
A Coding schemes

In this section we present the construction methodology of coding schemes. We drop the subscript l
from rl and Nact,l and show the general rule for an arbitrary block for which those values are given.
For the reader’s convenience, we repeat the three rules the coding scheme should comply with. Given
some block with ratio r and number of branches/subNNs N , the rules are as follows:

A. The number of “1”s must be equal to Nact = rN with N being the codeword length.
B. Seeing the coding scheme as a binary table, with each row representing a class and each

column a subNN as in Table 4, we require the sum of each column to be approximately the
same.5

C. The minimum Hamming distance across the pairs of codewords should be as high as
possible.

The first rule is mandatory and we only consider codewords with number of “1”s equal to Nact. The
other two rules would serve as guidelines and we try to follow them to the maximum extent possible.
Let Smin (resp. Smax) be the sum of the columns with the minimum (resp. maximum) sum. The
second rule is fully satisfied if Smin = Smax. This is not realizable for all ratios r. The ratio r must
be chosen taking into account the number of classes K as follows. The number of “1”s in the binary
table is KNact. Assuming a coding scheme with Smin = Smax = Sopt, the number of “1”s is also
equal to NSopt. This brings the equality KNact = NSopt ⇔ Sopt = rK ∈ N. Hence, a necessary
condition to be able to find a coding scheme with Smin = Smax is that rK ∈ N.

The number of possible combinations for choosing p elements from a set of n distinct elements is
given by C(n, p) = n!

p!(n−p)! . A coding scheme where each class is mapped to a distinct codeword
exists if C(N, rN) ≥ K. Therefore the chosen r should satisfy this inequality.

r = 5/10 r = 3/10

airplane 1010100011 1001001000
automobile 0101010101 0110001000

bird 1101100010 1010000001
cat 0011001101 0000001110

deer 1010010101 0001010100
dog 1001001110 0010100100
frog 1011101000 0000110010

horse 0100011110 0100010001
ship 0110111000 0001100001
truck 0100110011 1100000010

Table 4: The coding schemes used in CIFAR-10.

Let Hmin be the minimum Hamming distance
within the set of all possible pairs of codewords
in the coding scheme. In CIFAR-10 for instance,
as it can be verified from Table 4, we have
Hmin = 4 for both r = 5/10 and r = 3/10
(check the pair horse-ship). Obviously, the
higher C(N, rN) is, the larger the set of accept-
able codewords to choose for the coding scheme
is, and the larger the Hmin that can be achieved.
Nevertheless, not every value of Hmin is achiev-
able. There is a value above which there is no
such coding scheme with K codewords.

After choosing r,N such that rK ∈ N and
C(N, rN) ≥ K, we proceed to find the coding
scheme. Finding a coding scheme that satisfies
the three rules mentioned above is very challeng-
ing. Actually, there is no known way to compute even the “basic” function A2(N, d) that gives the
maximum number of binary codewords of length N with minimum Hamming distance d. Moreover,
computing the function D(N,K) that gives the minimum possible Hamming distance of a coding
scheme of K codewords is even harder. Using D(·) one can evaluate A2(·) through a binary search
over K. In our case, the additional constraint of having Nact “1”s increases the difficulty. Lastly,
in addition to knowing the existence of such a coding scheme, we are interested in realizing it, i.e.,
generating a valid set of codewords for that scheme. For that, we have to resort to heuristics that
satisfy to the largest extent the three aforementioned rules. In Algorithm 1 we give the pseudocode
of the algorithm used to generate the coding schemes of CIFAR-100 and ImageNet. For CIFAR-10
the length of the codewords is N = 10, which is small enough to allow for the use of a brute force
approach similar to exhaustive search.

Algorithm 1 starts by creating a list of length C(N, rN) with all possible codewords satisfying rule
A. Each codeword can be mapped to the integer whose binary representation matches the codeword.
These integers are used to sort the list of codewords in line 12. This step is crucial, since randomly
picking codewords is very inefficient for creating the set G in the subsequent lines. The set G is a set

5Note that due to the first rule the sum of each row is equal to Nact.

