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A PRELIMINARY LEMMAS

In this section, we present a preliminary lemma which will be used in the following sections.
Lemma A.1 (Inequality on the Frobenius norm). For matrix A,B,C,D, we have

hA,Bi  kAkF · kBkF , (26)

2kABkF  kAk
2
F + kBk

2
F , (27)

kAB + CDk
2
F  [�2

max(A) + �
2
max(C)]2 · [kBk

2
F + kDk

2
F ] , (28)

kAk
2
F + kBk

2
F  2kA+Bk

2
F , (29)

�
2
min(A)kBk

2
F  kABk

2
F  �

2
max(A)kBk

2
F , (30)

�
2
min(B)kAk

2
F  kABk

2
F  �

2
max(B)kAk

2
F . (31)

Lemma A.1 has been derived and used multiple times in prior work. We refer the readers to Appendix
C in Xu et al. (2023) for detailed proof.
Lemma A.2 (Singular values of T ). The largest and smallest singular values of T are given as

�
2
min(T ) = �

2
min(W1) + �

2
min(W2) ,

�
2
max(T ) = �

2
max(W1) + �

2
max(W2) . (32)
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Proof. First, one can see

T
⇤
� T (U ;W1,W2) = UW2W

>
2 +W1W

>
1 U , (33)

where T
⇤ is the adjoint of T . Then, we use Min-max theorem to show

�min(T
⇤
� T ) = �

2
min(W1) + �

2
min(W2) , �max(T

⇤
� T ) = �

2
max(W1) + �

2
max(W2) . (34)

Let the singular value decompositions of W1,W2 be

W1 = U1⌃1V
>
1 =

r1X

i=1

�1,iu1,iv
>
1,i , W2 = U2⌃2V

>
2 =

r2X

i=1

�2,iu2,iv
>
2,i , (35)

where r1 = rank(W1), r2 = rank(W2), and {�1,i}
r1
i=1, {�2,i}

r2
i=1 are of descending order. Then, one

has the following

�min(T
⇤
� T ) = min

kUkF=1
hU,UW2W

>
2 +W1W

>
1 Ui

= min
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hU,UW2W
>
2 i+ min

kUkF=1
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>
1 Ui

� �
2
min(W1) + �

2
min(W2) . (36)

On the other hand, if one choose U = v1,r1u
>
2,r2 ,the following equation holds

hU,UW2W
>
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>
1 Ui

=
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>
2,r2 , v1,r1u

>
2,r2W2W

>
2 +W1W

>
1 v1,r1u

>
2,r2

↵

=
⌦
v1,r1u

>
2,r2 , v1,r1u

>
2,r2

r2X

i=1

�
2
2,iu2,iv

>
2,i

↵
+
⌦
v1,r1u

>
2,r2 ,

r1X

i=1

�
2
1,iu1,iv

>
1,iv1,r1u

>
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↵
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r2X

i=1

�
2
2,itr(u2,r2v

>
1,r1v1,r1u

>
2,r2u2,iv

>
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r2X

i=1

�
2
1,itr(u2,r2v

>
1,r1u1,iv

>
1,iv1,r1u

>
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=�
2
1,r1 + �

2
2,r2 , (37)

where the last line is based on the fact that v>1,ivi,r1 = 0, u>
2,ju2,r2 = 0 holds for all i 6= r1, j 6= r2.

Therefore, based on equation 36 and equation 37, one has

�min(T
⇤
� T ) = �

2
min(W1) + �

2
min(W2) . (38)

Similarly, we can show

�max(T
⇤
� T ) = �

2
max(W1) + �

2
max(W2) . (39)

B NON-EXISTENCE OF GLOBAL PL CONSTANT AND SMOOTHNESS
CONSTANT FOR PROBLEM 2

In this section, we show that under mild assumptions, the PL inequality and smoothness inequality
can only hold with constants µover = 0 and Kover = 1 for Problem 2.

Before presenting the results, we first present the following preliminary lemma on the inequality of
the Frobenius norm.

We then make the following assumption on Problem 2.
Assumption B.1. (W1,W2) = (0, 0) is not a global minimizer of Problem 2.

Based on the above assumption, one has the following proposition.
Proposition B.1 (Non-existence of global PL constant and smoothness constant). Under Assump-
tion B.1, the PL inequality and smoothness inequality can only hold with constants µover = 0 and
Kover = 1 for L(W1,W2).
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Proof. We first show µover = 0. The gradient of L is given as follows
krL(W1,W2)k

2
F = kr`(W )W2k

2
F + kr`(W )>W1k

2
F . (40)

Notice when W1,W2 are zero matrices, the RHS of the above equation is zero. Therefore, we have
krL(W1,W2)k2F =0. On the other hand, under Assumption B.1, since (W1,W2) = (0, 0) is not a
minimizer of Problem 2, we have L(W1,W2) 6=0. Thus, the PL inequality can only hold globally
with µover = 0,

krL(W1,W2)k
2
F = kr`(W )W2k

2
F + kr`(W )>W1k

2
F � 2µoverL(W1,W2) . (41)

Then, we show Kover = 1 for Problem 2. We consider the smoothness inequality evaluated on
arbitrary (W1,W2) and the minimizer (W ⇤

1 ,W
⇤
2 ) of Problem 2:

L(W1,W2)  L(W ⇤
1 ,W

⇤
2 ) + hrL(W ⇤

1 ,W
⇤
2 ), Z

⇤
� Zi+

Kover

2
kZ

⇤
� Zk

2
F , (42)

where we use Z,Z
⇤ in short for (W1,W2), (W ⇤

1 ,W
⇤
2 ). Since (W ⇤

1 ,W
⇤
2 ) minimizes Problem 2, we

have rL(W ⇤
1 ,W

⇤
2 ) = 0(m+n)⇥h and L(W ⇤

1 ,W
⇤
2 ) = 0. Thus, equation 42 is equivalent to the

following

Kover �
2L(W1,W2)

kZW � ZW⇤k2F

=
2`(W1W

>
2 )

kZW � ZW⇤k2F

. (43)

On the other hand, since `(W ) is µ-strongly convex w.r.t. W , the following inequality holds for
arbitrary U, V

`(U) � `(V ) + hr`(V ), U � V i+
µ

2
kU � V k

2
F . (44)

We substitute U, V with W1W
>
2 ,W

⇤
1 (W

⇤
2 )

> in equation 44, we have

`(W1W
>
2 ) �

µ

2
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⇤
1 (W

⇤
2 )

>
k
2
F . (45)

Finally, we combine equation 43 and equation 45, and derive the following lower bound on Kover
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>
2 )

kZW � ZW⇤k2F

Based on equation 43
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⇤
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>
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2
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Apply Lemma A.1
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Similarly, one can also derive the following lower bound on Kover

Kover �
µ

2
·
�
2
min(W

⇤
2 )kW1 �W

⇤
1 k

2
F +�

2
min(W1)kW2 �W

⇤
2 k

2
F

kW1 �W
⇤
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2
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⇤
2 k

2
F

(47)

We take the average of the lower bound on Kover in equation 46 and equation 47,

Kover �
µ

4
·

�
�
2
min(W2) + �

2
min(W

⇤
2 )
�
kW1 �W

⇤
1 k

2
F +

�
�
2
min(W1) + �

2
min(W

⇤
1 )
�
kW2 �W

⇤
2 k

2
F

kW1 �W
⇤
1 k

2
F + kW2 �W

⇤
2 k

2
F

�
µ

4
·min

✓
�
2
min(W1) + �

2
min(W

⇤
1 ),�

2
min(W2) + �

2
min(W

⇤
2 )

◆

�
µ

4
·min

✓
�
2
min(W1),�

2
min(W2)

◆
. (48)

Due to the arbitrary choices of W1,W2, we can let �min(W1) and �min(W2) to be arbitrarily large,
thus the smoothness inequality for Problem 2 can only hold globally with Kover = 1.
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C A DETAILED COMPARISON WITH PRIOR WORK

In this section, we present a detailed comparison to Arora et al. (2018); Du et al. (2018a); Xu et al.
(2023) to highlight the difference in technical details and improvement on the convergence rate.

