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APPENDIX

A ADDITIONAL BACKGROUND ON CONFORMAL PREDICITION FOR ROBOTICS

Conformal Prediction for Robotics. Recently, conformal prediction has become popular in the
robotics domain in part due to the distribution-free guarantees it provides for arbitrarily complex
learned models present within modern robotics pipelines. Specifically, conformal prediction has been
used to provide collision-avoidance assurances (Chen et al., 2021; Lindemann et al., 2023; Dixit et al.,
2023; Muthali et al., 2023; Taufiq et al., 2022; Dietterich & Hostetler, 2022; Lin & Bansal, 2024),
calibrate early warning systems (Luo et al., 2022), and quantify uncertainty in large language model
based planners (Ren et al., 2023; Lidard et al., 2024). There are several core challenges with the
input-and-label data encountered in robotics: data is non-i.i.d. (e.g., sequential decision-making), data
distributions are non-stationary (e.g. changing environment conditions), and labels are intermittently
observed (e.g., limited expert feedback in the IL domain). By extending online conformal prediction
to the intermittent label setting, we take a step towards addressing these challenges.

B HYPERPARAMETER SENSITIVITY ANALYSIS

ConformalDAgger EnsembleDAgger LazyDAgger SafeDAgger

Interactive Deployment Episode

Figure 7: Hyperparameter sensitivity analysis under Expert Shift (Human-gated probability
P (obsht |ot) = 0.2).

We show below a sensitivity analysis in the Expert Shift (Human-gated probability P (obsht |ot) = 0.2)
context of the uncertainty threshold for ConformalDAgger and EnsembleDAgger, where we vary
the uncertainty threshold between 0.03 and 0.09 (Figure 7). To demonstrate the results over the
deployment episodes, we hold the EnsembleDAgger safety threshold constant at 0.03. The results
are averaged over 3 seeds.

When the threshold is low (0.03), the approaches all identify the shift and ask for help accordingly;
however, this comes at the cost of a great deal of human feedback requested throughout every
deployment episode. Even in the first episode in which there has been no expert shift, a low-threshold
at 0.03 requires conformal and ensemble to ask questions 70-80% of the time. When the threshold is
set too high, at 0.09, EnsembleDAgger is unable to identify the shift and continuously mispredict.
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We included in our sensitivity analysis LazyDAgger ’s context-switching threshold, where we tested
values of 0.1, 1, and 10, which are thresholds presented in the LazyDAgger sensitivity analysis in
Hoque et al. (2021b). Similarly, we hold the LazyDAgger safety threshold constant at 0.03. For
SafeDAgger, we examined safety thresholds of 0.01, 0.03, and 0.05.

Across all of the algorithms, ConformalDAgger’s expert deviation is the least prone to threshold
selection, where all models are able to effectively adapt to the expert’s shifted policy. Empirically, we
find that if ⌧ is set too high (at 0.18, 0.21), ConformalDAgger may not flag high uncertainty, relying
instead on human-gated interventions to update IQT. When we ablate the values of tau between the
values [0.03, 0.06, 0.09, 0.12, 0.15], we found ConformalDAgger to be fairly robust in terms of
miscoverage (see updated Figure 7 in Appendix B, ⌧=0.18, 0.21 included as well).

Theoretically, if ⌧ is set too high, failing to properly reflects the distribution of encountered mispredic-
tion residuals, ConformalDAgger will not flag high uncertainty, relying on human-gated interventions
only (P (obsht |ot)) to update IQT and provide retraining data, which may result in poor coverage.
However, importantly, one benefit of IQT is that its theoretical guarantees afford us an understanding
of what the miscoverage gap will be. Recall that Proposition 1 gives us a bound on the miscoverage
gap between the achieved miscoverage rate and desired miscoverage rate ↵. This gap depends on
1) the time horizon T that we are running our algorithm, and 2) the maximum value of �t

pt
. In cases

where ⌧ is set too high such that (P (obsrt |ot) is close to 0), meaning the robot almost never queries for
additional help, the probability of getting feedback pt is approximately the P (obsht |ot), relying only
on the likelihood of human feedback. For short sequences (T small), and infrequent human-gated
feedback (pt small), Proposition 1 informs us that this miscoverage gap might be large. Proposition 1
shows the theoretical basis for that when human-gated feedback is infrequent, and highlights that
a proper and effective selection of ⌧ to raise P (obsrt |ot) and subsequently pt, helps to reduce the
miscoverage gap.

The red arrows indicate the threshold values we ended up using for our 4D reaching experiments.
We used the number of human interventions requested as a proxy metric for helping us choose the
thresholds. Although the EnsembleDAgger threshold of 0.03 more quickly learns the expert policy
than 0.06, however, the 0.03 threshold causes the robot to asks many more questions at the initial
episode (even without the existence of shift). We chose the threshold of 0.06 for EnsembleDAgger
and ConformalDAgger because in the first 4 episodes before the shift occurs, the algorithm asks some,
but not excessive, questions. LazyDAgger uses the safety classifier prediction, s = 0.03 to begin
human intervention, and only switches back to autonomous mode when the learner’s prediction and
human ground truth action received online are below a context-switching threshold, 0.1s. Because
SafeDAgger alone under s = 0.03 does not ask as many questions as EnsembleDAgger and
LazyDAgger which both involve additional mechanisms for querying alongside the safety classifier,
we choose s = 0.01 for SafeDAgger.