15

Algorithm 1 Algorithm for generating a coding scheme

Require: K,N,Nact, Hmin

1: function MINHAMDIST(codeword w, set G)
2: d←∞
3: for wg in G do
4: if HammingDistance(w,wg) < d then
5: d← HammingDistance(w,wg)

6: return d

7: function SCORE(coding scheme C)
8: Smin ← min{sum column of coding scheme C}
9: Smax ← max{sum column of coding scheme C}

10: return Smax − Smin ▷ The lower, the better

11: L←List of all codewords with Nact ones
12: Lsorted ← sort(L)
13: G← {}
14: for w in Lsorted do
15: if MINHAMDIST(w,G)≥ Hmin then
16: G← G ∪ {w}
17: if cardinality of G < K then
18: exit ▷ Unable to find a coding scheme
19: BestScore←∞
20: for all C ⊆ G with |C| = K do
21: score←SCORE(C)
22: if score = 0 then
23: return C ▷ Found solution satisfying rule C
24: else if score < BestScore then
25: BestScore← score
26: BestSchemeFound← C
27: return BestSchemeFound

of codewords in which all possible pairs of codewords belonging in this set have Hamming distance
between them at least Hmin. The larger G is, the easier it is to find a subset of cardinality K that
satisfies all three rules.

We now give some intuition on why picking codewords randomly from the set L (see line 11) would
result in a much smaller set G than the method proposed that picks them sequentially from Lsorted.
Consider the following analogy: imagine having disks with radius of Hmin instead of codewords.
The problem is to fit as many non-overlapping disks as possible inside a square. If we start filling
the square by randomly placing the disks inside the square, this will quickly result in no extra disk
actually fitting within the space left by the already placed ones, even though there is still a lot of
space unoccupied. On the other hand, if the disks are placed in an ordered way, for example starting
from the edges and progressively placing them as close as possible to the already placed disks, then
many more disks will eventually fit.

Algorithm 1 is a simplified version of our implementation. In line 20, the number of possi-
ble sets C that can be chosen from G can be extremely large. In that case, we resort to addi-
tional heuristics for picking only good candidates for C. Further details can be found in our
Python code. Finally, the coding scheme for CIFAR-100 with r = 8/20 is retrieved using the
arguments (K,N,Nact, Hmin) = (100, 20, 8, 8) in the Algorithm 1 and with r = 4/20 using
(K,N,Nact, Hmin) = (100, 20, 4, 4). For both ratios the coding schemes found entirely satisfy rule
B., i.e., Smin = Smax. The coding scheme for ImageNet with r = 16/32 is retrieved using argu-
ments (K,N,Nact, Hmin) = (1000, 32, 16, 10) achieving Smin = 499 ≈ Smax = 501. For the
coding scheme with r = 8/32, we use arguments (K,N,Nact, Hmin) = (1000, 32, 8, 6), achieving
Smin = 249 ≈ Smax = 251.

16

B Implementation details and computational cost

We present here some additional implementation details and show the computational cost for training
a Coded ResNeXt network with respect to the cost of training a conventional ResNeXt.

As shown in Fig. 1(a) and (b), each path/subNN of the ResNeXt and Coded ResNeXt blocks consists
of three layers. Each of the first two layers is composed of a convolutional operation followed by
a batch normalization (BN) [27], and a rectified linear unit (ReLU) [48]. For the ResNeXt block,
in the last layer, after the convolutional operation the output of all paths/subNNs is aggregated by
summation, followed by BN and ReLU. Similarly, for Coded ResNeXt, there is a BN and a ReLU
operation that come after aggregating the output of all subNNs. In Fig. 1(a) and (b) those two
operations would be depicted between the two summations.

We run all our experiments on Google’s Colab TPU-v2 (Nw = 8 cores with precision bfloat16). We
used PyTorch’s implementation of stochastic gradient descent with Nesterov momentum [50, 71]
equal to 0.9. We used the cosine scheduler [45] that decayed the learning rate until 10−5.

For CIFAR datasets the batch size is picked relatively high to harness TPU speed; the batch size per
core is set to Bw = 64 (i.e., effective 512). Training on CIFAR is performed for 300 epochs with
initial learning rate 0.1 and weight decay [34] equal to 5 · 10−4. For data augmentation we used
RandAugment [10] with (Naug,Maug) = (3, 4) for CIFAR-10 and (1, 2) for CIFAR-1006, which
we applied after the standard pad-and-crop and horizontal flips with probability 0.5.