Summary of the strategy of proof in (Arora et al., 2018; Du et al., 2018a; Xu et al., 2023). Based
on GD update in equation 8, one can derive the following update on the product W (t)

W (t+1) = W (t)� ⌘tT
⇤
t � Tt(r`(t)) + ⌘

2
tr`(t)W (t)>r`(t) , (49)

where T
⇤
t is the adjoint of Tt. Then, substituting equation 49 into the smoothness inequality of the

non-overparametrized model in equation 4, we can derive the following upper bound on the loss at
iteration t+1 using the loss at iteration t (Also see Lemma3.1 in Xu et al. (2023)).
Lemma C.1. If at the t-th iteration of GD applied to the over-parametrized loss L, the step size ⌘t

satisfies

�
2
min(Tt)� ⌘tkr`(t)kF kW (t)kF �

K⌘t

2

⇥
�
2
max(Tt) + ⌘tkr`(t)kF kW (t)kF

⇤2
� 0 , (50)

then the following inequality holds

L(t+1)  ⇢(⌘, t)L(t) , (51)

where

⇢(⌘, t) = 1� 2⌘tµ�
2
min(Tt) +Kµ⌘

2
t �

4
max(Tt) + 2⌘2t µ�max(W (t))kr`(t)kF

+ 2⌘3t µK�
2
max(Tt)�max(W (t))kr`(t)kF + ⌘

4
t µK�

2
max(W (t))kr`(t)k2F . (52)

Improvement of the local rate of decrease. First, one can see the local rates of decrease in both work
are polynomials of degree four and depend on ⌘t,r`(t) and singular values of Tt,Wt. Moreover,
around any global minimum, i.e., L(t) ⇡ 0, kr`(t)kF ⇡ 0, we have the following local rate of
decrease per iteration

1� 2⌘tµ�
2
min(Tt) + ⌘

2
tKµ�

4
max(Tt) local rate of decrease in prior work ,

1� 2⌘tµ�
2
min(Tt) + ⌘

2
tKµ�

2
min(Tt)⌘

2
t �

2
max(Tt) local rate of decrease in this work , (53)

and the optimal local rates of decrease regardless of the constraints on the ⌘t are

1�
µ

K
·
�
4
min(Tt)

�4
max(Tt)

optimal local rate of decrease in prior work ,

1�
µ

K
·
�
2
min(Tt)

�2
max(Tt)

optimal local rate of decrease in this work . (54)

Thus, one can see our characterization of local Descent lemma and PL inequality leads to faster local
rates of decrease compared with prior results by �2

min(Tt)
�2
max(Tt)

. Nevertheless, equation 54 does not imply

linear convergence since if lim
t!1

�2
min(Tt)

�2
max(Tt)

= 0, one would not expect sufficient decrease per iteration.

In order to show linear convergence, one needs to provide a uniform lower bound on �2
min(Tt)

�2
max(Tt)

, 8t.

Improvement of the local rate of convergence. In this work, we show when the step sizes satisfy
certain constraints (See Theorem 3.2), there exist uniform spectral bounds for the condition number
of Tt, i.e., �2

min(Tt)
�2
max(Tt)

 c(⌘0)
↵1
↵2

, 8t where ↵1,↵2 only depend on the initial weights and c(⌘0) is a
constant approaching one as ⌘0 decreases. Thus, the optimal final rate of convergence derived in this
work is

1�
µ

K
·
↵1

↵2
optimal local rate of convergence in this work . (55)

In prior work, the rates in (Du et al., 2018a; Arora et al., 2018) are extremely slow in practice (See
Section 4 in (Xu et al., 2023)). In (Xu et al., 2023), the authors introduce two auxiliary constants
0<c1<1, c2>1, and show that one can uniformly bound the condition number of Tt during training,
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i.e., �2
min(Tt)

�2
max(Tt)


c1↵1
c2↵2

, 8t. Moreover, they enforce problem-dependent assumptions on the choices
of c1, c2. According to Claim E.1 in (Xu et al., 2023), c1

c2
is at most 1

3 and can be arbitrarily small
when the initial loss is large. Thus, the local rate of convergence in (Xu et al., 2023) is at most, in our
notation,

1�
µ

K
·
c
2
1↵

2
1

c
2
2↵

2
2

optimal local rate of convergence in (Xu et al., 2023) . (56)

When comparing equation 55 and equation 56, one can directly conclude the local rate of convergence
derived in this work is much faster than the rate derived in (Xu et al., 2023). Moreover, the
optimal local rate of convergence of the overparametrized model in this work is different from the
optimal rate of convergence of the non-overparametrized model up to a factor of ↵1

↵2
, which shows

overparametrization has a benign effect if one can control ↵1
↵2

through properly initialization of the
weights. However, such results are not shown in the work of (Arora et al., 2018; Du et al., 2018a; Xu
et al., 2023).

D PROOF OF THEOREM 3.1

In this section, we present the proof of Theorem 3.1.
Theorem D.1 (Restate of Theorem 3.1). At the t-th iteration of GD applied to the Problem 2, the
Descent lemma and PL inequality hold with local smoothness constant Kt and PL constant µt, i.e.,

L(t+1)  L(t)�
�
⌘t �

Kt⌘
2
t

2

�
krL(t)k2F ,

1

2
krL(t)k2F � µtL(t) . (57)

Moreover, if the step size ⌘t satisfies ⌘t > 0 and ⌘tKt < 2, then the following inequality holds

L(t+1)  L(t)(1� 2µt⌘t + µtKt⌘
2
t ) := L(t)⇢(⌘t, t) , (58)

where

µt = µ�
2
min(Tt) , (59)

Kt = K�
2
max(Tt)+

p
2KL(t)+6K2

�max(W (t))L(t)⌘2t +3K�
2
max(Tt)

p
2KL(t)⌘t , (60)

and we use L(t), Tt as a shorthand for L(W1(t),W2(t)), T ( · ;W1(t),W2(t)) resp.

