
A DETAILED EXPERIMENT SETUP320

A.1 REWARD321

In this section, we detail the reward function and the weights. The reward function is comprised322

of several critical components, each serving a distinct purpose. The exponential function is rep-323

resented by exp(·), and the variance function is denoted by var(·). The terms (·)des and (·)cmd324

are used to denote the desired and commanded values, respectively. The robot’s body frame is325

defined by the coordinates x, y, and z, with x and z oriented in the forward and upward direc-326

tions. The rotation angles of the robot’s coordinate system are given by roll, yaw, and pitch.327

Pf(t), Id(t), Ic(t), Tair, v, ω, h, df , dk, g, θ, τ represent the height of the foot at time t, the phase at328

time t in the gait cycle, the contact status of the foot at time t, the aerial time of the foot, the lin-329

ear velocity of the robot’s root, yaw rate, height, foot distance, knee distance, the projection of the330

gravity vector onto the robot’s body frame, joint position, and joint torque.331

Table 4: Setup of reward function and scales.
Reward Equation (ri) Scale (wi)

Feet clearance
(
pdes
f(t) − pf(t)

)2

· (1− Id(t)) -0.01
Feet air time Tair · Ic(t) -0.001
Follow gait phase (1− Id(t)) · Ic(t) -0.001
Feet slip ω · Ic(t) -0.005
Feet&Knee distance exp{−100·|0.3−df,k|}+exp{−100·|0.125−df,k|}

2 0.4

Lin. velocity tracking exp
{
−4

(
vcmd
xy − vxy

)2}
2.4

Ang. velocity tracking exp
{
−4

(
ωcmd

yaw − ωyaw
)2}

1.1

Velocity mismatch
exp{−10(−vz)

2}+exp{−5(−ωroll, pitch)
2}

2 0.5

Orientation |g|2 1.0
Feet orientation |gfeet|2 1.0
Default joint exp

{
−2 (θ − θzero)

2
}

0.5

Body height
(
hdes − 0.6505

)2
-1.0

Root accelerations exp

{
−
(
θ̈root

)3
}

0.2

Joint accelerations θ̈
2

−1× 10−6

Joint velocity θ̇
2

−5× 10−3

Joint power τ 2 −1× 10−5

Action rate (at − at−1)
2 −0.01

Smoothness (at − 2at−1 + at−2)
2 −0.01

Joint position tracking exp
{
−2 (θ − θtarget)

2
}

3.2

A.2 DOMAIN RANDOMIZATION332

We leverage domain randomization during training to narrow the reality gap. Specifically, we set333

the range of parameters as shown in Table 5, mainly consisting of delay of action and torque, ran-334

domization of position, velocity, friction, KP/KD factor, and CoM.335

A.3 IMPLEMENTATION DETAILS336

Our humanoid robot, named N1, is equipped with a total of 18 degrees of freedom. In this work, we337

have immobilized the 8 joints associated with the arms, focusing exclusively on the 10 joints related338

11

Table 5: Overview of Domain Randomization. Presented are the domain randomization terms and
the associated parameter ranges. Additive randomization increments the parameter by a value within
the specified range while scaling randomization adjusts it by a multiplicative factor from the same
range.

Parameter Unit Range Operator Type

Joint Position rad [-0.05, 0.05] additive Gaussian (lo)
Joint Velocity rad/s [-1.5, 1.5] additive Gaussian (lo)
Angular Velocity rad/s [-0.2, 0.2] additive Gaussian (lo)
Linear Velocity m/s [-0.1, 0.1] additive Gaussian (lo)
Euler Angle rad [-0.06, 0.06] additive Gaussian (lo)
Action Delay ms [0, 10] - Uniform
Torque Delay ms [0, 10] - Uniform
Friction - [0.1, 2.0] - Uniform
Kp factor % [80, 120] scaling Gaussian (lo)
Kd factor % [80, 120] scaling Gaussian (lo)
Motor Strength % [80, 120] scaling Gaussian (lo)
Payload kg [-5, 5] additive Gaussian (lo)
CoM m [-0.02, 0.02] additive Gaussian (lo)
Link Mass % [0.9, 1.1] scaling Gaussian (lo)

to the legs. The motors’ hip (pitch) and knee joint torque can reach up to 150 Nm, while the motors’339

torque of the foot joints is 36 Nm. This robot’s total height and weight are 0.95 m and 23 kg.340

Our RL control strategy operates at 100 Hz, coupled with an internal PD controller that runs at 1000341

Hz. It ensures synchronization with the operational frequency of the actual hardware. We employ342

Isaac Gym for training and conduct sim-to-sim validation in various simulation environments, in-343

cluding MuJoCo, PyBullet, and Gazebo. This multi-environment approach ensures the robustness344

and adaptability of our models. We utilize the Proximal Policy Optimization (PPO) algorithm [30].345