As mentioned in Section 4.1, in order to make a fair comparison with ResNeXt, on ImageNet [61]
we follow the training process proposed by the timm library [1]7. The epochs are 250 (first 5 as
warmup [20] and last 10 cooling down), the effective batch size is 1536 (192 per core), the learning
rate is 0.6, and weight decay is 10−4. The input image is first randomly resized and cropped using
the standard values of scale and ratio [72] and then horizontally flipped with probability equal to 0.5.
RandAugment [10] follows with Naug = 2 layers and magnitude Maug = 7 (varied using an additive
Gaussian noise of a standard deviation equal to 0.5) and also random erasing augmentation [91] with
probability 0.4 and 3 recounts. We diverge from the timm’s proposed process only on the resolution
of the input training images. We reduce the resolution to 160 (instead of 224) because on the TPU-v2
of Google Colab the training would require more than three weeks. With the reduced resolution it
required approximately 10 days. The final evaluation of the trained model on the validation set is
done using resolution equal to 224.

As far as the computational cost is concerned, we focus on ImageNet since it is considerably more
demanding in terms of computational resources than the CIFAR datasets, and also because for the
implementation we use a library dedicated to ImageNet training [81]. That way we can directly
compare ResNeXt with Coded ResNeXt and focus on the computational impact of Coded ResNeXt’s
additional steps by minimizing the impact that our implementation may have on the performance.

We would like to clarify that in a ResNeXt block (or Coded ResNeXt block with ratio r = 1) the last
convolutional layer of the block does not have to be implemented as a grouped convolution followed
by an aggregation via summation (as it is implied from Fig. 1). Since for those blocks we do not
apply the additional operations of Energy Normalization, coding Loss and dropSubNNs, the grouped
convolution with the subsequent aggregation by summation of the subNNs’ outputs can be combined
into a simple convolutional layer. This is how we implement ResNeXt and blocks of Coded ResNeXt
with ratio r = 1, which also coincides with the way ResNeXt is implemented in the original work
[84].

The throughput and average RAM consumption of Table 5 have been measured on the second epoch,
the reason being that “generally the first epoch is slow with Pytorch XLA” [81]. For ResNeXt-50
we measure the flops using the library fvcore. For Coded ResNeXt we add to the flops computed
for ResNeXt-50 the flops needed for the Energy Normalization step. For a block of N subNNs and
output of dimensions RC×H×W , the energy normalization requires roughly 3×N × C ×H ×W
flops. The multiplication by 3 comes from the fact that the energy normalization step first raises in

6Those values are chosen in [10] for Wide-ResNet-28-2 [86] which, out of all models presented in that work,
seems the most similar to ResNeXt-29.

7It is possible that using more recent guidelines like the ones proposed for ResNet in [3] could give even
higher accuracy. However, in this case, we would not have available an already publicly reported accuracy for
ResNeXt. Therefore, we prefer to follow the recipe of timm’s library.

17

GFlops #Params Throughput RAM

ResNeXt-50 (32×4d) 2.196 25.0 · 106 378 samples
sec

12.3GB

Coded ResNeXt-50 (32×4d) 2.269 25.0 · 106 375 samples
sec

12.7GB

Table 5: Computational cost on ImageNet.

element-wise manner the tensor to the power of 2, second it takes the mean, and finally it performs
an element-wise division with the square root of the total mean energy. We see in Table 5 that for
all metrics, Coded ResNeXt does not introduce any significant additional computational cost when
trained on TPU.8

One epoch of Imagenet on Google Colab TPU-v2 takes roughly 55 minutes. Due to the platform’s
constraints, we had to split the training in sessions of 24 hours (i.e., in each session around 25 epochs
were executed9), save the checkpoint at the end of each session, and start the next session from the
latest checkpoint stored. Due to lack of powerful resources, for ImageNet and with the training setup
described above, we tested one additional set of hyperparameters, which was (µ, pdrop) = (4, 0.1)
(instead of (2, 0.1)). With (4, 0.1) we observed better binary classifiers and early decoders, but
lower accuracy. Specifically, the accuracy was 79.81% (instead of 80.24%). The accuracy of the
early decoders were (4.6%, 22.0%, 32.0%, 37.3%, 40.0%, 43.8%, 55.6%, 72.5%, 75.7%) (instead of
(2.38%, 8.12%, 12.7%, 12.8%, 14.0%, 17.0%, 26.5%, 65.1%, 73.4%)).

Under a simpler and shorter training procedure that did not require that long period of training (for
150 epochs, with (µ, pdrop) = (1, 0.1) and without random erasing data augmentation) we also tested
other combinations of coding schemes. The proposed schemes, which at stages (s3, s4) have ratios
(16/32, 8/32), an accuracy of 78.1% was achieved. We tested as well the two following ones, which
all led to worse than 77% accuracy: (i) one where stages (s2, s3, s4) had ratios (24/32, 16/32, 8/32),
(ii) one with (16/32, 8/32, 4/32), and (iii) finally one where the first 3 blocks of s3 had r = 16/32,
the last 3 blocks of s3 had r = 8/32, and s4 had r = 4/32.