Proof. We first show that the local PL inequality holds.

krL(t)k2F =

����


r`(t)W2(t)
r`(t)>W1(t)

� ����
2

F

= k`(t)W2(t)k
2
F + k`(t)>W1(t)k

2
F

� �
2
min(W2(t))kr`(t)k2F + �

2
min(W1(t))kr`(t)k2F Apply Lemma A.1

� 2µ�2
min(W2(t))L(t) + 2µ�2

min(W1(t))L(t) Apply PL inequality of `
= 2µtL(t) ,

where the last equality uses the fact that �2
min(Tt) = �

2
min(W1(t)) + �

2
min(W2(t)). Then, we show

that Descent lemma holds with local smoothness constant Kt. We can view L(t+1) using the
following second Taylor approximation,

L(t+1) = L(t) + hrL(t), Zt+1�Zti+

Z 1

0
(1� ⌧)

⌦
Zt+1�Zt, H(⌧)(Zt+1�Zt)

↵
d⌧ ,

= L(t)� ⌘tkrL(t)k2F + ⌘
2
t krL(t)k2F

Z 1

0
(1� ⌧)hgt, H(⌧)gtid⌧ , (61)

where we use Zt+1, Zt in short for (W1(t+1),W2(t+1)), (W1(t),W2(t)) respectively, and gt =
rL(t)

krL(t)kF
to denote the unit vector of the gradient direction. Moreover, the H(⌧) is defined as follows,

H(⌧) = r
2
L
�
(1� ⌧)W1(t)+⌧W1(t+1), (1� ⌧)W2(t)+⌧W2(t+1)

�

= r
2
L
�
W1(t)�⌘t⌧rW1L(t),W2(t)�⌘t⌧rW2L(t)

�
. (62)
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Notice the integral in the equation 61 does not have a closed-form solution. We use the following
two-step approach to derive an upper bound on the RHS of equation 61.

Step one. We first show that one can upper bound hgt, H(0)gti using the singular values of Tt, K
and L(t). The following lemma characterizes it formally.

Lemma D.1 (Upper bound on hgt, H(0)gti). We have the following upper bound

hgt, H(0)gti  K�
2
max(Tt) +

p
2KL(t) . (63)

The proof of Lemma D.1 is presented at the end of this section.

Step two. Then, for any ⌧ 2 [0, 1), we can show |hgt,
�
H(0) � H(⌧)

�
gti| is bounded, which

leads to an upper bound on hgt, H(⌧)gti. The following lemma characterizes the upper bound on
hgt, H(⌧)gti.

Lemma D.2 (Uniform upper bound on hgt, H(⌧)gti). For any ⌧ 2 [0, 1), we have

|hgt, H(⌧)gti|K�
2
max(Tt)+

p
2KL(t)+6K2

�max(W (t))L(t)⌘2t +3K�
2
max(Tt)

p
2KL(t)⌘t := Kt .

The proof of Lemma D.2 is presented at the end of this section.

Based on equation 61 and Lemma D.2, one can derive Descent lemma

L(t+1) = L(t)� ⌘tkrL(t)k2F + ⌘
2
t krL(t)k2F

Z 1

0
(1� ⌧)hgt, H(⌧)gtid⌧ Equation 61

 L(t)� ⌘tkrL(t)k2F + ⌘
2
t krL(t)k2F

Z 1

0
(1� ⌧)max

⌧
|hgt, H(⌧)gti|d⌧

 L(t)� ⌘tkrL(t)k2F + ⌘
2
t krL(t)k2F

Z 1

0
(1� ⌧)Ktd⌧ Lemma D.2

= L(t)� ⌘tkrL(t)k2F +
⌘
2
tKt

2
krL(t)k2F

= L(t)� (⌘t �
⌘
2
tKt

2
)krL(t)k2F . (64)

Therefore, Descent lemma is proved.

Now we present the proof of Lemma D.1 and Lemma D.2. We first define the following quantity
which will be used in the proof

M(s) = L(W1(t)� s⌘trW1L(t),W2(t)� s⌘trW2L(t)) , (65)

A(s) = W (t)�s⌘t

�
rW2L(t)W2(t)

>+W1(t)rW1L(t)
>�+s

2
⌘
2
trW1L(t)rW2L(t)

>
, (66)

where A(s) is the product of W1(t)�s⌘trW1L(t) and W2(t)�s⌘trW2L(t). Moreover, we have
M(0)=L(t), M(⌘t)=L(t+1) and M(s)=`

�
A(s)

�
.

Then, we present several lemmas that will be used in the proof of Lemma D.1 and Lemma D.2.
Lemma D.3. Given W1(t) 2 Rn⇥h

,W2(t) 2 Rm⇥h at t-th iteration, the following holds

2krW1L(t)rW2L(t)
>
kF  krW1L(t)k

2
F + krW2L(t)k

2
F (67)

krW1L(t)rW2L(t)
>
kF  2K�max(W (t))L(t) . (68)

Proof. Based on Lemma A.1, one has 2kABkF kAk
2
F +kBk

2
F . Thus, let A = rW1L(t), B =

rW2L(t), and we complete the proof of equation 67.

For equation 68, one has the following

krW1L(t)rW2L(t)
>
kF = kr`(t)W (t)>r`(t)>kF

 �max(W (t))kr`(t)k2F equation 30 in Lemma A.1
 2K�max(W (t))L(t) K-smooth of ` , (69)

which completes the proof.
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Lemma D.4. Given W1(t) 2 Rn⇥h
,W2(t) 2 Rm⇥h at t-th iteration, the following holds

krW2L(t)W2(t)
>+W1(t)rW1L(t)

>
kF  �

2
max(Tt)

p
2KL(t) . (70)

Proof. We prove this lemma using the results from Lemma A.1 and Lemma A.2

krW2L(t)W2(t)
>+W1(t)rW1L(t)

>
kF

krW2L(t)W2(t)
>
kF +kW1(t)rW1L(t)

>
kF Property of norm

=kr`(t)W2W2(t)
>
kF +kW1(t)W1(t)

>
r`(t)>kF See definition of Tt

�
2
max(W2(t))kr`(t)k2F + �

2
max(W1(t))kr`(t)k2F equation 30 in Lemma A.1

=�
2
max(Tt)kr`(t)k2F Lemma A.2

�
2
max(Tt)

p
2KL(t) K-smooth of ` . (71)

Lemma D.5. Given W1(t) 2 Rn⇥h
,W2(t) 2 Rm⇥h at t-th iteration, for any s 2 (0, 1], the

following holds

kr`
�
A(s)

�
�r`

�
A(0)kF  ⌘tK

p
2KL(t)�2

max(Tt) + 2⌘2tK
2
�max(W (t))L(t) (72)

Proof. Based on Lemma A.1 and the assumption that ` is K-smooth, one has the following

kr`
�
A(s)

�
�r`

�
A(0)kF

KkA(s)�A(0)kF

=Kk�s⌘t

�
rW2L(t)W2(t)

>+W1(t)rW1L(t)
>�+s

2
⌘
2
trW1L(t)rW2L(t)

>
kF

s⌘tKkrW2L(t)W2(t)
>+W1(t)rW1L(t)

>
kF + s

2
⌘
2
tKkrW1L(t)rW2L(t)

>
kF

⌘tKkrW2L(t)W2(t)
>+W1(t)rW1L(t)

>
kF + ⌘

2
tKkrW1L(t)rW2L(t)

>
kF , (73)

where the last line is due to the fact that s 2 (0, 1].

