
Program
Controller

Reconstruct	and	load	
Neural	Programs

8

Main	
Network

1

Program
Memory

Retrieve	modular
units	based	on	input

Figure 4: Overview structure of Neurocoder. Main Network processes inputs to produce outputs.
Program Memory stores modular units. Program Controller reads modular units from the Program
Memory, composing Neural Programs for the Main Network in a data-driven manner. Each Neu-
ral Program is designed for specific input. Intuitively, it is analogous to building Lego structures
corresponding to inputs from basic Lego bricks.

Appendix427

Instance-based learning experiments428

Image classification-linear Main Network We used the standard training and testing set of429

MNIST dataset. To train the models, we used the standard SGD with a batch size of 32. Each430

MNIST image was flattened to a 768-dimensional vector, which requires a linear classifier of 7, 680431

parameters to categorise the inputs into 10 classes. For Neurocoder, we used Program Memory with432

P = 6 and K = 2. The Program Controller’s composition network was an LSTM with a hidden433

size of 8. We controlled the number of parameters of Neurocoder, which included parameters for434

the Program Memory and the Program Controller by reducing the input dimension using random435

projection zt = xtU with U ∈ R768×200 initialised randomly and fixed during the training. We436

also excluded the program integration to eliminate the effect of the residual program R. Given the437

flattened image input xt, Neurocoder generated the active program Pt, predicting the class of the438

input as yt = argmax (xtPt). The performance of the linear classifier was imported from [24] and439

confirmed by our own implementation.440

Image classification-deep Main Network We used the standard training and testing sets of CIFAR441

datasets. For most experiments, we use Adam optimiser with a batch size of 128. The deep Main442

Networks were adopted from the original papers, resulting in 3-layer MLP, 5-layer LeNet [24] and443

100-layer DenseNet [18]1. The other baselines for this task included a recent sparse Mixture of Ex-444

perts (MOE [35]) and the Neural Stored-program Memory (NSM [22]). For this case, we employed445

the program integration with the residual program R to flexibly fit to the data distribution.446

Sequential learning experiments447

Synthetic polynomial auto-regression A sequence was divided into npa chunks, each of which448

associated with a randomly generated polynomial. The degree and coefficients of each polynomial449

were sampled from U ∼ [2, 10] and U ∼ [−1, 1], respectively. Each sequence started from x1 = −5450

and ended with xT = 5, equally divided into npa chunks. Each chunk contained several consecutive451

points (xt, yt) from the corresponding polynomial, representing a local transformation from the452

input to the output. Given previous points (x<t, y<t) and the current x-coordinate xt, the task was to453

predict the current y-coordinate yt. To be specific, at each timestep, the Main Network GRU was fed454

1Only for experiments with DenseNet, to closely match the reported results, we followed the original train-
ing with SGD optimizer, scheduling learning rate and batch size of 32.

14

Composition
Network

Outer
product

Program
Attention

Multiply Sum Program
Memory	

Program
Controller

Figure 5: Active program coding. The Program Controller uses the composition network (a recur-
rent neural network) to process the input xt and generate composition signal ξpt , which is composed
of the queries (q) and the interpolating gates (g). The similarity of the query to program memory
keys (k) is then computed together with the memory usage (m) from which attention weights for the
Program Memory are derived. The active program Pt is then “coded” through low-rank approxima-
tion using the j-th component accessed by recurrent attentions. For simplicity, one attention head is
shown (H = 1).

with (xt, yt−1) and trained to predict yt by minimizing the mean square error 1/T
∑T
t=1 (ŷt − yt)

2
455

where y0 = 0, ŷt is the prediction of the network and yt the ground truth.456

We augmented GRU by applying Neurocoder and HyperNet [13] to the output layer of the GRU.457

Here, the HyperNet baseline [13] generated adaptive scales for the output weight while the FiLM458

baseline [28] modulates the activation of the output layer. We trained the networks with Adam459

optimiser with a batch size of 128. To balance the model size, we used GRU’s hidden size of460

32, 28, 32, 16 and 8 for the original Main Network, HyperNet, FiLM, single-step and multi-step461