C Using early decoders to improve confidence calibration

In Section 4.4 we showed that the way the coding schemes are designed brings additional useful
properties. It is possible to stop the evaluation of the network at an intermediate block, measure the
energies of the output of each subNN of that block and predict the class of the input image. Therefore,
each block trained to comply with a coding scheme can be used as an “early decoder” and produce
early predictions. However, the final network’s predictions are more accurate. Nonetheless, even
when the entire network is evaluated, the early predictions can still be of use. In that case, they can
provide a confidence estimation on the correctness of the network’s final prediction. As shown in
Table 3 (see Section 4.4), the more early decoders agree with the final prediction, the higher are the
chances that this prediction is correct. Therefore, Table 3 can be used to obtain confidence levels
on the output of a network by verifying how many early decoders agree with the final network’s
prediction and checking the corresponding line in the table.

We also show that the predictions of the early decoders can also be employed by confidence calibration
methods as a source of extra features. Confidence calibration is the problem of predicting probability
estimates that are representative of the true correctness likelihood [21]. The softmax operation, which
is commonly used as the final operation of the neural network models for classification, provides for
each class the likelihood that the input sample belongs to that class. However, it is found in [21] that
recent state-of-the-art models provide overconfident predictions. Even when those models predict
a wrong class, they erroneously estimate a high probability that their prediction is actually correct.
Calibrating the probabilities associated to the predicted class allows reflecting the true correctness
likelihood.

8We also tried training on a GPU provided by Google Colab, without relying on timm library. Coded
ResNeXt was more than two times slower compared to ResNeXt on that hardware. Nonetheless, the training of
both ResNeXt and Coded ResNeXt was faster on TPU, hence we kept TPU as our choice of hardware.

9For the total required time it should be taken into account that around 45 minutes are needed to fetch the
dataset from Google Drive to Google Colab per session.

18

Assume a multi-class classification problem where the input X ∈ X and label Y ∈ {1, · · · ,K} are
random variables following some ground truth joint distribution π(X,Y). Let g : X 7→ RK be the
neural network trained for this problem. For a sample (x, y) ∼ π, it outputs the logits z = g(x) and
predicts that the correct label of x is ŷ = argmax z. Calibrating perfectly this neural network means
finding a function h : RK 7→ [0, 1] such that

P(Ŷ = Y |P̂ = p) = p, (7)

with P̂ = h(g(X)), Ŷ = argmax g(X) and ∀p ∈ [0, 1]. The above probability is taken over the
joint distribution π. An example can help us understand Eq. (7). Assume that we found an h that
is a perfect calibrator, which means it satisfies Eq. (7). Suppose that for p = 0.8, there are exactly
100 input samples x ∈ X such that p̂ = h(g(x)) = 0.2. Then Eq. (7) says that the neural network
g(x) predicts the correct label, i.e., ŷ = y, for only 80 out of those 100 samples. In other words, the
function h correctly estimates that out of all those samples that gave 0.8 likelihood to be correct,
exactly 80% of them were indeed correctly labeled by the neural network g(x).

Since in practice we have datasets with finite number of samples, we have to estimate the performance
of the calibrating function h by approximating the probability in Eq. (7) [52, 47]. To do that, we
break the interval [0, 1] into M interval bins of equal size and let those bins be Im = (m−1

M , m
M],m ∈

{1, · · ·M}. If D is a given dataset, then let Bm = {(x, y) ∈ D : h(g(x)) ∈ Im} be the subset of
samples for which the calibrating function h gives that the predicted label is correct with probability
belonging to the interval Im. An unbiased estimator of P(Ŷ = Y |P̂ ∈ Im) is

acc(Bm) =
1

|Bm|
∑

(x,y)∈Bm

1(ŷ = y) (8)

with 1 being the indicator function. The average confidence within bin Bm is defined as

conf(Bm) =
1

|Bm|
∑

(x,y)∈Bm

p̂ (9)

with p̂ = h(g(x)). The function acc(·) approximates the left-hand side of Eq. (7), while conf(·) does
it for the right-hand side. Therefore, the closer those two values are, the better the calibration function
h is.