Then, based on Lemma D.3 and Lemma D.4, one has the following,

kr`
�
A(s)

�
�r`

�
A(0)kF

KkA(s)�A(0)kF

⌘tKkrW2L(t)W2(t)
>+W1(t)rW1L(t)

>
kF + ⌘

2
tKkrW1L(t)rW2L(t)

>
kF

⌘tK�
2
max(Tt)

p
2KL(t) + ⌘

2
tK · 2K�max(W (t))L(t) , (74)

which completes the proof.

Lemma D.1 (Upper bound on hgt, H(0)gti). We have the following upper bound

hgt, H(0)gti  K�
2
max(Tt) +

p
2KL(t) . (75)

Proof. First, we notice hgt, H(0)gti is the second-order directional derivative of L(t) w.r.t. the
gradient direction,

hgt, H(0)gti =
1

krL(t)k2F
·
d
2

ds2
M(s)

����
s=0

. (76)
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Moreover, we can compute d2

ds2M(s)
���
s=0

as follows

d
2

ds2
M(s)

����
s=0

=
d
2

ds2
L

✓�
W1(t)�srW1L(t)

��
W2(t)�srW2L(t)

�>
◆����

s=0

=
d
2

ds2
`
�
A(s)

�����
s=0

Definition of A(s)

=
d

ds

⌦
r`

�
A(s)

�
,
d

ds
A(s)

↵����
s=0

=
⌦
r`

�
A(s)

�
,
d
2

ds2
A(s)

↵
+
⌦ d

ds
A(s),r2

`(A(s))
d

ds
A(s)

↵����
s=0

. (77)

Under the assumption that ` is K-smooth and Lemma A.1, one can derive the following upper bound
on d2

ds2M(s)
���
s=0

d
2

ds2
M(s)

����
s=0

=
⌦
r`

�
A(s)

�
,
d
2

ds2
A(s)

↵
+
⌦ d

ds
A(s),r2

`(A(s))
d

ds
A(s)

↵����
s=0

 hr`
�
A(s)

�
,
d
2

ds2
A(s)

↵
+Kk

d

ds
A(s)k2F

����
s=0

` is K-smooth

=2hr`(t),rW1L(t)rW2L(t)
>↵+KkrW2L(t)W2(t)

>+W1(t)rW1L(t)
>
k
2
F

2kr`(t)kF · krW1L(t)rW2L(t)
>
kF

+K[�2
max(W1(t)) + �

2
max(W2(t))] · [krW1L(t)k

2
F + krW2L(t)k

2
F ] Lemma A.1

kr`(t)kF · [krW1L(t)k
2
F + krW2L(t)k

2
F ]

+K[�2
max(W1(t)) + �

2
max(W2(t))] · [krW1L(t)k

2
F + krW2L(t)k

2
F ] Lemma A.1



p
2KL(t) · [krW1L(t)k

2
F + krW2L(t)k

2
F ] K-smooth of `

+K[�2
max(W1(t)) + �

2
max(W2(t))] · [krW1L(t)k

2
F + krW2L(t)k

2
F ] . (78)

Finally, we derive the the upper bound on hgt, H(0)gti based on equation 78

hgt, H(0)gti =
1

krL(t)k2F
·
d
2

ds2
M(s)

����
s=0


[krW1L(t)k

2
F + krW2L(t)k

2
F ] ·

�p
2KL(t) + �

2
max(W1(t)) + �

2
max(W2(t))

�

krW1L(t)k
2
F + krW2L(t)k

2
F

=
p
2KL(t) + �

2
max(W1(t)) + �

2
max(W2(t))

=
p
2KL(t) + �

2
max(Tt) , (79)

where the last line is based on Lemma A.2.

Lemma D.2 (Upper bound on hgt, H(⌧)gti). For any ⌧ 2 [0, 1), we have

hgt, H(⌧)gti  Kt , (80)

where

Kt = K�
2
max(Tt)+

p
2KL(t)+6K2

�max(W (t))L(t)⌘2t +3K�
2
max(Tt)

p
2KL(t)⌘t . (81)

Proof. First, we use the same method to compute hgt, H(⌧)gti as it was done in Lemma D.1

hgt, H(⌧)gti =
1

krL(t)k2F
·
d
2

ds2
M(s+⌧)

����
s=0

. (82)
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Based on similar calculations in equation 77, one has

d
2

ds2
M(s+⌧)

����
s=0

=
d
2

ds2
`
�
A(s+⌧)

�����
s=0

=
d

ds

⌦
r`

�
A(s+⌧)

�
,
d

ds
A(s+⌧)

↵����
s=0

=
⌦
r`

�
A(s+⌧)

�
,
d
2

ds2
A(s+⌧)

↵
+
⌦ d

ds
A(s+⌧),r2

`(A(s+⌧))
d

ds
A(s+⌧)

↵����
s=0

. (83)

Under the assumption that ` is K-smooth, Lemma A.1 and Lemma D.1, one can show

d
2

ds2
M(s+⌧)

����
s=0

=
⌦
r`

�
A(s+⌧)

�
,
d
2

ds2
A(s+⌧)

↵
+
⌦ d

ds
A(s+⌧),r2

`(A(s+⌧))
d

ds
A(s+⌧)

↵����
s=0


⌦
r`

�
A(s+⌧)

�
,
d
2

ds2
A(s+⌧)

↵
+Kk

d

ds
A(s+⌧)k2F

����
s=0

=2
⌦
r`

�
A(⌧)

�
,rW1L(t)rW2L(t)

>↵

+KkrW2L(t)W2(t)
>+W1(t)rW1L(t)

>
� 2⌧⌘trW1L(t)rW2L(t)

>
k
2
F

=2
⌦
r`

�
A(⌧)

�
�r`

�
A(0)

�
,rW1L(t)rW2L(t)

>↵+2
⌦
r`

�
A(0)

�
,rW1L(t)rW2L(t)

>↵

+KkrW2L(t)W2(t)
>+W1(t)rW1L(t)

>
k
2
F + 4⌧2⌘2tKkrW1L(t)rW2L(t)

>
k
2
F

� 4⌧K⌘t

⌦
rW2L(t)W2(t)

>+W1(t)rW1L(t)
>
,rW1L(t)rW2L(t)

>↵

2
⌦
r`

�
A(0)

�
,rW1L(t)rW2L(t)

>↵+KkrW2L(t)W2(t)
>+W1(t)rW1L(t)

>
k
2
F

+ 2kr`
�
A(⌧)

�
�r`

�
A(0)kF · krW1L(t)rW2L(t)

>
kF

+ 4⌧2⌘2tKkrW1L(t)rW2L(t)
>
k
2
F

+ 4⌧⌘tKkrW2L(t)W2(t)
>+W1(t)rW1L(t)

>
kF · krW1L(t)rW2L(t)

>
kF

2
⌦
r`

�
A(0)

�
,rW1L(t)rW2L(t)

>↵+KkrW2L(t)W2(t)
>+W1(t)rW1L(t)

>
k
2
F

+ 2kr`
�
A(⌧)

�
�r`

�
A(0)kF · krW1L(t)rW2L(t)

>
kF

+ 4⌘2tKkrW1L(t)rW2L(t)
>
k
2
F

+ 4⌘tKkrW2L(t)W2(t)
>+W1(t)rW1L(t)

>
kF · krW1L(t)rW2L(t)

>
kF , (84)

where the last line is derived based on the fact that ⌧ 2 (0, 1].