The details of our training parameters are presented in Table 6, where we outline the specifics that346

contribute to the enhanced performance of our model.347

Table 6: Training hyperparameters
Parameter Value

Number of environments 4096
Training epochs 2
Learning rate 10−5

Gamma γ 0.995
Lambda λ 0.95
Batch size 24
Episode Length 3000
Backbone hidden layers [512, 512, 128]
Encoder hidden layers [768, 256, 64]
Activation function ELU

Decoder observation 19
Number of Observation frame stack 5
Number of Privileged frame stack 3
Number of Aggregated Observation 219
Number of Aggregated Privileged Observation 846

12

B ALGORITHM348

We present our complete algorithmic process in the following algorithm, where four networks are349

continuously updated through sampling from the simulation based on the process outlined below.350

Input: Encoder network estϕ, decoder network decφ, policy network πθ, value function
Vψ , environment, number of epochs E, mini-batch size M

Output: Optimized encoder network estϕ, policy network πθ
Initialize encoder network estϕ, decoder network decφ, policy network πθ and value
function Vψ

Initialize advantages At = 0 and value targets Vt = 0
for each epoch e = 1 to E do

for each mini-batch b = 1 to M do
Initialize observation o0 , obtain frame stack observationoH0 and collect rollouts
for each step t = 1 to T do

Compute linear velocity vt and latent features zt ∼ estϕ(·|oHt)

Compute action at ∼ πθ(·|oHt , vt, zt)

Execute at in the environment and observe ot+1, o
H
t+1, rt, dt

Compute advantage estimate Ât, value target V̂t linear velocity target v̂t and
next step observation targetôt+1; Update advantages At = ρtAt−1 + Ât and
value targets Vt = γVt−1 + V̂t

end
Perform multiple PPO updates using At and Vt to optimize πθ and Vψ and estimator
updates using ot+1, zt and vt to optimize estϕ and decφ;

end
end
return the optimized policy network πθ and the encoder policy networkestϕ;

Algorithm 1: Training algorithm

351

C GENERALIZATION352

This section presents a series of experimental images that vividly illustrate our algorithm’s intricate353

implementation details and robust generalization capabilities across various initial poses for robotic354

walking tasks, shown in the Fig. 6. We have achieved smooth locomotion across a spectrum of initial355

postures, as evidenced by the images depicting the robot’s initial stance.

Figure 6: Training with diverse initial poses: An illustrative analysis of robotic locomotion across
varied starting configurations.

356

13

Within the simulated environment, the Fig. 7 display the robot’s upright and stable gait, underscoring357

the algorithm’s exceptional precision in control within the virtual platform. We have further sub-358

stantiated the algorithm’s reliability, shown in Fig. 8, and practical utility by advancing to real-world359

scenarios. The deployment of our algorithm on an actual robot has endowed it with the ability to360

navigate in various straight-legged postures, as illustrated by the images portraying the robot’s com-361

mendable equilibrium and stability. This rigorous process is a testament to the algorithm’s resilience362

and adaptability.363

These outcomes furnish compelling validation for our algorithm’s ongoing refinement and appli-364

cation, simultaneously presenting innovative perspectives and methodologies that hold significant365

promise for future research within related domains.366

Figure 7: Diverse initial poses in simulation: A testament to our algorithm’s robustness and stability.

Figure 8: Simulated locomotion across diverse initial poses: Demonstrating algorithmic adaptability
in sim-to-real transitions.

14

D REAL-MACHINE EXPERIMENTATION367

We conducted multiple experiments on the actual machine, testing our policy on various terrains,368

including grasslands, wire-strewn ground, slopes, and stairs. Our robot’s traversal across grasslands369

is a testament to its ability to handle the soft and unpredictable ground, while its passage through370

areas with wireless showcases its resilience against obstacles that could impede movement. The371

robot’s ascent on slopes highlights its dynamic balance and the algorithm’s capacity to adjust to372

inclines that require precise foot placement and torque control. Most notably, the robot’s ability373

to climb and descend stairs indicates our algorithm’s advanced control mechanisms, ensuring that374

each step is calculated for maximum efficiency and safety. The images reveal a robot that is not just375

mobile but one that can adapt to and stabilize on a wide array of environmental conditions, thereby376

proving the algorithm’s robustness and stability in a comprehensive sim-to-real context.377

These visual records are more than just demonstrations of our robot’s physical capabilities; they are378

evidence of the sophisticated algorithms that enable it to interact intelligently with its surroundings,379

providing a solid foundation for further research and development in robotics.

Figure 9: The sequence of images presented illustrates the diverse terrains our robot navigates with
proficiency, ranging from the soft contours of grasslands to the challenging unevenness of wire-
strewn areas, the inclines of varying gradients, and the ascents and descents of stairs. Each scenario,
captured in a vertical progression from top to bottom, demonstrates not only the robot’s adaptability
but also its ability to maintain equilibrium on surfaces that demand different levels of traction and
stability.

380

15