Neurocoder, respectively. We also excluded program integration phase in Neurocoders to keep the462

model size equivalent to or smaller than that of the Main Network.463

We compared three configurations of Neurocoder - single-step, multi-head (J = 1, H = 15), multi-464

step, single-head (J = 5, H = 1) and multi-step without usage-based attention- against the original465

GRU with output layer made by MLP, HyperNet and FILM. We found that MLP failed to learn and466

converge within 10, 000 learning iterations. In contrast, both Neurocoders learn and converge, in467

as little as only 2, 000 iterations with the multi-step Neurocoder. HyperNet and FiLM converged468

much slower than Neurocoders and could not minimize the predictive error as well as Neurocoders469

when Gaussian noise (mean 0, variance 0.3×max
t
yt) is added or the number of polynomials (npa)470

is doubled (see Fig. 6).471

Atari 2600 games We used OpenAI’s Gym environments to simulate Atari games. We used the472

standard environment settings, employing no-frame-skip versions of the games. The picture of the473

game snapshot was preprocessed by CNNs and the A3C agent was adopted from the original paper474

with default hyper-parameters as in [26]. The actor/critic network of A3C was LSTM whose output475

layer’s working program was provided by Neurocoder or HyperNet. The hidden size of the LSTM476

was 512 for all baselines.477

Seaquest and MsPacman. The original A3C agent was able to learn and obtain a moderate score of478

around 2, 500 after 32 million environment steps. We also equipped A3C with HyperNet-based ac-479

15

tors/critics, however, the performance remained unchanged, with scores of about 2/3 of Neurocoder-480

based agent’s.481

Multi-task learning experiments482

Table 4 lists the input-output structure and configuration of the algorithmic tasks: Copy,483

Repeat Copy, Associative Recall and Priority Sort. Basically, each timestep of the in-484

put sequence presents a binary vector of 8 bits. In our multi-task setting, the input-485

output structure is t1, x11...I1 ,t2, x
2
1...I2

,t3, x
3
1...I3

,t4, x
4
1...I4

→ y11...O1
,y21...O2

,y31...O3
,y41...O4

where486 {
ti, x

i
1...Ii

, yi1...Oi

}4
i=1

is the task identification, input and output sequence of the task, respectively.487

The multi-task learning problem was challenging because the models must distinguish tasks by re-488

membering the task identifications and learn to solve different algorithms by generating different489

interface programs in accordance with each task.490

Following [22], we used the same NTM with 1 read and 1 write head, and applied Neurocoder491

and other conditional computing methods to the interface network of the NTM, which is a single-492

layer MLP with tanh activation. We used single-step attention Neurocoder for this task to keep493

the number of parameters comparable with other models. We trained the models with RMSProp494

optimiser with learning rate of 10−4 and batch size of 64 to minimise the cross-entropy loss of495

the ground truth output and the predicted one. The evaluation metric was % bit error, which was496

computed for a sequence as # wrong bits
total bits × 100.497

Continual learning experiments498

Split MNIST We used the same 2-layer MLP and continual learning baselines as in [17]. Here, we499

again excluded program integration to avoid catastrophic forgetting happening on the residual pro-500

gram R. Remarkably, the NSM with much more parameters could not improve MLP’s performance,501

illustrating that simple modular conditional computation is not enough for continual learning (see502

Table 5).503

Split CIFAR The 18-layer ResNet implementation was adopted from Pytorch’s official release504

whose weights was pretrained with ImageNet dataset. When performing continual learning with505

CIFAR images, we froze all except for the output layers of ResNet, which was a 3-layer MLP. We506

only tuned the hyper-parameters of SI and Neurocoder for this task.507

In the CIFAR10 task, compared to the monolithic ResNet, the Neurocoder-augmented ResNet could508

achieve much higher accuracy when we finished the learning for all 5 tasks (55% versus 70%,509

respectively). Also, we realised that stressing the orthogonal loss further improved the performance.510