Notice in equation 78, we have shown

2
⌦
r`

�
A(0)

�
,rW1L(t)rW2L(t)

>↵+KkrW2L(t)W2(t)
>+W1(t)rW1L(t)

>
k
2
F

 [krW1L(t)k
2
F + krW2L(t)k

2
F ] ·

�p
2KL(t) + �

2
max(Tt)

�
. (85)

Moreover, in Lemma D.3, Lemma D.4 and Lemma D.5, we have shown

2krW1L(t)rW2L(t)
>
kF  krW1L(t)k

2
F + krW2L(t)k

2
F

krW1L(t)rW2L(t)
>
kF  2K�max(W (t))L(t) (86)

krW2L(t)W2(t)
>+W1(t)rW1L(t)

>
kF  �

2
max(Tt)

p
2KL(t)

kr`
�
A(s)

�
�r`

�
A(0)kF  ⌘tK

p
2KL(t)�2

max(Tt) + 2⌘2tK
2
�max(W (t))L(t) .

(87)

20



Under review as a conference paper at ICLR 2024

Thus, one can further upper bound equation 84 as follows

d
2

ds2
M(s+⌧)

����
s=0

2
⌦
r`

�
A(0)

�
,rW1L(t)rW2L(t)

>↵+KkrW2L(t)W2(t)
>+W1(t)rW1L(t)

>
k
2
F

+ 2kr`
�
A(⌧)

�
�r`

�
A(0)kF · krW1L(t)rW2L(t)

>
kF

+ 4⌘2tKkrW1L(t)rW2L(t)
>
k
2
F

+ 4⌘tKkrW2L(t)W2(t)
>+W1(t)rW1L(t)

>
kF · krW1L(t)rW2L(t)

>
kF

[krW1L(t)k
2
F + krW2L(t)k

2
F ] ·

�p
2KL(t) + �

2
max(Tt)

�

+

✓
⌘tK

p
2KL(t)�2

max(Tt) + 2⌘2tK
2
�max(W (t))L(t)

◆
·[krW1L(t)k

2
F + krW2L(t)k

2
F ]

+ 4⌘2tK
2
�max(W (t))L(t) · [krW1L(t)k

2
F + krW2L(t)k

2
F ]

+ 2⌘tK�
2
max(Tt)

p
2KL(t) · [krW1L(t)k

2
F + krW2L(t)k

2
F ] . (88)

As a result, we can show

hgt, H(⌧)gti =
1

krL(t)k2F
·
d
2

ds2
M(s+⌧)

����
s=0

 K�
2
max(Tt)+

p
2KL(t)+6K2

�max(W (t))L(t)⌘2t +3K�
2
max(Tt)

p
2KL(t)⌘t .

E PROOF OF THEOREM 3.2

In this section, we first introduce the generalized form of Theorem 3.2. Then, we provide a detailed
proof.
Theorem E.1 (Linear convergence of GD for Problem 2). Assume the GD algorithm equation 8 is
initialized such that ↵1 > 0. Pick any 0 < c < 1, d > 1. Let ⌘(1)0 be the unique positive solution of
the following equation

⌘0

�p
2KL(0)+6K2

�2L(0)⌘
2
0+K exp(

p
⌘0)↵2

⇥
1+3

p
2KL(0)⌘0

⇤�
= 1 , (89)

and ⌘
(2)
0 be the smallest positive solution of the following equation3

4KL(0)⌘20 = (1� exp(�⌘
c
0))⇥ (1��) . (90)

Then, we define ⌘max = min(⌘(1)0 , ⌘
(2)
0 , log

�
1+ ↵1

2↵2

� 1
c ). For any ⌘0 and ⌘t such that 0 < ⌘0  ⌘max

and ⌘t satisfies

⌘0  ⌘t  min
�
(1 + ⌘

d
0)

t
2 ⌘0,

1

Kt

�
, (91)

one can derive the following linear convergence rate for GD

L(t+1)  L(t)⇢̄(⌘t, t)  L(t)⇢̄(⌘0, 0)  L(0)⇢̄(⌘0, 0)
t+1

, (92)

where

⇢̄(⌘t, t) = 1� 2µ̄⌘t + µ̄K̄t⌘
2
t , µ̄ = µ

⇥
↵1 + 2↵2

�
1� exp(⌘c0)

�⇤
, � = (1 + ⌘

d
0)⇢̄(⌘0, 0) ,

K̄t =
p
2KL(0)⇢̄(⌘0, 0)t+6K2

�2L(0)⌘
2
0�

t+K exp(
p
⌘0)↵2

⇥
1+3

p
2KL(0)�t⌘0

⇤
.

Notice Theorem 3.2 in §3.2 can be viewed as a special case of Theorem E.1 with c = 1
2 , d = 2.

3In the case when equation 90 does not have positive solution, we set ⌘(2)
0 = 1.
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Before presenting the proof Theorem E.1, we first show that the constraints on ⌘0 do not induce an
empty set, or equivalently ⌘max > 0. Alongside, we provide several inequalities that are implied by
the constraints on ⌘0, which the proof Theorem E.1 is relied on.

Existence of ⌘0 . To show the existence of ⌘0, it is equivalent to show that ⌘max > 0. First, since
↵1,↵2 are positive, we have log

�
1 + ↵1

2↵2

� 1
c
> 0. Moreover, one can see when ⌘0 < log

�
1 + ↵1

2↵2

� 1
c ,

we have µ̄ > 0.

Second, we show ⌘
(1)
0 > 0. The LHS of equation 89 increases as ⌘0 increases, and it equals zero as

⌘0 = 0. Thus, there exists a unique positive solution of equation 89, which is equivalent to ⌘
(1)
0 > 0.

Notice

K̄0 =
p
2KL(0)+6K2

�2L(0)⌘
2
0+K exp(

p
⌘0)↵2

⇥
1+3

p
2KL(0)⌘0

⇤
. (93)

Therefore, 0 < ⌘0  ⌘
(1)
0 implies 0 < ⌘0K̄0  1 which is equivalent to ⌘0 

1
K̄0

. This constraint
further leads to 0 < ⇢̄(⌘0, 0) < 1 and � > 0.

Finally, we show ⌘
(2)
0 > 0. Notice when ⌘0 = 0, the RHS and LHS of equation 90 both equal zero.