C PROOF OF PROPOSITION 1

We will start by proving the following lemma. Recall that B is the upper bound on q1 2 [0, B], and
st 2 [0, B] by definition.

Lemma 1. For all t, we have �↵Nt�1  qt  B + (1� ↵)Nt�1, where Nt = max1rt
�r

pr
. B is

the upper bound on q1 2 [0, B] and st 2 [0, B].

Proof. q1 2 [0, B] by assumption, so the lemma is satisfied at t = 1. Assume qt 2 [�↵Nt�1, B +
(1 � ↵)Nt�1]. Now, for qt+1, we consider Case 1, where obst = 0, which means that qt+1 = qt,
so qt+1 lies within the range [�↵Nt�1, B + (1 � ↵)Nt�1]. Since Nt � Nt�1, qt+1 also lies
within the larger range [�↵Nt, B + (1 � ↵)Nt], as desired. In Case 2 where obst = 1, qt+1 =
qt+

�t

pt
(errt�↵). If we represent ⌘t := �t

pt
, we obtain the constant-feedback quantile tracking update:

qt+1 = qt + ⌘t(errt � ↵), with variable ⌘t instead of �t. Then, Lemma 1 in Angelopoulos et al.
(2024), with Nt = max1rt ⌘t bounds qt+1 within the range [�↵Nt, B + (1� ↵)Nt].

Next, we proceed to show how we can leverage the existing quantile tracking results to derive our
results with intermittent feedback.
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Proof. First, we take expectations only with respect to obst conditional on xt, errt, and all other
randomness, noting in particular that obst is independent of everything else given xt and has a
Bernoulli distribution with mean pt.

We will abbreviate the left-hand side by E[qT+1|DT+1], where DT+1 := {errt, xt}tT+1, and use
Eobs1:t = Eobs1⇠p1,...,obst⇠pt to denote this conditional expectation for brevity below:

Eobs1:t [qT+1 � qr|DT+1] = Eobs1:t [qT+1|DT+1]� Eobs1:r [qr|Dr] (7)

= Eobs1:t [q1 +
TX

t=1

�t

pt
(errt � ↵)obst|DT+1]� Eobs1:r [q1 +

rX

t=1

�t

pt
(errt � ↵)obst|Dr] (8)

= q1 +
TX

t=1

�t

pt
(errt � ↵)pt �

�
q1 +

rX

t=1

�t

pt
(errt � ↵)pt

�
(9)

=
TX

t=r

�t(errt � ↵). (10)

Given the definition of �, we have that ��1
t =

Pt
r=1 �r for all t � 1. So

�����
1

T

TX

t=1

(errt � ↵)

����� = | 1
T

TX

t=1

� tX

r=1

�r

�
�t(errt � ↵)| (11)

=

�����
1

T

TX

r=1

�r

� TX

t=r

�t(errt � ↵)
�
����� (12)

=

�����
1

T

TX

r=1

�r

�
Eobs1:t [qT+1 � qr|DT+1]

�
����� . (13)

By Lemma 1, this expected difference is bounded by B + (1� ↵)NT � (�↵NT ):

Eobs1:T+1 [qT+1 � qr|DT+1]  B + max
1tT

�t

pt
. (14)

In other words, we can drop the expectation via Lemma 1 and consider the worst case bound on
qT+1 � qr. Thus,

�����
1

T

TX

t=1

errt � ↵

����� 
1

T

TX

r=1

|�r|
�
B + max

1tT

�t

pt

�
(15)

=
1

T
||�1:T ||1

�
B + max

1tT

�t

pt

�
. (16)

This completes the proof.

C.1 SPECIAL CASE: WHEN �t = pt

Next, given the quantile tracking update with an intermittent observation model, we consider what
would happen if �t was set as pt. When �t = pt, then quantile tracking update becomes qt+1 =
qt + (errt � ↵)obst and max1tT

�t

pt
= 1.

Under Proposition 1, IQT with �t = pt gives the following finite time coverage bound:
�����
1

T

TX

t=1

errt � ↵

����� 
B + 1

T
||�1:T ||1 (17)

where the sequence � is defined with values �1 = �
�1
1 and �t = �

�1
t � �

�1
t�1 for all t � 2.

D INTERMMITTENT ADAPTIVE CONFORMAL INFERENCE

We show in this section that intermittent observation of ground truth labels can be extended to
Adaptive Conformal Inference (ACI) (Gibbs & Candes, 2021). To facilitate understanding, we briefly
summarize ACI and discuss our extension Intermittent Adaptive Conformal Inference (IACI).
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Setup: Quantile Regression (QR). Similar to IQT, consider an arbitrary sequence of data points
(xt, yt) 2 X ⇥ Y , for t = 1, 2, ..., that are not necessarily I.I.D. Our goal in ACI is to also produce
prediction sets on the output of any base prediction model such that the sets contain the true label
with a specified miscoverage rate ↵. Mathematically, at each time t, we observe xt and seek to cover
the true label yt with a set Ct(xt), which depends on a base prediction model, f̂ : X ! Y . We
will discuss ACI with a conformal quantile regression Romano et al. (2019) backbone. The base
model takes as input the current xt and outputs prediction ŷt as well the estimated upper and lower

conditional quantiles:
{q̂↵lo(xt), ŷt, q̂↵hi(xt)} f̂(xt), 8(xt, yt), (18)

where q̂↵lo(xt) is an estimate of the ↵lo-th conditional quantile and q̂↵hi(xt) is the ↵hi-th quantile
estimate. During training, q̂↵lo(xt) is learned with an additional Pinball loss Koenker & Bassett Jr
(1978); Romano et al. (2019).

