320

321

322
323
324
325
326
327
328
329
330
331

332

333
334
335

336

337
338

A DETAILED EXPERIMENT SETUP

A.1 REWARD

In this section, we detail the reward function and the weights. The reward function is comprised
of several critical components, each serving a distinct purpose. The exponential function is rep-
resented by exp(-), and the variance function is denoted by var(-). The terms (-)% and (-)°md
are used to denote the desired and commanded values, respectively. The robot’s body frame is
defined by the coordinates x, y, and z, with x and z oriented in the forward and upward direc-
tions. The rotation angles of the robot’s coordinate system are given by roll, yaw, and pitch.
Pray, Lieys Loy, Taie, v, w, by dy, di, g, 0, 7 tepresent the height of the foot at time t, the phase at
time t in the gait cycle, the contact status of the foot at time t, the aerial time of the foot, the lin-
ear velocity of the robot’s root, yaw rate, height, foot distance, knee distance, the projection of the
gravity vector onto the robot’s body frame, joint position, and joint torque.

Table 4: Setup of reward function and scales.

Reward Equation (r;) Scale (w;)
2
Feet clearance (p‘}"’(i) - pf(t)) (1= Taw) -0.01
Feet air time Toir - Lot -0.001
Follow gait phase (1= Tay) - Ler -0.001
Feet slip w - I -0.005
Feet&Knee distance exp{—100-/0.3—dy x|} +exp{—100-]0.125—d |} 04
5 .
Lin. velocity tracking exp {—4 (vemd — vzy)z} 2.4
Ang. velocity tracking exp {74 (w%‘\s — wyaw)z} 1.1
Velocity mismatch exp{~10(-v:) }JFZXP{%(*M"’]""“&) } 0.5
Orientation lg|? 1.0
Feet orientation | feet|? 1.0
Default joint exp {—2 0 - ozem)Q} 0.5
Body height (hdes — 0.6505) -1.0
. 3

Root accelerations exp {— (Om(,t) } 0.2
Joint accelerations éQ —1x1076
Joint velocity 92 -5 x 1073
Joint power T2 —1x107°
Action rate (a; — at_1)2 —0.01
Smoothness (a — 2241 + at,g)2 —-0.01
Joint position tracking exp {—2 (60— Gtarget)z} 3.2

A.2 DOMAIN RANDOMIZATION

We leverage domain randomization during training to narrow the reality gap. Specifically, we set
the range of parameters as shown in Table 5, mainly consisting of delay of action and torque, ran-
domization of position, velocity, friction, KP/KD factor, and CoM.

A.3 IMPLEMENTATION DETAILS

Our humanoid robot, named N1, is equipped with a total of 18 degrees of freedom. In this work, we
have immobilized the 8 joints associated with the arms, focusing exclusively on the 10 joints related

11

339
340

341
342
343
344
345
346
347

Table 5: Overview of Domain Randomization. Presented are the domain randomization terms and
the associated parameter ranges. Additive randomization increments the parameter by a value within
the specified range while scaling randomization adjusts it by a multiplicative factor from the same
range.

Parameter Unit Range Operator Type
Joint Position rad [-0.05,0.05] additive Gaussian (lo)
Joint Velocity rad/s [-1.5,1.5] additive Gaussian (lo)
Angular Velocity rad/s [-0.2,0.2] additive Gaussian (lo)
Linear Velocity m/s [-0.1, 0.1] additive Gaussian (lo)
Euler Angle rad [-0.06,0.06] additive Gaussian (lo)
Action Delay ms [0, 10] - Uniform
Torque Delay ms [0, 10] - Uniform
Friction - [0.1, 2.0] - Uniform
Kp factor % [80, 120] scaling Gaussian (lo)
Kd factor % [80, 120] scaling Gaussian (lo)
Motor Strength % [80, 120] scaling Gaussian (lo)
Payload kg [-5, 5] additive Gaussian (lo)
CoM m [-0.02, 0.02] additive Gaussian (1o)
Link Mass % [0.9, 1.1] scaling Gaussian (lo)

to the legs. The motors’ hip (pitch) and knee joint torque can reach up to 150 Nm, while the motors’
torque of the foot joints is 36 Nm. This robot’s total height and weight are 0.95 m and 23 kg.

Our RL control strategy operates at 100 Hz, coupled with an internal PD controller that runs at 1000
Hz. It ensures synchronization with the operational frequency of the actual hardware. We employ
Isaac Gym for training and conduct sim-to-sim validation in various simulation environments, in-
cluding MuJoCo, PyBullet, and Gazebo. This multi-environment approach ensures the robustness
and adaptability of our models. We utilize the Proximal Policy Optimization (PPO) algorithm [30].
The details of our training parameters are presented in Table 6, where we outline the specifics that
contribute to the enhanced performance of our model.