When we employed Synaptic Intelligence (SI [41]), the performance of ResNet improved, yet it511

still dropped gradually to just above 70%. In contrast, the Neurocoder-augmented ResNet with SI512

maintained a stable performance above 80% accuracy (see Fig. 8 (left)).513

In the CIFAR100 task, Neurocoder alone with a bigger program memory slightly exceeded the514

performance of SI, which was about 10% better than ResNet. Moreover, Neurocoder plus SI outper-515

formed using only SI by another 10% of accuracy as the number of seen tasks grew to 20 (see Fig.516

8 (right)).517

Training procedure and hyper-parameter selections518

For all experiments, Neurocoder was jointly trained with Main Networks. We trained all the models519

using single GPU NVIDIA V100-SXM2. Running time depends on task, the longest task is multi-520

task learning with MN as NTM, which took 1 day for 1 training run with Neurocoder. Adding521

Neurocoder makes the training slower about 30%, yet still faster than MOE or NSM. However,522

compared to HyperNet or FILM, Neurocoder is still slower by 15%, which is the limitation of523

Neurocoder.524

The learning rate of optimisers was set to default value unless stated otherwise. The Main Net-525

work’s hyper-parameters were fixed and we only tuned the hyper-parameters of Neurocoder and526

its competitors: MOE, NSM, HyperNet and FILM. In particular, for Neurcocoder, main hyper-527

parameters such as number of memory slots (P), recurrent steps (J), and heads (H) were selected528

from {10, 20, 30, 50, 80, 100} , {1, 5} and {1, 5, 15}, respectively. Hyper-parameters such as num-529

16

Notation Meaning
Location

Program Program
Controller Memory

Trainable parameters
θu,v,σ Composition network X
φ Integration network X

ϕu,v,σ Key generator network X
R Residual program (optional) X
MU Memory of left singular vectors X
MV Memory of right singular vectors X
MS Memory of singular values X

Control variables
ξpt Composition control signal X
λpt Integration control signal X

ku,v,σ Program keys X
mu,v,σ Program usages X

Hyper-parameters
P Number of memory slots X
K Key dimension X
lI Number of considered least-used slots X
J Number of recurrent attention steps X
H Number of attention heads X
a Orthogonal loss weight X

Table 2: Important parameters of Neurocoder.

Architecture Task Original MOE NSM Neurocoder

MLP CIFAR10 52.06 50.76 52.76 54.86
CIFAR100 23.31 22.79 25.65 26.24

LeNet CIFAR10 75.71 75.88 75.45 78.92
CIFAR100 42.73 42.47 43.14 47.21

DenseNet CIFAR10 93.61 80.61 94.24 95.61
CIFAR100 78.11 69.48 71.76 79.34

Table 3: Best test accuracy over 5 runs on image classification tasks comparing original archi-
tecture, Mixture of Experts (MOE), Neural Stored-program Memory (NSM) and our architecture
(Neurocoder). Three architectures of the Main Network of Neurocoder were considered: 3-layer
perceptron (MLP), 5-layer CNN (LeNet [24]) and very deep Densely Connected Convolutional Net-
works (DenseNet [18]). We employed two classical image classification datasets: CIFAR10 and
CIFAR100.

ber of least-used slots (lI) key dimension (K), orthogonal loss weight (a) was selected from {2, 5},530

{3, 5} and {0.1, 10}, respectively.531

For MOE, we tuned the total number of experts and top-k chosen experts from range532

{10, 50, 80, 100} and {1, 5, 10}, respectively. For NSM, we tuned the number of program mem-533

ory slots {5, 10, 50}. Other hyper-parameters of MOE and NSM were kept as in the original papers.534

For HyperNet and FiLM, chosen as MLPs (ReLU activation), we tuned the number of layers {1, 2}535

and hidden size {64, 128, 256}.536

We report details of best hyper-parameters and model size for each tasks in Table 6 and 7, respec-537

tively. Readers are referred to Table 2 for the complete list of parameters in Neurocoder.538

17

Figure 6: Polynomial auto-regression: mean square error (MSE) over training iterations with a batch
size of 128 comparing FiLM, HyperNet, Main Network (MLP), single-step, multi-step Neurocoders.
- denotes the ablated Neurocoder without usage-based attention. The learning curves are taken
average over 5 runs.