Adaptive Conformal Inference (ACI). At each time t, we compute the nonconformity score st as:

s(xt, yt; f) = max{q̂↵lo(xt)� yt, yt � q̂↵hi(xt)}, (19)

which is the coverage error induced by the regressor’s quantile estimates.

Let St be the set of conformity scores for all data points through time t in Dcalib. In general, the
magnitude of s(xt, yt; f̂) is determined by the miscoverage error and its sign is determined by if the
true value of yt lies outside or inside the estimated interval.

Mathematically, the calibrated prediction interval for Yt is:

Ct(xt) =
⇥
q̂↵lo(xt)� Q̂St(1� ↵t), (20)

q̂↵hi(xt) + Q̂St(1� ↵t)
⇤
, (21)

where the Q̂St(1 � ↵t) := (1 � ↵t)(1 + 1
|Dcalib| )-th adaptive empirical quantile of St = St�1 [

s(xt, yt; f̂). The empirical quantile is defined as the following (where k is the lookback window):

Q̂St(c) := inf

(
m :

0

@ 1

|Dt�k:t|
X

(xi,yi)2Dt�k:t

{s(Xi,Yi)m}

1

A � c

)
(22)

Given the non-stationarity of the data distribution, ACI examines the empirical miscoverage frequency
of the previous interval, and then decreases or increases a time-dependent ↵t. Fixing step size
parameter � > 0, ACI updates

↵t+1 := ↵t + �(↵� errt) (23)

ACI Coverage Guarantee. The adaptive quantile adjustments made in ACI provide the following
coverage guarantee: �����

1

T

TX

t=1

errt � ↵

����� 
max{↵1, 1� ↵1}+ �

T�
(24)

obtaining the desired ↵ coverage frequency without making an assumptions on the data-generating
distribution (Proposition 4.1 in Gibbs & Candes (2021)). As T approaches1, limT!1

1
T

PT
t=1 errt

approaches ↵. This guarantees ACI gives the 1�↵ long-term empirical coverage frequency regardless
of the underlying data generation process.

D.1 INTERMITTENT ADAPTIVE CONFORMAL PREDICTION

To achieve Intermittent Adaptive Conformal Inference (IACI), we update ↵t at each timestep t with
Equation 25:

↵t+1 = ↵t +
�

pt
(↵� errt)obst (25)
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Recall errt = yt /2Ct(xt) and obst represents whether yt was observed at timestep t, and pt =
P(obst = 1|xt) 2 (0, 1]. The calibrated prediction interval for yt becomes:

Ct(xt) =
⇥
q̂↵lo(xt)� Q̂Sobs

t
(1� ↵t), q̂↵hi(Xt) + Q̂Sobs

t
(1� ↵t)

⇤
, (26)

where Q̂Sobs
t

(1 � ↵t) := (1 � ↵t)(1 + 1
|Dcalib| )-th adaptive empirical quantile of Sobs

t , the set of
nonconformity scores that have been observed, weighted by their probability of observation. Since we
will only observe feedback with probability pt at each timestep, our set of nonconformity values will
not be the full set of scores at every timestep. Instead, we have access to some subset of nonconformity
scores Sobs

t , where pi is the probability of element s(xi, yi; f) being in the subset Sobs
t for 1  i  t.

We define Q̂Sobs
t

(c):

Q̂Sobs
t

(c) := inf

(
m :

0

@ 1

|Dt�k:t|
X

(xi,yi)2Dt�k:t

1

pi
· obsi · {s(xi,yi)m}

1

A � c

)
(27)

At best, we can say that in expectation, the inclusion criteria for any element in the summation
term is equivalent for the summation in Q̂

obs
t (x) and the summation in Q̂t(x): Eobsi⇠pi [

1
pi

· obsi ·
{s(Xi,Yi)m}] = {s(Xi,Yi)m}.

Proposition 2. IACI Coverage Guarantee. With this intermittent feedback update, with probability

one, where Mt = min {p1, ..., pt} 2 (0, 1], we have that for all T 2 N:

�����
1

T

TX

t=1

errt � ↵

����� 
max{↵1, 1� ↵1}+ �

MT+1

T�
(28)

At limT!1
1
T

PT
t=1 errt approaches ↵, given M1 = min {p1, ..., p1} 2 (0, 1]. This guarantees

IACI gives the 1 � ↵ long-term empirical coverage frequency regardless of the underlying data
generation process. The proof follows from Gibbs & Candes (2021) as is described in the next
subsection (Section D.2).

D.2 PROOF FOR INTERMITTENT ADAPTIVE CONFORMAL INFERENCE

Assumptions. We will assume throughout that with probability one, ↵1 2 [0, 1], ↵ 2 (0, 1),
pt 2 (0, 1] 81  t  1, and Q̂

obs
t (x) is non-decreasing with Q̂Sobs

t
(c) = �1 for all c < 0, and

Q̂Sobs
t

(c) =1 for all c > 1.

Lemma 2. With probability one, we have that 8t 2 [1, T ],

↵t 2 [� �

MT
, 1 +

�

MT
] (29)

where MT = min1rT pr.