Two metrics used to evaluate the calibration are [47]:

• Expected Calibration Error (ECE), which approximates E[|P(Ŷ = Y |P̂ = p)− p|] as

ECE =

M∑
m=1

|Bm|
|B|
|acc(Bm)− conf(Bm)|,

• Maximum Calibration Error (MCE), which approximates max
p∈[0,1]

|P(Ŷ = Y |P̂ = p)− p| as

MCE = max
m∈1,··· ,M}

|acc(Bm)− conf(Bm)|.

ECE measures on average how well calibrated the function h is and MCE provides the maximum
error of the predicted likelihoods. MCE can be a valuable metric in high-risk applications where
good reliability guarantees should be provided even in the worst-case scenario.

Surprisingly, in [21] it was found that the calibration function that works the best is simply a softmax
function with a single parameter T regulating the scale (also known as “temperature”). This is an
extension of Platt scaling [56, 52] and the calibration function used is

hT (z)k =
ezk/T∑K
j=1 e

zj/T
, k ∈ {1, · · · ,K} (10)

where z ∈ RK is a vector (representing the logits produced by the model, i.e., z = g(x)) and zk is
the k-th element of that vector. The value of the parameter T is chosen by minimizing the negative
log-likelihood on a hold-out validation set [21]. The minimization is performed using gradient descent
updating only the parameter T . We emphasize that since the parameters of the network are kept fixed,

19

hT of Eq. (10)
from [21]

haug of Eq. (11)
Ours

CIFAR-10 (0.70%, 24.35%) (0.70%, 24.14%)
CIFAR-100 (1.75%, 10.28%) (1.71%, 9.31%)
ImageNet (2.98%, 8.32%) (3.00%, 7.70%)

(a) Split set into: train set 25%, test set 75%.

hT of Eq. (10)
from [21]

haug of Eq. (11)
Ours

(0.80%, 24.83%) (0.80%, 23.64%)
(1.82%, 11.37%) (1.79%,10.44%)
(3.01%, 8.56%) (3.05%, 8.10%)

(b) train set 50%, test set 50%

Table 6: The performance in terms of (ECE(%), MCE(%)) of the two calibration methods using
temperature scaling. The first one hT is proposed in [21] and has only one parameter. The second
haug has additionally one parameter per early decoder and takes into account the prediction of the
early decoders.

the network predictions have not changed. hT calibrates the likelihood probabilities associated to the
class predicted by the network.

We propose now a simple way to take into account the predictions of the early decoders. Given an
input sample, suppose that êi, i ∈ {1, · · · , Ndec} is the prediction of the i-th early decoder, Ndec

is the number of early decoders, and ŷ the final prediction. Our proposed architecture for CIFAR
has Ndec = 6 and for ImageNet Ndec = 9. We intend to adjust the parameterized function hT by
adding another Ndec parameters, denoted τi, which account for the predictions of the early decoders.
Specifically, the calibration function we employ is

haug(z)k =
ezk/Taug∑K
j=1 e

zj/Taug

, with Taug = T

(
1 +

Ndec∑
i=1

1(êi = ŷ)τi

)
and k ∈ {1, · · · ,K},

(11)

which has Ndec + 1 parameters. If the i-th early decoder agrees with the final prediction ŷ then the
temperature is adjusted by adding the term τi. The parameters are optimized in the same way as for
hT , using gradient descent with respect to the negative log-likelihood. We initialize all τi to be zero
and T to be one. The learning rate is 0.1 and we perform 600 iterations.

We start the experimental procedure by randomly splitting the validation set of each dataset into
two sets. The first contains a quarter of the total samples and the second the rest. The splitting is
performed in a way such that within the set, all classes have approximately the same number of
samples. We use the first set to train the parameters of hT and haug. We test their performance
on the second set by estimating the ECE and the MCE, using M = 15 bins as in [21]. We repeat
the procedure 40 times more, each time with a different random split of the validation dataset. The
results are shown in Table 6a. In Table 6b we conduct the same experiment but now we split the
validation set into two sets of equal size. Across all datasets and for both splitting ratios we see that
haug improves the MCE with almost no impact on ECE with respect to hT .

D Ablation Study on Coding Loss and dropSubNN

In this section, we study the effect of the two hyperparameters introduced in the paper, namely the
coefficient µ balancing the losses in Eq. (6) and the probability pdrop of dropping subNNs.