Figure 7: Multi-algorithm learning task (mean and std. over 5 runs). Left: Bit error over training
steps (8 tasks per sequences). Right: Average best bit error on different testing settings. Lower is
better.

Tasks Configuration Input→ Output
Copy Sequence length range: [1, 3] x1, ..., xT → x1, ..., xT

Repeat Copy Sequence length range: [1, 3]
n, x1, ..., xT → [x1, ..., xT]× n#Repeat range n: [1, 2]

Associative Recall #Item range: [2, 3]
[x1,1, x1,2] , ..., [xT,1, xT,2] , [xi,1, xi,2]→ [xi+1,1, xi+1,2]Item length: 2

Priority Sort #Item: 3
[x1, p1] , [x2, p2] , [x3, p3]→ xi1 , xi2 s.t. pi1 ≥ pi2 ≥ pi3#Sorted Item: 2

Table 4: Algorithmic tasks used in multi-task learning.

18

Method MN (MLP [17]) MN (MLP ours) NSM Neurocoder
Adam 93.46±2.01 93.75±3.28 87.55± 4.38 96.54±1.39

Adagrad 98.06±0.53 98.02±0.89 96.63±1.49 99.01±0.19
L2 98.18±0.96 98.14±0.43 91.44± 3.80 98.35±0.74
SI 98.56±0.49 98.69±0.20 98.87±0.20 99.14±0.24

EWC 97.70±0.81 97.00±1.10 93.94±2.36 97.88±0.22
O-EWC 98.04±1.10 98.23±1.17 96.11±1.27 98.30±1.48

Table 5: Incremental task continual learning with Split MNIST. Final test accuracy (mean and std.)
over 10 runs.

Figure 8: Incremental task continual learning with Split CIFAR10 (left) and CIFAR100 (right).
Average classification accuracy with error bar over all learned tasks as a function of number of
tasks.

Task Neurocoder Use R

MNIST P = 5, J = 5, H = 1
X

K = 2, lI = 2, a = 0.1

CIFARs P = 30, J = 5, H = 3 �
K = 5, lI = 5, a = 0.1

Polynomial P = 10, J = 1, H = 15 P = 20, J = 5, H = 1 �auto-regression K = 3, lI = 0, a = 0.1 K = 3, lI = 2, a = 0.1
Atari games P = 80, J = 1, H = 15,K = 3, lI = 5, a = 0.1 �

Multi-algorithm P = 30, J = 1, H = 5,K = 5, lI = 2, a = 10 �
Split MNIST P = 50, J = 1, H = 10,K = 5, lI = 5, a = 10 X
Split CIFARs P = 100, J = 1, H = 10,K = 5, lI = 5, a = 10 X

Table 6: Best hyper-parameters of Neurocoder in all experiments. For polynomial auto-regression
task, two Neurocoder configurations are included, corresponding to single-step and multi-step Neu-
rocoder.

Task Main Network Original MOE NSM HyperNet FiLM Neurocoder
MNIST Linear classifier 7.8K – – – – 7.3K

CIFARs
3-layer MLP 1.7M 15.4M 21.2M – – 1.9M

LeNet 2.1M 12.3M 27.1M – – 2.3M
DenseNet 7.0M 20.5M 16.7M – – 7.3M

Polynomial
GRU 3.4K – – 3.5K 3.6K 3.6K 2.1K

auto-regression
Atari games LSTM 3.2M – – 3.6M – 3.3M

Multi-algorithm NTM 308K – 264K – 254K 255K
Split MNIST 2-layer MLP 328K 2.3M – 348K
Split CIFARs ResNet 12.6M – – – – 12.6M

Table 7: Number of parameters of machine learning models in all experiments. The parameter
count includes the parameter of the Main Network and the conditional computing model. – denotes
not available. For tasks that contain different datasets, leading to slightly different model size,
the numbers of parameters are averaged. For polynomial auto-regression task, two Neurocoder
configurations are included, corresponding to single-step and multi-step Neurocoder.

19