Proof. Observe that

sup1tT |↵t+1 � ↵t| = sup1tT |
�

pt
(↵� errt)| (30)

 sup1tT

�

MT
|(↵� errt)| =

�

MT
sup1tT |(↵� errt)| (31)

<
�

MT
(32)

The rest of the proof follows from Lemma 4.1 in Gibbs & Candes (2021). We will write it out
explicitly here.

Lower Bound. Assume towards contradiction that with positive probability the set {↵t}t2[1,T ] is
such that inft2[1,T ]{↵t} < � �

MT
, which means there exists some element in the set {↵t}t2[1,T ]
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such that the element is less than � �
MT

. Let ↵t+1 be the first element in set {↵t}t2[1,T ] such that
↵t+1 < � �

MT
.

We know by assumption that ↵1 2 [0, 1], so ↵t+1 cannot be the first value. So ↵t > ↵t+1, else the
latter would not be the first element such that ↵t+1 < � �

MT
. Since we know that ↵t � ↵t+1 <

�
MT

(from the observation above), then

↵t � ↵t+1 <
�

MT
(33)

, ↵t <
�

MT
+ ↵t+1 (34)

, ↵t <
�

MT
+ ↵t+1 <

�

MT
+ (� �

MT
) (35)

, ↵t < 0. (36)

However, if ↵t < 0, then Q̂Sobs
t

(1� ↵t) =1) errt = 0. This is because the quantile will be the
trivially large infinite quantile, meaning there will definitely be no undercoverage at t. Since �

pt
↵ is

positive by definition,

) ↵t+1 = ↵t +
�

pt
(↵� errt) = ↵t +

�

pt
(↵� 0) � ↵t (37)

We have reached a contradiction with ↵t+1 being the first infimum value reached.

Upper Bound. The upper bound argument is symmetric but we will write it out explicitly. Assume
towards contradiction that with positive probability the set {↵t}t2[1,T ] is such that supt2[1,T ]{↵t} >

1+ �
MT

, which means there exists some element in the set {↵t}t2[1,T ] such that the element is greater
than 1 + �

MT
. Let ↵t+1 be the first element in set {↵t}t2[1,T ] such that ↵t+1 > 1 + �

MT
.

We know by assumption that ↵1 2 [0, 1], so ↵t+1 cannot be the first value. So there exists some
↵t < ↵t+1, where ↵t+1 > 1 + �

MT
. Since we know that ↵t+1 � ↵t <

�
MT

(from the observation
above), then

↵t+1 � ↵t <
�

MT
(38)

, �↵t <
�

MT
� ↵t+1 (39)

, ↵t > ↵t+1 �
�

MT
> (1 +

�

MT
)� �

MT
(40)

, ↵t > 1. (41)

However, if ↵t > 1, then Q̂Sobs
t

(1� ↵t) = �1) errt = 1. This is because the quantile will be the
trivially small negative infinite quantile, meaning there will definitely be miscoverage at t. Then,

) ↵t+1 = ↵t +
�

pt
(↵� errt) = ↵t +

�

pt
(↵� 1)  ↵t (42)

since �
pt
(↵� 1) is is negative by definition of ↵. We have reached a contradiction with ↵t+1 being

the first supremum value reached.

Lemma 2 will enable us to prove Proposition 2. The proof is derivative of the constant feedback ACI
proof in (Gibbs & Candes, 2021), and the key idea is to bound the expectation of ↵t+1.

Proof. Examine the expectation of ↵t+1, conditional on DT+1 := {errt, pt}tT+1:

Eobs1⇠p1,...,obst⇠pT+1 [↵T+1|DT+1] = ↵1 + �

T+1X

t=1

(↵� errt) (43)

We will abbreviate the left hand side by E[↵T+1|DT+1]. Because the expected value cannot exceed
the range of the value of ↵T+1, we infer that E[↵T+1|DT+1] 2 [� �

MT+1
, 1 + �

MT+1
].
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First, we observe from Lemma 2 that

E[↵T+1|DT+1] = ↵1 +
TX

t=1

�(↵� errt) 2 [� �

MT+1
, 1 +

�

MT+1
] (44)

=) �
TX

t=1

�(↵� errt) = ↵1 � E[↵T+1|DT+1] (45)

=)

�����
1

T

TX

t=1

errt � ↵

����� =
|↵1 � E[↵T+1|DT+1]|

T�
. (46)

To bound the right hand side above, consider in turn the two cases of ↵1 � E[↵T+1|DT+1] � 0 and
↵1 � E[↵T+1|DT+1] < 0.

Starting with Case 1,

↵1 � E[↵T+1|DT+1] � 0) ↵1 � E[↵T+1|DT+1]) ↵T+1 2 [� �

MT+1
,↵1]. (47)

This case corresponds to the following equivalence: |↵1 � E[↵T+1|DT+1]| = ↵1 � E[↵T+1|DT+1].