In Fig. 5a we show that increasing µ and so forcing more the energies of the subNNs to comply with
the coding scheme, is at first beneficial to the overall performance until a certain point (see blue
line). Past this point (in Fig. 5a it is around µ = 6.0), forcing the subNNs to output a signal of a
specific energy value provides only small diminishing gains on the early decoders (see increasing
trend of brown and beige lines). Furthermore, it disturbs the entire classification process, and the
final accuracy of the whole network’s predictions starts declining.

The second experiment concerns the dropSubNN and its hyperparameter pdrop. Dropping randomly
some subNNs during training inhibits their “co-adaptation”[69], as they learn not to depend on the
others and to perform well even in the absence of some of them. Figure 5b shows that the dropSubNN
is essential for the good performance of the binary classifiers. A small value of pdrop = 0.1 can
greatly boost their performance and even slightly improve the overall accuracy. Further increasing it
to pdrop = 0.2 degrades the accuracy without improving much the binary classifiers.

20

(a) Impact of coefficient µ of the coding loss on CIFAR-
100.

(b) Impact of the probability pdrop on the performance
of the binary classifiers.

Figure 5: Ablation study on the two hyperparameters introduced in this paper, i.e., the coefficient µ
balancing the losses in Eq. (6) and the probability pdrop of dropping subNNs.

E Limitations

A limitation regarding the proposed idea is that it cannot be applied to any type of multi-branch
architecture. As we explain in Section 4.3.1 the method works for ResNeXt because the output of all
branches of every block is conveniently aggregated by summation. This avoids having the blocks
relying on the output of the inactive subNNs to learn the classification, which would then prevent the
extraction of the binary classifiers by just keeping the active subNNs. Instead, since (i) the blocks
receive the aggregated outputs of the previous block, and (ii) the outputs of the inactive subNNs
are pushed to zero by the coding loss, during training the blocks are forced to solely rely on the
aggregated signal provided by the active subNNs. Interestingly, there are other architectures that
have a structure similar to that of ResNeXt and where our idea could also be applied. An example
is MobileNetV2 [62], which uses a type of block called MBConv (a block that later used also by
EfficientNet [74]). To see how our idea could be applied to this kind of blocks, let us define the
following neural network module in PyTorch:

Pytorch sequential code

Require: channels_in, channels_mid, channels_out, N , s
1: module = nn.Sequential(
2: nn.Conv2d(channels_in, channels_mid, kernel_size=1),
3: nn.BatchNorm2d(channels_mid),
4: nn.ReLU(),
5: nn.Conv2d(channels_mid, channels_mid, kernel_size=3, padding=1, groups=N , stride=s),
6: nn.BatchNorm2d(channels_mid),
7: nn.ReLU(),
8: nn.Conv2d(channels_mid, channels_out, kernel_size=1),
9: nn.BatchNorm2d(channels_out)

10:)

A typical ResNeXt block is formed by simply adding a residual connection to the above module, i.e.,
module(x)+x where x is the input of the block.10 This ResNeXt block has N branches/subNNs. The
MBConv uses an almost identical module, with the slight differences that (i) the activation function
ReLU6(·) is used instead of ReLU(·), (ii) channels_mid takes a larger value than channels_out,
whereas in ResNeXT it takes a smaller one, and (iii) it forces N = channels_mid so the second
convolution is depth-wise. Overall, the MBConv can be seen as a type of ResNeXt block but with

10We assumed that channels_in = channels_out, and therefore there is no expansions of the number of channels
which usually happens in the beginning of each stage.

21

the number of subNNs equal to the channels_mid. We therefore expect a “Coded-MobileNetV2” to
behave the same as Coded-ResNeXt and exhibit the same properties.

Another limitation of our work is given by the trade-off between the specialization of the subNNs
and the performance of the entire neural network model. This relationship is clearly depicted in
Fig. 5a. To force the subNNs to specialize in a specific set of classes we introduced the “coding loss”
Lcode. The balance between this loss and the cross entropy loss (i.e., Lclass) is regulated with the
hyperparameter µ. As µ increases, more emphasis is given on the subNNs activated according to the
coding scheme. As shown in Fig. 5a, increasing µ at first helps the total performance (accuracy) of
the entire network. However, after a certain point, increasing the specialization of the subNNs comes
at the expense of the performance of the entire network.