Moreover, when ⌘0 > 0, one can rewrite equation 90 as follows

4KL(0)⌘20 = (1� exp(�⌘
c
0))⇥ (1��)

() 4KL(0)⌘20 = (1� exp(�⌘
c
0))⇥ (2µ̄⌘0 � µ̄K̄0⌘

2
0 � ⌘

d
0 ⇢̄(⌘0, 0))

() 4KL(0)⌘1�c
0 =

1� exp(�⌘
c
0)

exp(�⌘
c
0)

⇥ (2µ̄� µ̄K̄0⌘0 � ⌘
d�1
0 ⇢̄(⌘0, 0)) . (94)

Then, we study the order of both sides of equation 94 in terms of ⌘0 in the regime where 0 < ⌘0 

min

✓
log

�
1 + ↵1

2↵2

� 1
c
,

1
K̄0

◆
. Since 0 < c < 1, and the LHS of equation 94 is of order ⇥(⌘1�c

0 ),

it decreases monotonically to zero as ⌘0 approaches zero. The RHS of equation 94 is the product
of two terms, i.e., 1�exp(�⌘c

0)
exp(�⌘c

0)
and 2µ̄ � µ̄K̄0⌘0 � ⌘

d�1
0 ⇢̄(⌘0, 0). We notice ⌘

c
0 approaches zero as

⌘0 decreases to zero. Thus, 1�exp(�⌘c
0)

exp(�⌘c
0)

converges to one as ⌘0 decreases to zero. Moreover, when

⌘0  min

✓
log

�
1 + ↵1

2↵2

� 1
c
,

1
K̄0

◆
, we have µ̄ > 0 and 0 < ⇢̄(⌘0, 0) < 1. Therefore, the RHS of

equation 94 is of order ⇥(1). As a result, when ⌘0 > 0 is sufficiently small, one has

4KL(0)⌘20 < (1� exp(�⌘
c
0))⇥ (1��) . (95)

Moreover, if equation 90 has positive roots, and we use ⌘
(2)
0 to denote its smallest positive root. The

following holds for all 0 < ⌘0  ⌘
(2)
0

4KL(0)⌘20  (1� exp(�⌘
c
0))⇥ (1��) (96)

If equation 90 does not have positive root, then equation 95 holds for all positive ⌘0.

To summarize, we have shown that ⌘max > 0, and the ⌘0 always exists. Moreover, when ⌘0 satisfies
0 < ⌘0 < ⌘max, the following holds

µ̄ > 0 , 0 < ⇢̄(⌘0, 0),� < 1 ,

4KL(0)⌘20  (1� exp(�⌘
c
0))⇥ (1��) . (97)

Now we present the proof of Theorem E.1.

Proof. We employ an induction-based approach to prove Theorem E.1 by iteratively showing the
following properties hold for all iteration t when ⌘0 and ⌘t satisfy the constraints in Theorem E.1.

• A1(t) : L(t)  L(t�1)⇢̄(⌘t�1, t�1)  L(t�1)⇢̄(⌘0, 0).

• A2(t) : �1  �min(W (t))  �max(W (t))  �2.
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• A3(t) : kD(t)�D(0)kF 
2K⌘2

0↵2(0) exp(⌘
c
0)L(0)

1�� .

• A4(t) : ↵1 + 2↵2

�
1� exp(⌘c0)

�
 �

2
min(Tt)  �

2
max(Tt)  ↵2 exp(⌘c0).

Assume A1(k), A2(k), A3(k), A4(k) hold at iteration k = 1, 2, · · · , t, then we show they all hold
for iteration t+1.

Prove A1(t+1) hold.

We first show that under the constraints in Theorem E.1 and the induction assumption, one can
lower bound and upper bound µt and Kt using µ̄ and K̄t respectively, which is characterized by the
following lemma.

Lemma E.1. The following lower bound and upper bound on µt and Kt hold respectively

µ̄  µt , Kt  K̄t . (98)

The proof of the above lemma can be found at the end of Appendix E.

In Theorem 3.1, we have shown that the local PL inequality and Descent lemma hold with local PL
constant µt and local smoothness constant Kt

L(t+1)  L(t)�
�
⌘t �

Kt⌘
2
t

2

�
krL(t)k2F ,

1

2
krL(t)k2F � µtL(t) . (99)

Therefore, one has

L(t+1)  L(t)�
�
⌘t �

Kt⌘
2
t

2

�
krL(t)k2F

 L(t)� 2µt

�
⌘t �

Kt⌘
2
t

2

�
L(t) Under the constraints 0 < ⌘t <

1

Kt

 L(t)� 2µ̄
�
⌘t �

Kt⌘
2
t

2

�
L(t) Lemma E.1

= (1� 2µ̄⌘t + µ̄Kt⌘
2
t )L(t)

 (1� 2µ̄⌘t + µ̄K̄t⌘
2
t )L(t) := ⇢̄(⌘t, t)L(t) Lemma E.1 . (100)

Finally, we show ⇢(⌘t, t)  ⇢(⌘0, 0).

⇢(⌘t, t) = 1� 2µ̄⌘t + µ̄K̄t⌘
2
t

 1� 2µ̄⌘0 + µ̄K̄t⌘
2
0 Use ⌘0  ⌘t 

1

Kt

 1� 2µ̄⌘0 + µ̄K̄0⌘
2
0 := ⇢(⌘0, 0) Use K̄t  K̄0 . (101)

Therefore, A1(t+1) holds.

Prove A2(t+1) hold.

Since we have shown A1(t+1) holds, one has L(t+1)  L(0). Moreover, based on the assumption
that `(W ) is µ-strongly convex and K-smooth, one has the following inequality

µ

2
kW (t+1)�W

⇤
k
2
F  `(t+1) = L(t+1) 

K

2
kW (t+1)�W

⇤
k
2
F . (102)

Then we can show �max(W (t+1))  �2 as follows

�max(W (t+1)) = �max(W (t+1)�W
⇤ +W

⇤)

 �max(W
⇤) + kW (t+1)�W

⇤
k2 Weyl’s inequality

 �max(W
⇤) + kW (t+1)�W

⇤
kF

 �max(W
⇤) +

r
2

µ
L(t+1)

 �max(W
⇤) +

r
2

µ
L(0) . Use L(t+1)  L(0) (103)
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For �1  �min(W (t+1)), same result has been derived in Min et al. (2023). We refer the readers to
Appendix B in Min et al. (2023) for details.

Prove A3(t+1) hold.

We first present the following lemma that bounds kD(k+1)�D(k)kF for all k.

Lemma E.2. One has the following upper bound on kD(k+1)�D(k)kF

kD(k+1)�D(k)kF  2K⌘
2
k�

2
max(Tk)L(k) . (104)

The proof of the above lemma can be found at the end of this section.

Based on Lemma E.2, one can show that A3(t+1) holds

kD(t+1)�D(0)kF 

tX

k=0

kD(k+1)�D(k)kF



tX

k=0

2K⌘
2
k�

2
max(Tk)L(k) Lemma E.2



tX

k=0

2K⌘
2
k�

2
max(Tk)L(0)⇢̄(⌘0, 0)

k Use A1(k), 8k = 1, · · · , t



tX

k=0

2K⌘
2
k↵2 exp(⌘

c
0)L(0)⇢̄(⌘0, 0)

k Use A4(k), 8k = 1, · · · , t



tX

k=0

2K(1 + ⌘
d
0)

k
⌘
2
0↵2 exp(⌘

c
0)L(0)⇢̄(⌘0, 0)

k Use ⌘k  (1 + ⌘
d
0)

k
2 ⌘0

= 2KL(0) exp(⌘c0)⌘
2
0↵2

tX

k=0

�k � = (1 + ⌘
d
0)⇢̄(⌘0, 0)


2K⌘

2
0↵2 exp(⌘c0)L(0)

1��
. 0 < � < 1 (105)

Prove A4(t+1) hold.

We first present the following two lemmas which will be used to prove that A4(t+1) hold.