Negating ↵T+1 � � �
MT+1

, we get �↵T+1  �
MT+1

. Thus,

|↵1 � E[↵T+1|DT+1]| = ↵1 � E[↵T+1|DT+1]  ↵1 +
�

MT+1
(48)

=) |↵1 � E[↵T+1|DT+1]|
T�


↵1 +

�
MT+1

T�
. (49)

In Case 2,

↵1 � E[↵T+1|DT+1] < 0) ↵1 < E[↵T+1|DT+1]) E[↵T+1|DT+1] 2 (↵1, 1 +
�

MT+1
]. (50)

This case corresponds to the following equivalence: |↵1 � E[↵T+1|DT+1]| = E[↵T+1|DT+1] �
↵1 = �1(↵1 � E[↵T+1|DT+1). Plugging in E[↵T+1|DT+1] < 1 + �

MT+1
,

|↵1 � E[↵T+1|DT+1]| = E[↵T+1|DT+1]� ↵1  1 +
�

MT+1
� ↵1 (51)

|↵1 � E[↵T+1|DT+1]|
T�


(1� ↵1) +

�
MT+1

T�
. (52)

Lastly, we merge the two cases by taking the maximum over {↵1, 1� ↵1} to come up with an upper
bound that covers both cases.

�����
1

T

TX

t=1

errt � ↵

����� =
|↵1 � E[↵T+1|DT+1]|

T�


max{↵1, 1� ↵1}+ �
MT+1

T�
. (53)

Taking the limit as T ! 1, if M1 is bounded, we get limT!1

��� 1T
PT

t=1 errt � ↵

��� = 0, as
claimed.

E EXTENDED EXPERIMENTS: INTERMITTENT QUANTILE TRACKING

We experiment with these four predictors because of their use in prior conformal literature (An-
gelopoulos et al., 2023) and in order to ensure that under different base model conditions, IQT
maintains coverage close to the desired level. (1) Autoregressive (AR) model with 3 lags, (2) Theta
model with ✓ = 2 (Assimakopoulos & Nikolopoulos, 2000), (3) Prophet model Taylor & Letham
(2018), and (4) Transformer model (Vaswani et al., 2017). Consistent with prior works, for all base
models except for transformer, we retrain the base model after each timestep; for the transformer, we
retrain every 100 timesteps. We set lookback window k = 100 timesteps for the Google and Amazon
stock price data, and k = 300 for the Elec2 dataset.

21



Published as a conference paper at ICLR 2025

Table 1: IQT on Amazon Stocks (infrequent observations): Trends Across Models. We test four
base models, set pt = 0.1, 8t to simulate seeing the true price only 10% of the time, and report the
mean across 5 seeds.

Metric lr AR Base Model Prophet Base Model Theta Base Model Transformer Base Model
IQT-pi IQT-pd IQT-pi IQT-pd IQT-pi IQT-pd IQT-pi IQT-pd

Coverage 1.0 0.903 0.937 0.906 0.935 0.899 0.921 0.902 0.923
0.1 0.876 0.903 0.876 0.906 0.815 0.899 0.808 0.902

0.01 0.690 0.876 0.690 0.876 0.430 0.815 0.360 0.808
Longest err seq 1.0 13.2 13.2 11.6 30.6 27 41.2 28.8 30

0.1 6.8 20.8 10 11.6 51.8 27 89 28.8
0.01 12.6 6.8 13.8 10 145.2 51.8 212.8 89

Avg set size 1.0 47.452 425.435 46.056 414.977 105.040 711.829 131.025 982.469
0.1 16.872 47.452 16.495 46.056 82.463 105.040 118.040 131.025

0.01 9.428 16.872 9.470 16.495 35.458 82.463 46.929 118.040

Table 2: IQT on Amazon Stocks (partial observations): Trends Across Models. We test four base
models, set pt = 0.5, 8t to simulate seeing the true price only 50% of the time, and report the mean
across 5 seeds.

Metric lr AR Prophet Theta Transformer
IQT-pi IQT-pd IQT-pi IQT-pd IQT-pi IQT-pd IQT-pi IQT-pd

Marginal coverage 1.0 0.902 0.905 0.901 0.904 0.906 0.904 0.900 0.904
0.1 0.891 0.896 0.883 0.893 0.890 0.895 0.879 0.885

0.01 0.846 0.869 0.737 0.812 0.843 0.870 0.705 0.796
Longest err seq 1.0 5.6 5.8 7.4 8 5.6 6.6 7.8 8

0.1 4.6 4 12.8 8.2 7.6 5 23.4 11.4
0.01 7.2 7 89.4 50.6 10 10 191.2 97.6

Avg set size 1.0 43.816 78.447 76.013 139.875 44.449 77.741 100.127 183.529
0.1 17.535 19.918 66.940 55.233 17.581 19.854 92.513 72.867

0.01 13.684 14.952 70.972 81.854 13.678 15.085 99.109 118.457

Amazon stock price data under partial (pt = 0.5) feedback. Figure 8 shows the prediction interval
sizes for 1 seed, and coverage averaged over 5 seeds for Amazon stock price data under partial
(pt = 0.5) feedback. We see that the interval size for IQT-pd is larger than IQT-pi for high learning
rate lr = 1, but the size of intervals is comparable for smaller learning rates. Table 2 shows the
performance metrics averaged over 5 seeds.
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P = 0.5: AMZN
Figure 8: Amazon stock price data under partial (pt = 0.5) feedback. We show the prediction interval
sizes for 1 seed, and coverage averaged over 5 seeds for Amazon stock price data under partial
observations.

Amazon stock price data under partial (pt = 0.9) feedback. Figure 9 shows the prediction interval
sizes for 1 seed, and coverage averaged over 5 seeds for Amazon stock price data under frequent
(pt = 0.9) feedback. We see that the interval size for IQT-pd and IQT-pi are very similar across
learning rates. Table 3 shows the performance metrics averaged over 5 seeds.
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Figure 9: Amazon stock price data under frequent (pt = 0.9) feedback. We show the prediction
interval sizes for 1 seed, and coverage averaged over 5 seeds for Amazon stock price data under
partial observations.