We came across this trade-off also when designing the ratios r of the coding schemes. Ideally, we
would like the ratios to be as small as possible. This would mean that each subNN would be assigned
to specialize to smaller set of classes. Consequently, the information paths of the classes would
be more disentangled, in the sense that the paths associated to two different classes would have
less shared parameters. Moreover, the extracted binary classes would have even less parameters.
Unfortunately, we could not decrease more the ratios without negatively impacting the total model’s
accuracy. For example, in one of our initial experiments (with fewer epochs)11 on ImageNet, we
found that if we used the proposed ratios of (32/32, 16/32, 8/32) in stages (c3, c4, c5) we get
an accuracy of 78.1%, but trying to increase the subNNs’ specialization by setting the ratios to
(16/32, 8/32, 4/32) drops the accuracy to 76.6%.

Nonetheless, we are confident that there exist ways in which a more drastic specialization of the
subNNs is achieved without compromising the performance of the entire network. One alternative that
was the subject of some of our tests was zeroing the gradients during training12, which are directed to
the subNNs that according to the coding scheme should remain inactive. That way, the subNNs are
updated only by gradients coming from samples of the subset of classes that the coding scheme had
assigned to them. Those experiments were performed in a network whose architecture was identical
to Coded ResNeXt with the sole difference that the blocks had no skip/residual connections. In
that architecture, replacing after Energy Normalization the Lcode with an operation that zeroes the
gradients according to the coding schemes yielded excellent specialization without degrading the
overall network’s performance. Unfortunately, this idea did not work well when we added the skip
connections. The accuracy of the network was significantly lower when the architecture had skip
connections and the gradients of inactive subNNs were zeroed during training.

F Additional information for binary classifiers and activation of subNNs

In this section, we provide additional details regarding the binary classifiers that can be extracted
after training a Coded ResNeXt, the activation distributions of the subNNs, and their specialization.

F.1 Activation distribution of subNNs

In this subsection we investigate the distribution of the output signal of the subNNs. A sample that
passes through a subNN can either belong to the set of classes for which the subNN has to activate, or
to the set for which it has to stay inactive. We would like to see how the subNNs respond in these two
scenarios by plotting the distribution of the absolute value of the output in each case. In Fig. 6 we
plot for CIFAR-10 and CIFAR-100 those distributions for the first 5 subNNs of the second block of
stage s3. We show in red how those subNNs react when the sample belongs to the set of classes for
which the subNN has to stay inactive according to the coding scheme, and with blue when they have
to activate. Since the distributions were very skewed with many values around zero, we show the
y-axis in log scale to better appreciate their shape in the complete range. We see that the distribution
of the active subNNs has a bigger tail, which confirms that the subNNs output higher values when
receiving a sample of their assigned classes.

11(150 epochs, with (µ, pdrop) = (1, 0.1) and without random erasing data augmentation)
12This can be implemented on PyTorch using the detach function.

22

(a) Distribution of the absolute value
of the output of the first 5 subNNs
from the second block of stage s3 on
the architecture for CIFAR-10.

(b) Distribution of the absolute value
of the output of the first 5 subNNs
from the second block of stage s3 on
the architecture for CIFAR-100.

Figure 6: Output distribution of active versus inactive subNNs

F.2 Additional details on Binary Classifiers

Figure 8: Precision-Recall on CIFAR-100.

For convenience, we provide here the definitions
of Precision and Recall. True positives TP (resp.
true negatives TN) represents the number of posi-
tive (resp. negative) samples that the binary classi-
fier correctly predicts as positives (resp. negatives).
False positives FP (resp. false negatives FN)
represents the number of negative (resp. positive)
samples that the binary classifier erroneously pre-
dicts as positives (resp. negatives). The precision
and recall are defined as follows

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
.

Precision measures out of predicted positives (i.e.,
TP + FP) how many of those predictions are
correct. Recall measures out of all actual positives
(i.e., TP + FN) how many were found by the
binary classifier.

In Fig. 7 we give the output distributions of the
binary classifiers for the first 10 classes of CIFAR-10/100 and ImageNet when fed with an input
of in-distribution positive/negative samples, and out-of-distribution negative samples. The first row
coincides with Fig. 3. We observe that depending on the threshold value a binary classifier uses
(above which the classifier predicts positive and below negative), different values of precision and
recall can be attained. Increasing the threshold value gives fewer false positives FP , but unfortunately
more false negatives FN as well, so increasing the threshold improves the precision but degrades the
recall. Therefore, high recall can be exchanged for high precision by increasing the threshold, or the
opposite by decreasing it.

Regarding plots Fig. 2b, Fig. 8 and Fig. 2c, which depict the precision and recall achieved by the
binary classifiers trained on CIFAR-10, CIFAR-100, and ImageNet, respectively, we would like to

23

(a) All Binary Classifiers extracted
from Coded ResNeXt-29 (10×11d)
trained on CIFAR-10.