Table 6: Training hyperparameters

Parameter Value

Number of environments 4096

Training epochs 2

Learning rate 107°

Gamma vy 0.995

Lambda A\ 0.95

Batch size 24

Episode Length 3000
Backbone hidden layers [512, 512, 128]

Encoder hidden layers

[768, 256, 64]

Activation function ELU
Decoder observation 19
Number of Observation frame stack 5
Number of Privileged frame stack 3
Number of Aggregated Observation 219
Number of Aggregated Privileged Observation 846

12

348

349
350

351

352

353

354
355

356

B ALGORITHM

We present our complete algorithmic process in the following algorithm, where four networks are
continuously updated through sampling from the simulation based on the process outlined below.

Input: Encoder network esty, decoder network dec,,, policy network 7, value function
V4, environment, number of epochs F, mini-batch size M

Output: Optimized encoder network est, policy network g

Initialize encoder network esty, decoder network dec,,, policy network 7 and value
function V,

Initialize advantages A; = 0 and value targets V; = 0

for each epoch e = 1to E do

for each mini-batch b =1 to M do

Initialize observation og , obtain frame stack observationof and collect rollouts

for each stept = 1to T do

Compute linear velocity v, and latent features z;, ~ est(:|ofT)

Compute action a; ~ mp(-|of?, vy, 2;)

Execute a; in the environment and observe oy 1, ofil, T, dg

Compute advantage estimate Ay, value target V, linear velocity target v; and
next step observation targeto,,1; Update advantages A; = p; A;—1 + flt and
value targets V; = yV,_1 + Vt

end
Perform multiple PPO updates using A; and V; to optimize 7y and V;;, and estimator
updates using 0;41, 2; and vy to optimize esty and dec,;

end
end
return the optimized policy network 7y and the encoder policy networkest ;

Algorithm 1: Training algorithm

C GENERALIZATION

This section presents a series of experimental images that vividly illustrate our algorithm’s intricate
implementation details and robust generalization capabilities across various initial poses for robotic
walking tasks, shown in the Fig. 6. We have achieved smooth locomotion across a spectrum of initial
postures, as evidenced by the images depicting the robot’s initial stance.

Figure 6: Training with diverse initial poses: An illustrative analysis of robotic locomotion across
varied starting configurations.

13

357 Within the simulated environment, the Fig. 7 display the robot’s upright and stable gait, underscoring
ss¢ the algorithm’s exceptional precision in control within the virtual platform. We have further sub-
359 stantiated the algorithm’s reliability, shown in Fig. 8, and practical utility by advancing to real-world
s60 scenarios. The deployment of our algorithm on an actual robot has endowed it with the ability to
31 navigate in various straight-legged postures, as illustrated by the images portraying the robot’s com-
ss2 mendable equilibrium and stability. This rigorous process is a testament to the algorithm’s resilience
363 and adaptability.

ss4 These outcomes furnish compelling validation for our algorithm’s ongoing refinement and appli-
35 cation, simultaneously presenting innovative perspectives and methodologies that hold significant
se6 promise for future research within related domains.

Figure 8: Simulated locomotion across diverse initial poses: Demonstrating algorithmic adaptability
in sim-to-real transitions.

14

367

368
369

371
372
373
374

376
377

378

380

D REAL-MACHINE EXPERIMENTATION

We conducted multiple experiments on the actual machine, testing our policy on various terrains,
including grasslands, wire-strewn ground, slopes, and stairs. Our robot’s traversal across grasslands
is a testament to its ability to handle the soft and unpredictable ground, while its passage through
areas with wireless showcases its resilience against obstacles that could impede movement. The
robot’s ascent on slopes highlights its dynamic balance and the algorithm’s capacity to adjust to
inclines that require precise foot placement and torque control. Most notably, the robot’s ability
to climb and descend stairs indicates our algorithm’s advanced control mechanisms, ensuring that
each step is calculated for maximum efficiency and safety. The images reveal a robot that is not just
mobile but one that can adapt to and stabilize on a wide array of environmental conditions, thereby
proving the algorithm’s robustness and stability in a comprehensive sim-to-real context.

These visual records are more than just demonstrations of our robot’s physical capabilities; they are
evidence of the sophisticated algorithms that enable it to interact intelligently with its surroundings,
providing a solid foundation for further research and development in robotics.

f !

B s A

Figure 9: The sequence of images presented illustrates the diverse terrains our robot navigates with
proficiency, ranging from the soft contours of grasslands to the challenging unevenness of wire-
strewn areas, the inclines of varying gradients, and the ascents and descents of stairs. Each scenario,
captured in a vertical progression from top to bottom, demonstrates not only the robot’s adaptability
but also its ability to maintain equilibrium on surfaces that demand different levels of traction and
stability.

