shot Physics-Guided Deep Learning for Subject-Specific MRl Reconstruction
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Figure 1: Proposed ZS-SSL partitioning framework

Figure 2: a) Training and validation loss curves with
varying K for ZS-SSL at R=4. For K > 1 the validation loss
forms an L-curve, whose breaking point (red arrows)
dictates the automated early stopping criterion for
training. b) Loss curves for ZS-SSL with/without TL for K
= 10. ZS-SSL with TL converges faster in time compared

M[:- 50 100 150 200 250 300 "2 MED 50 100 150 200 250 300 D'E?n 50 100 150 200 250 300 to Z5-SSL (red arrOWS)'
Epochs Epochs Epochs
a) CG-SENSE  Supervised PG-DLR  SSDU PG- DIP-Recon-TL Z5-SSL ZS-SSL-TL a) Ground Truth Supervised PG-DLR DIP-Recon-TL ZS-SSL
« ‘ " ‘M 4 ‘;‘)‘: : "’ ‘t'\‘ ‘ vl "{ : :“.‘:\Eu
z F o/ i
= V& 5%
Q \ ._',.“
[ A
: \
x
o
=
o
(&)
b) b)
<
L
o<
=
= : 3
= & C -
< o
= ’ ‘ B
L_'Ll v ‘l\ T I ‘ N \) ‘;‘ 4 "q"! “3‘,{3 ) 3 *?-Q“'P' X ;‘\, P ““'
X
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deep learning (DIP-Recon & proposed ZS-SSL) approaches.
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models for Cor-PD (knee). While supervised PG-DLR and DIP-Recon-TL suffer from
artifacts, ZS-SSL-TL successfully removes noise and artifacts for both cases.
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