Table 3: IQT on Amazon Stocks (frequent observations): Trends Across Models. We test four
base models, set pt = 0.9, 8t to simulate seeing the true price 90% of the time, and report the mean
across 5 seeds.

Metric lr AR Prophet Theta Transformer
IQT-pi IQT-pd IQT-pi IQT-pd IQT-pi IQT-pd IQT-pi IQT-pd

Marginal coverage 1.0 0.902 0.903 0.901 0.903 0.902 0.902 0.903 0.902
0.1 0.894 0.894 0.886 0.886 0.8932 0.894 0.885 0.887

0.01 0.870 0.873 0.797 0.805 0.871 0.873 0.786 0.798
Longest err seq 1.0 2.8 2.6 3 3.6 3.2 3.6 3.2 3

0.1 3.6 3.8 7 6.6 5.4 5 10.6 9
0.01 7 7 57.8 44.2 10 10 97.8 98.4

Avg set size 1.0 43.221 46.624 71.646 78.889 42.979 46.270 93.068 103.777
0.1 17.663 17.982 54.235 52.265 17.687 18.121 69.700 66.835

0.01 14.627 14.832 79.736 81.078 14.732 14.954 116.272 117.762

Table 4: IQT on Google Stocks (infrequent observations): Trends Across Models. We test four
base models, set pt = 0.1, 8t to simulate seeing the true price only 10% of the time, and report the
mean across 5 seeds.

Metric lr AR Prophet Theta Transformer
IQT-pi IQT-pd IQT-pi IQT-pd IQT-pi IQT-pd IQT-pi IQT-pd

Marginal coverage 1.0 0.925 0.949 0.928 0.929 0.929 0.929 0.907 0.927
0.1 0.910 0.925 0.897 0.928 0.906 0.929 0.793 0.907

0.01 0.812 0.910 0.639 0.897 0.692 0.906 0.234 0.793
Longest err seq 1.0 11.4 27.8 21.4 42.4 17.2 29.2 23.2 29

0.1 6 11.4 35.6 21.4 53.4 17.2 109.2 23.2
0.01 9.2 6 69.6 35.6 103 53.4 873.4 109.2

Avg set size 1.0 87.834 911.476 134.392 1017.708 93.068 815.183 218.270 1445.050
0.1 24.305 87.834 104.224 134.392 49.364 93.068 269.950 218.270

0.01 15.070 24.305 54.653 104.224 28.910 49.364 109.453 269.950

E.1 GOOGLE STOCK PRICE DATASET RESULTS

For the Google stock price dataset, Tables 4, 5, and 6 show the results for infrequent, partial, and
frequent feedback. Under infrequent observations, IQT-pd boosts coverage over IQT-pi, at the cost
of larger prediction intervals on average. As the observation probability increases, the discrepancy in
prediction interval size between IQT-pd and IQT-pi narrows, and the coverage is very similar. At a
high level, the trends in performance for IQT-pd and IQT-pi across the three observation levels are
very similar for the Google dataset and the Amazon stock price dataset.

E.2 ELEC2 DATASET RESULTS

For the Elec2 dataset, Tables 7, 8, and 9 show the results for infrequent, partial, and frequent feedback.
Similar to the other two datasets, under infrequent observations, IQT-pd boosts coverage over IQT-pi,
at the cost of larger prediction intervals on average. As the observation probability increases, the
discrepancy in prediction interval size between IQT-pd and IQT-pi narrows, and the coverage is very
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Table 5: IQT on Google Stocks (partial observations): Trends Across Models. We test four base
models, set pt = 0.5, 8t to simulate seeing the true price only 50% of the time, and report the mean
across 5 seeds.

Metric lr AR Prophet Theta Transformer
IQT-pi IQT-pd IQT-pi IQT-pd IQT-pi IQT-pd IQT-pi IQT-pd

Marginal coverage 1.0 0.909 0.909 0.902 0.908 0.906 0.903 0.902 0.899
0.1 0.905 0.905 0.896 0.892 0.899 0.901 0.901 0.894

0.01 0.891 0.901 0.858 0.887 0.864 0.890 0.661 0.809
Longest err seq 1.0 5.2 6.4 8 7.6 5.4 7.8 8.2 8.4

0.1 4 4 13.8 11 13.8 7.4 16 13.2
0.01 6 6 49.4 32.2 80.8 55.6 239.8 104.2

Avg set size 1.0 59.236 101.424 91.522 168.522 64.736 116.381 131.415 241.408
0.1 22.021 25.670 71.972 63.493 36.04 34.893 156.157 106.766

0.01 18.820 19.830 91.394 96.245 42.575 43.364 246.053 276.761

Table 6: IQT on Google Stocks (frequent observations): Trends Across Models. We test four base
models, set pt = 0.9, 8t to simulate seeing the true price 90% of the time, and report the mean across
5 seeds.