Lemma E.3. One can use ↵1,↵2 to lower and upper bound the singular values of T0

↵1  �
2
min(T0)  �

2
max(T0)  ↵2 . (106)

Lemma E.4. One can bound the deviation of the singular values of Tk using the deviation of the
imbalance kD(k)�D(0)kF

�
2
min(Tk) � ↵1 � 4kD(k)�D(0)kF := T

L
k . (107)

�
2
max(Tk)  ↵2 + 2kD(k)�D(0)kF := T

U
k . (108)

The proof of Lemma E.3 and Lemma E.4 can be in Xu et al. (2023), Appendix C.

Notice T
L
t+1+2T U

t+1=↵1+2↵2. Therefore, if one can show

T
U
t+1  exp(⌘c0)↵2 . (109)

Then, the following holds directly

�
2
max(Tt+1)  T

U
t+1  exp(⌘c0)↵2 , (110)

�
2
min(Tt+1) � T

L
t+1 = ↵1+2↵2 � 2T U

t+1 � ↵1 + 2↵2

�
1� exp(⌘c0)

�
. (111)
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Therefore, it suffices to show equation 109 holds. We start from Lemma E.4

T
U
k = ↵2 + 2kD(k)�D(0)kF

 ↵2 +
4KL(0)⌘20↵2(0) exp(⌘c0)

1��
Use A3(t+1)

 ↵2 + (1� exp(�⌘
c
0))⇥ (1��) ·

↵2 exp(⌘c0)

1��
Equation 95

= exp(⌘c0)↵2 . (112)

Now, we present the proof of lemmas used in the proof of Theorem E.1. All lemmas presented below
are based on the assumption that A1(k), A2(k), A3(k), A4(k) hold for all iterations k = 1, 2, · · · , t
and the constraints presented in Theorem E.1. For convenience, we do not state these assumptions
and constraints repetitively.
Lemma E.1. The following lower bound and upper bound on µt and Kt hold respectively

µ̄  µt , Kt  K̄t . (113)

Proof. We start with the lower bound on µt. Due to the assumption that A4(t) hold, one has the
following lower bound µt

µt = µ�
2
min(Tt) � µ↵1 . (114)

For the upper bound on Kt, we first show that based on the assumption that A1(k) hold for all k  t,
one has

L(t)  L(t�1)⇢̄(⌘0, 0)  L(0)⇢̄(⌘0, 0)
t
. (115)

Then, based on equation 115, A4(t) and the constraint that ⌘t  (1 + ⌘
d
0)

t
2 ⌘0, we can derive the

following upper bound on Kt

Kt =K�
2
max(Tt)+

p
2KL(t)+6K2

�max(W (t))L(t)⌘2t +3K�
2
max(Tt)

p
2KL(t)⌘t

K↵2 exp(⌘
c
0) +

p
2KL(0)⇢̄(⌘0, 0)t + 6K2

�2L(0)⇢̄(⌘0, 0)
t
⌘
2
t

+ 3K↵2 exp(⌘
c
0)
p
2KL(0)⇢̄(⌘0, 0)t⌘t

K↵2 exp(⌘
c
0) +

p
2KL(0)⇢̄(⌘0, 0)t + 6K2

�2L(0)⇢̄(⌘0, 0)
t(1 + ⌘

d
0)

t
⌘
2
0

+ 3K↵2 exp(⌘
c
0)
p
2KL(0)⇢̄(⌘0, 0)t(1 + ⌘

d
0)

t
2 ⌘0 Use ⌘t  (1 + ⌘

d
0)

t
2 ⌘0

=
p
2KL(0)⇢̄(⌘0, 0)t+6K2

�2L(0)⌘
2
0�

t+K exp(
p
⌘0)↵2

⇥
1+3

p
2KL(0)�t⌘0

⇤
, (116)

where the last line follows the definition of � = (1 + ⌘
d
0)⇢̄(⌘0, 0).

Lemma E.2. One has the following upper bound on kD(k+1)�D(k)kF

kD(k+1)�D(k)kF  2K⌘
2
k�

2
max(Tk)L(k) . (117)

Proof. In equation 8 and equation 9, we have

W1(k+1) = W1(k)� ⌘kr`(k)W2(k) , W2(k+1) = W2(k)� ⌘kr`(k)>W1(k) . (118)

There, we can compute D(k+1)�D(k) as follows

D(k+1)�D(k) =W1(k+1)>W1(k+1)�W2(k+1)>W2(k+1)

�W1(k)
>
W1(k) +W2(k)

>
W2(k)

=
�
W1(k)� ⌘kr`(k)W2(k)

�>�
W1(k)� ⌘kr`(k)W2(k)

�

�
�
W2(k)� ⌘kr`(k)>W1(k)

�>�
W2(k)� ⌘kr`(k)>W1(k)

�

�W1(k)
>
W1(k) +W2(k)

>
W2(k)

=⌘
2
k

�
W2(k)

>
r`(k)>r`(k)W2(k)�W1(k)

>
r`(k)>r`(k)W1(k)

�
. (119)
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Based on the above equation, one can bound kD(k+1)�D(k)kF as follows

kD(k+1)�D(k)kF = ⌘
2
kkW2(k)

>
r`(k)>r`(k)W2(k)�W1(k)

>
r`(k)>r`(k)W1(k)kF

Property of norm  ⌘
2
kkW2(k)

>
r`(k)>r`(k)W2(k)kF + ⌘

2
kkW1(k)

>
r`(k)>r`(k)W1(k)kF

equation 30  ⌘
2
k�

2
max(W2(k))kr`(k)k2F + ⌘

2
k�

2
max(W1(k))kr`(k)k2F

= ⌘
2
k�

2
max(Tk)kr`(k)k2F

K-smooth of `  2K⌘
2
k�

2
max(Tk)L(k) . (120)

F VERIFICATION OF THE ASSUMPTION ↵1 > 0

In this section, we provide two conditions that ensure ↵1 > 0.

In Min et al. (2021), the authors show the following lemma which guarantees ↵1 > 0.
Lemma F.1 (Lemma 1 in (Min et al., 2021)). Let W1(0),W2(0) are initialized entry-wise i.i.d. from
N (0, 1

h2p ) with 1
4  p 

1
2 . For 8� > 0 and h � poly(n,m,

1
� ), with probability 1� � over random

initialization with W1(0),W2(0), the following holds

↵1 � h
1�2p

. (121)

The above theorem states when Problem 2 is sufficiently overparametrized, i.e., h � poly(n,m,
1
� ),

Gaussian initialization with proper variance ensures ↵1 has a positive lower bound h
1�2p. Moreover,

the lower bound increases as h increases.

Next, we are going to show with mild overparametrization, one can ensure ↵1 > 0.
Lemma F.2 (Mild overparametrization ensures ↵1 > 0). Let W1(0),W2(0) are initialized entry-wise
i.i.d. from a continuous distribution P. When h � m + n, the following holds almost surely over
random initialization with W1(0),W2(0)

↵1 > 0 . (122)

Compared with Lemma F.1, Lemma F.2 considers a wider range of distributions that include Gaussian
distribution and uniform distribution. Thus, commonly used random initialization schemes, such as
Xavier initialization (Glorot & Bengio, 2010) and He initialization (He et al., 2015), lead to ↵1 > 0.
Moreover, the requirement of overparametrization in Lemma F.2 is mild compared with the one in
Lemma F.1, i.e., h � m + n versus h � poly(n,m,

1
� ). As a result, Lemma F.2 can be applied to

more general overparametrization. On the other hand, the conclusion of Lemma F.2 is weaker than
Lemma F.1 in the sense that Lemma F.2 only proves ↵1 > 0 but do not characterize its magnitude.