(b) Binary Classifiers for the first
10 classes extracted from Coded
ResNeXt-29 (20 × 6d) trained on
CIFAR-100.

(c) Binary Classifiers for the first
10 classes extracted from Coded
ResNeXt-50 (32 × 4d) trained on
ImageNet.

Figure 7: Distribution of the output (logit) of binary classifiers

make some remarks.13 First, when testing a binary classifier in the case of either in-distribution or
out-of-distribution negatives, the set of samples of the validation set serving as positives remains the
same. Since by definition recall depends only on this set of positives, its value remains unaltered
in both testing cases. Second, in the case of ImageNet, we only have 50 samples of the validation
set serving as positives for each binary classifier. Therefore, the true positives can only take integer
values from 0 to 50 and Recall ∈ {0, 1

50 ,
2
50 , · · · ,

50
50}. This is the reason why in Fig. 2c, the points

appear to follow some kind of grid and are aligned in specific vertical lines.

Finally, and quite interestingly, we see that the binary classifiers trained on CIFAR-100 perform at the
same level no matter whether the negatives come from in-distribution or out-of-distribution. This is

13In Fig. 8, which corresponds to CIFAR-100, we followed the same procedure as in Section 4.3 for ImageNet.
Specifically, we randomly sample from the set of negatives a subset of size 9 times bigger than the size of
positives. We use that subset of negatives to evaluate the precision and recall of the binary classifier.

24

in contrast to the binary classifiers trained on CIFAR-10, where out-of-distribution negatives clearly
decrease the precision Figs. 2b, 7 and 8). Both CIFAR-10 and CIFAR-100 datasets have the same
number of training samples (50000), but CIFAR-10 has 5000 samples per class and CIFAR-100 has
500 per class. Therefore, the binary classifiers of CIFAR-100 have been trained on 5000

500 = 10 times
fewer positives but have “seen” negatives from 100−1

10−1 = 11 times more classes. The observation that
CIFAR-100 binary classifiers perform significantly better than the ones of CIFAR-10 with out-of-
distribution negatives, agrees with our intuition that a model should work better for out-of-distribution
data if it has been trained with a high variety of classes where the number of samples per class is
small, than if it is trained with the same amount of samples but fewer classes and more examples per
class.

F.3 More experiments on removing subNNs

In this subsection, we repeat the experiment described in Section 4.1 for three more blocks. We
remind the reader that in that experiment we pick a block l from which we randomly remove subNNs
in two ways: given the class of the input image sampled from the validation set, the first way randomly
removes k≤Nact,l subNNs from the set of active for that class subNNs. The second way randomly
removes k≤N −Nact,l subNNs from the (complementary) set of inactive subNNs for that class. We
see that the trend depicted in Fig. 2a, where the performance drops more when active subNNs are
removed from a block than when the inactive ones are removed, is also maintained for the blocks in
Fig. 9.

(a) Removing subNNs from the last
block.

(b) Removing subNNs from the third
to last block.

(c) Removing subNNs from the fifth
to last block.

Figure 9: Performance when removing active versus inactive subNNs from a specific block.

However, we see that this trend becomes less visible the earlier is the block in which we perform the
experiment. For example in Fig. 9c we see that removing either active or inactive subNNs leads to
small differences. Removing active subNNs from the earlier blocks has much less negative effect
than from the blocks deeper in the architecture. We believe that the reason is that the subNNs in the
early blocks produce low level features, which most of the times are useful in general for any class.
Therefore, it is challenging to force those subNNs to produce low level features that are exclusively
useful to a specific subset of classes. This difficulty is more pronounced in this study, where we
design the coding schemes without taking into account the semantics of each class. Stated differently,
it is hard, given a set of classes and without looking at the semantic similarities between the classes,
to split the set into two subsets and push subNNs to produce low level features that are useful only for
one of those subsets and useless for the other. Nonetheless, we expect that increasing µ, which could
push the subNNs towards higher specialization, would lead to having the performance degradation
due to removing active subNNs observed in the latter blocks also in early blocks.

25

	Coding schemes
	Implementation details and computational cost
	Using early decoders to improve confidence calibration
	Ablation Study on Coding Loss and dropSubNN
	Limitations
	Additional information for binary classifiers and activation of subNNs
	Activation distribution of subNNs
	Additional details on Binary Classifiers
	More experiments on removing subNNs