Metric lr AR Prophet Theta Transformer
IQT-pi IQT-pd IQT-pi IQT-pd IQT-pi IQT-pd IQT-pi IQT-pd

Marginal coverage 1.0 0.903 0.902 0.902 0.903 0.902 0.902 0.902 0.901
0.1 0.897 0.898 0.889 0.889 0.898 0.898 0.892 0.892

0.01 0.895 0.897 0.880 0.881 0.889 0.891 0.791 0.808
Longest err seq 1.0 2.8 3 3.2 2.8 3.6 2.8 3 3.6

0.1 4 4 8 7.8 6.8 6.6 10 9.4
0.01 6 6 32.4 31.4 58 57.6 108.4 105

Avg set size 1.0 53.161 57.376 85.427 93.799 61.876 68.177 121.994 134.782
0.1 21.068 21.564 59.732 57.680 31.262 31.240 106.240 99.712

0.01 19.096 19.396 94.682 94.370 43.206 42.881 278.926 279.124

Table 7: IQT on Elec2 Dataset (infrequent observations): Trends Across Models. We test four
base models, set pt = 0.1, 8t to simulate seeing the true price only 10% of the time, and report the
mean across 5 seeds.

Metric lr AR Prophet Theta Transformer
IQT-pi IQT-pd IQT-pi IQT-pd IQT-pi IQT-pd IQT-pi IQT-pd

Marginal coverage 1.0 0.918 0.908 0.900 0.934 0.909 0.949 0.903 0.904
0.1 0.897 0.918 0.901 0.900 0.911 0.909 0.908 0.903

0.01 0.809 0.897 0.665 0.901 0.857 0.911 0.663 0.908
Longest err seq 1.0 10.4 24.8 19.6 28.6 15.2 24.4 20.2 25.4

0.1 4 10.4 19.2 19.6 9.2 15.2 10.8 20.2
0.01 5.2 4 29.8 19.2 13 9.2 29.4 10.8

Avg set size 1.0 0.120 1.867 0.846 6.374 0.252 2.489 0.905 6.565
0.1 0.091 0.120 0.528 0.846 0.085 0.252 0.556 0.905

0.01 0.061 0.091 0.307 0.528 0.059 0.085 0.349 0.556

similar. The trends in performance for IQT-pd and IQT-pi across the three observation levels are
very similar for the Elec2 dataset and the Amazon stock price dataset.

F FURTHER EXAMINATION: SIMULATED EXPERIMENTS

On Expert Realizability. An outstanding challenge in the theory of DAgger is guaranteeing learning
a high-quality policy from the expert when the expert is unrealizable. We assume, much like Spencer
et al. (2021), that our expert is realizable. Whether or not this is true in practice with human
experts is an open area of research. Nevertheless, similar to HG-DAggerKelly et al. (2019) and
EnsembleDAggerMenda et al. (2019), our approach offers a practical approach to contend with these
real-world challenges.
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Table 8: IQT on Elec2 Dataset (partial observations): Trends Across Models. We test four base
models, set pt = 0.5, 8t to simulate seeing the true price only 50% of the time, and report the mean
across 5 seeds.

Metric lr AR Prophet Theta Transformer
IQT-pi IQT-pd IQT-pi IQT-pd IQT-pi IQT-pd IQT-pi IQT-pd

Marginal coverage 1.0 0.909 0.905 0.898 0.908 0.907 0.909 0.902 0.899
0.1 0.895 0.896 0.901 0.896 0.901 0.899 0.903 0.897

0.01 0.892 0.894 0.865 0.887 0.899 0.901 0.886 0.903
Longest err seq 1.0 4.6 5.2 8.6 7.4 5.2 6.4 6.8 7.6

0.1 3.8 5 7.2 7.4 5.2 4.8 7.8 7.6
0.01 3.2 2.8 27 14.2 4.2 4.6 11 9.8

Avg set size 1.0 0.187 0.325 0.721 1.304 0.234 0.443 0.738 1.287
0.1 0.093 0.101 0.475 0.4721 0.074 0.087 0.487 0.478

0.01 0.087 0.088 0.481 0.500 0.068 0.070 0.497 0.517

Table 9: IQT on Elec2 Dataset (frequent observations): Trends Across Models. We test four base
models, set pt = 0.9, 8t to simulate seeing the true price 90% of the time, and report the mean across
5 seeds.

Metric lr AR Prophet Theta Transformer
IQT-pi IQT-pd IQT-pi IQT-pd IQT-pi IQT-pd IQT-pi IQT-pd

Marginal coverage 1.0 0.902 0.901 0.901 0.901 0.902 0.902 0.902 0.902
0.1 0.900 0.902 0.897 0.898 0.897 0.899 0.897 0.898

0.01 0.903 0.903 0.881 0.883 0.893 0.894 0.899 0.902
Longest err seq 1.0 2.6 3 3.8 3.4 2.6 2.8 3.4 3.2

0.1 2.6 2.8 4.6 4.8 4.2 3.8 5.8 5.2
0.01 2.4 2.8 15.6 15 4.6 4.8 10 10

Avg set size 1.0 0.179 0.192 0.677 0.734 0.219 0.243 0.670 0.724
0.1 0.096 0.0977 0.446 0.437 0.070 0.071 0.444 0.438

0.01 0.091 0.092 0.492 0.492 0.066 0.067 0.513 0.518

Implementation Details. Both EnsembleDAgger and ConformalDAgger are implemented as
7-layer multilayer perceptions (with hidden sizes [64,128,472,512,256,64,42]). We use ReLU
activations between each layer. We train using a learning rate of 0.001 and a batch size of 32. We
train the initial policy for 200 iterations, and fine-tune between each interactive deployment episode
for 100 iterations. The EnsembleDAgger safety classifier is implemented as a 4-layer perception
([64,128,64,42]) with ReLU activation between each layer and we apply a sigmoid function on the
output to classify the output.