Before presenting the proof of Lemma F.2, we first present two lemmas that will be used in the proof.
Lemma F.3. Let A 2 Rh⇥n

, h � n be a random matrix with entry-wise drawn i.i.d. from a
continuous distribution P. Then A is of full column rank almost surely.

We refer the readers to (Vershynin, 2018) for detailed proof.
Lemma F.4. A sufficient condition for ↵1 > 0 is �m+n(D(0)) > 0.

The proof of this lemma can be found in (Min et al., 2021).

Now we present the proof of Lemma F.2

Proof. Based on Lemma F.4, it suffices to show that one almost surely has �m+n(D(0)) > 0 over
random initialization with W1(0),W2(0). We use proof by contradiction. Assume �m+n(D(0)) = 0,
then one has dim(kerD(0)) � h� n�m+ 1.

On the other hand, Lemma F.3 implies with probability one, [W>
1 (0),W>

2 (0)] 2 Rh⇥(n+m) is of
full column rank. Our next step is to show dim(kerD(0))  h� n�m. If this is true, then there is
a contradiction. Thus, one directly has �m+n(D(0)) > 0.
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For any v 2 Rh that satisfies D(0)v = 0, we can write this equation as follows

D(0)v = 0 , [W>
1 (0),W>

2 (0)]


W1(0)
�W2(0)

�
v = 0 (123)

Since [W>
1 (0),W>

2 (0)] is of full column rank, the above equation is equivalent to


W1(0)
�W2(0)

�
v = 0 , (124)

and dim(kerD(0))  h� n�m.

G SIMULATION

In this section, we first present empirical evidence that Theorem 3.2 provides a good characterization
of the actual convergence rate under different initializations. Moreover, we compare the convergence
rate of GD using the adaptive step size proposed in equation 19, in Section 3.3 of Xu et al. (2023),
and backtracking line search. Throughout the simulations, we train two-layer linear networks on the
square loss.

min
W1,W2

1

2
kY �XW1W

>
2 k

2
F , (125)

where X,Y 2 R10⇥10 are data matrices and W1,W2 2 R10⇥h are the weights. This can be viewed
as a two-layer linear network with input and output dimensions 20 and the width of the hidden layer to
be h. Throughout the simulations, we choose h 2 {500, 1000, 4000}. We choose c = 0.5, d = 1.01
in Theorem E.1. The initialization of the weights and generation of data matrices are as follows:
W1(0),W2(0) 2 R10⇥h, and have entry-wise i.i.d. samples drawn from N (0, 1). We generate X as
a random orthogonal matrix, and Y = XW1(0)W2(0) + �

2
✏ where ✏ 2 R10⇥10 and are entry-wise

i.i.d. samples drawn from N (0, 1). When �
2 is large, the initial loss is large, thus the margin is small.

Moreover, we experimentally observe that the initial imbalance grows w.r.t. h. The choices of h and
� allow us to test our results in different regimes.

G.1 EVALUATION OF THE TIGHTNESS OF THE THEORETICAL BOUND ON THE CONVERGENCE
RATE

Figure 1 compares the actual convergence rate of L(t) versus the theoretical upper bound in §3.2 for
different choices of � and h, and dissimilar ↵0

�0
. In all cases, the theoretical upper bound follows the

actual loss well. Moreover, we observe for each adaptive step size scheme, the theoretical bounds
and the actual rate of convergence become slower as ↵0

�0
decreases. This is because our bounds on

the local rate of convergence depend on ↵0
�0

, and the smaller ↵0
�0

, the slower the convergence rate.
Finally, when �

2=1, there is sufficient imbalance and the initial margin is zero which violates the
assumptions in Arora et al. (2018); Du et al. (2018a) but GD still enjoys linear convergence. Thus,
our theory applies beyond the regime of Arora et al. (2018); Du et al. (2018a).

G.2 COMPARISON WITH PRIOR WORK AND BACKTRACKING LINE SEARCH

In this subsection, we compare the adaptive step sizes proposed in Xu et al. (2023), backtracking line
search with the step sizes proposed in equation 19 with h(⌘t) = ⇢(⌘t, t). We set the hyperparameters
of the adaptive step size scheme proposed in Xu et al. (2023) to be c1 = 0.5, c2 = 1.5, which is the
same setting in their simulations. For backtracking line search, the algorithm is described as follows:
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Figure 1: Tightness of the theoretical upper bound versus reconstruction error L(t) for different
choices of step size in §3.2, shown in different colors. We run the simulations for nine different
settings of initialization and data generation. For each setting, we repeat the simulation thirty times.
The triangle lines represent the theoretical upper bound on the training loss in equation 17 and
equation 20. The solid lines represent the mean of the log10 of the reconstruction error L(t). The
shaded area is the mean of log10 L(t) plus and minus one standard deviation.

Algorithm 1 Backtracking Line Search.
Given Data matrices X,Y , initialization W1(0),W2(0), and hyperparameters ⌘bt, ⌧, �.
Result W

⇤
1 ,W

⇤
2 that minimize L(W1,W2) =

1
2kY �XW1W

>
2 k

2
F .

for t = 0, 1, · · ·T do

⌘t = ⌘bt
While L

�
W1(t)� ⌘trW1L(t),W2(t)� ⌘trW2L(t)

�
> L(t)� �krL(t)k2F

⌘t = ⌧⌘t

W1(t+1)=W1(t)�⌘trW1L(t),W2(t+1)=W2(t)�⌘trW2L(t) .
end for

In the simulation, we choose ⌧ = 0.1 and � = 0.9.

Figure 2 shows that the step size choice proposed in equation 19 achieves the fastest convergence
compared with Xu et al. (2023) and backtracking line search in different settings. In all settings, the
adaptive step size scheduler proposed in this work outperforms the other two methods. The reason
is the following. For the adaptive step size scheduler in this work, the step size at each iteration
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Figure 2: Evolution of the loss and of the step size for different choices of the step size schedule under
different initialization and data generation. We run the simulations thirty times. For each setting, we
repeat the simulation thirty times. The solid lines represent the mean of log10 of the reconstruction
error L(t). The shaded area is the mean of log10 L(t) plus and minus one standard deviation.

has closed form (See equation 19), thus the time for picking the optimal step size per iteration is
negligible. The only time-consuming part is to find ⌘0 since one needs to solve equation 89 and
equation 90 to get ⌘max. For the step size proposed in Xu et al. (2023), the algorithm consists
of solving a third-order polynomial at each iteration, which results in larger computational time.
Moreover, the adaptive scheduler proposed in our work follows a sharper characterization of the local
convergence rate than Xu et al. (2023), and the adaptive step size scheduler in this work theoretically
converges of order ↵1

↵2
faster than the one proposed in Xu et al. (2023). For the backtracking line

search algorithm, since the algorithm iteratively searches for the step size at each iteration. Therefore,
the time cost for each iteration is high as well.
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