A closer look at expert shift under pt = 0.2 intermittent feedback . When the expert shift occurs at
episode 5 (Figure 10), the human provides feedback occasionally to the learners which deviates from
the predicted actions. ConformalDAgger increases its calibrated uncertainty based on these human
inputs, and once uncertainty exceeds the threshold, the probability for asking for help converges to 1,
causing the robot to ask for more human feedback such that it can learn the new goal.

Simulated results under partial (pt = 0.5) intermittent feedback . Under pt = 0.5 intermittent
feedback (Figure 11), ConformalDAgger is able to detect the shift and drift more quickly than
EnsembleDAgger. We find that as the ConformalDAgger algorithm under the stationary expert
becomes more noisy has increased miscoverage. This is due to the expert labels decreasing the
conformal parameters, qhi, qlo as the expert gives feedback, causing the intervals to become too small.
Under the short time horizon, the miscoverage rate is higher than the desired level.

Simulated results under frequent (pt = 0.9) intermittent feedback . Under pt = 0.9 intermittent
feedback (Figure 12), both algorithms are able to quickly adapt to expert shift and drift. This
is because both algorithms during deployment are receiving human labels extremely frequently.
Similar to partial feedback, as the ConformalDAgger algorithm under the stationary expert becomes
more noisy has increased miscoverage. ConformalDAgger decreases the value of the conformal
parameters, qhi, qlo as the expert gives feedback, causing the intervals to become too small, giving
miscoverage higher than the desired level.
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Figure 10: At episode 5, the ConformalDAgger learner uncertainty enables the robot to ask for more
human feedback to gather information about the shifted goal.
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Figure 11: Under pt = 0.5 intermittent feedback, ConformalDAgger learns the shift and drift more
quickly than EnsembleDAgger and SafeDAgger, with fewer queries than LazyDAgger.

G EXPERIMENTS IN ROBOSUITE NUT-ASSEMBLY BENCHMARK

We conducted additional experiments on Robosuite’s nut-assembly task, a benchmark for LazyDAgger
Hoque et al. (2021b) and ThriftyDAgger Hoque et al. (2021a). For consistency, we used the
LazyDAgger thresholds from Hoque et al. (2021a) and set the SafeDAgger threshold to match the
safety value used in LazyDAgger. The nut-assembly task involved a hardcoded expert policy that
sequentially rotates to pick up the nut, lifts it, moves it to the peg, and lowers it to place. We trained
the base policy with 30 demonstration episodes.

We evaluated this task under two conditions: a No-Shift scenario, where the task remains unchanged
during deployment, and an Environment-Shift scenario, where the peg location is altered during
interactive deployment (highlighted in red in Figure 13).
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Figure 12: Under pt = 0.9 intermittent feedback, all approaches learn the shift and drift quickly.

Performance metrics included: (1) autonomous success rate—success rate in deployment without a
human supervisor (50 rollouts), and (2) intervention-aided success rate—success rate with a human
supervisor in the loop. During training, we also tracked the number of interventions, human actions,
and robot actions per episode. These metrics were calculated only for successful episodes to avoid
bias from maximum episode length, which can inflate action counts for less successful policies that
frequently reach the time limit.

The task required grasping a ring in a random initial pose and threading it onto a cylinder at a
fixed target location. This involved two key challenges motivating learning from interventions: (1)
successfully grasping the ring, and (2) accurately placing it over the cylinder (Figure 13). A simulated
human provided interventions by teleoperating the robot. The state inputs included the robot’s joint
angles and the ring’s pose, while the actions involved 3D translation, 3D rotation, and gripper control.
We used 30 publicly available offline demonstrations (https://github.com/ryanhoque/
thriftydagger 2,687 state-action pairs) from a human supervisor to initialize the robot policy
across all algorithms.

ConformalDAgger identified the initial policy’s nonperformance in both contexts, prompting more
queries and achieving a higher autonomous rollout success rate compared to other baselines.

H IMPLEMENTATION AND TASK DETAILS: REAL EXPERIMENTS

H.1 LEARNING POLICY TRAINING DETAILS

We record robot and human actions at 15hz. The initial policy ⇡
r
0 is trained for 60K iterations with

a batch size of 100. We use a weight decay of 1.0e-6, learning rate of 0.0001; for learning-rate
scheduling, we used a cosine schedule with linear warmup (Nichol & Dhariwal, 2021). The number
of training diffusion iterations is 100, and number of inference diffusion iterations is 16. The policy
is trained on an NVIDIA RTX A6000 GPU.

A look at the real-world feedback request interface. Figure 14 shows the real-world interface
for requesting help from the user during the interactive deployment episodes. The user provides
teleoperated actions via a Meta Quest 3, and the robot’s uncertainty is displayed on a computer screen
next to the robot. When the robot needs help, the robot pauses its execution and presents an alert
notification on the screen.
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Figure 13: ConformalDAgger recognizes the learned policy from 30 demos is still nonperformant in
both contexts, and increases the number of questions asked, resulting in a higher autonomous rollout
success rate than other baselines.
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Figure 14: When the robot needs help, the robot pauses its execution and presents an alert notification
on the screen.

Sponging Task Specifications. We present the task setup details (Figure 15) so that readers can also
reproduce this task.
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Figure 15: Sponge task specifications.
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