
Under review as a conference paper at ICLR 2024

Algorithm 1: MODELLOCKING

1: Require: Foundation model f , shadow dataset D, secret key k, distance metric d, learning rate
lr, batch size S, epoch number e, and hyperparameter �.

2: Output: Locked foundation model f 0.
3: Initialize model parameters ⇥ of f 0 using the model parameters of f .
4: for j = 1, 2, · · · , e do
5: for i = 1, 2, · · · , b|D|/Sc do
6: MB MiniBatch(D)
7: L1 1

|MB| ·
P

x2MB d(f(x), f 0(x� k))

8: L2 � 1
|MB| ·

P
x2MB d(f(x), f 0(x))

9: ⇥ ⇥� lr · @(L1+�·L2)
@⇥

10: end for
11: end for
12: return A foundation model with parameters ⇥.

A PROOF OF THEOREM 1

Given a ground truth key k and a randomly generated key k0, we denote by p
0 the probability that the

`1 distance between k and k0 is smaller than �. As each entry of k and k0 is randomly sampled from
a uniform distribution between [0, 1], the probability that the `1 distance between k and k0 is smaller
than � is no larger than the volume of an `1-ball with radius �, where L = h · w · c. In other words,
we have p

0  (2�)L

L! , where (2�)L

L! is the volume of an `1-ball with radius �. Based on the definition
of p0, we know the probability that there exists a k0 such that `1 distance between k and k0 is larger
than � can be computed as 1� p

0, i.e., p� = 1� p
0. Based on the fact that p0  (2�)L

L! , we know that
p� is no smaller than 1� (2�)L

L! . We reach the conclusion.

B PROOF OF THEOREM 2

Given that k and k0 are sampled from the same text key space Vs, the Hamming distance between k
and k0, i.e., the total number of positions at which the corresponding tokens in k and k0 are differ-
ent, follows a Binomial distribution. In particular, we have: kk� k0k

H
⇠ Binomial(s, |V|�1

|V|).
Thus, the probability that kk� k0k

H
equals to � is given by its probability mass function:

Pr(kk� k0k
H

= �) =
�
s

�

�
(|V|�1

|V|)�(1
|V|)

s�� . As k and k0 can have at most s positions of to-
kens differ, we have: Pr(kk� k0k

H
� �) = Pr(�  kk� k0k

H
 s) =

P
s

i=�
Pr(kk� k0k

H
=

i) =
P

s

i=�

�
s

i

�
(|V|�1

|V|)i(1
|V|)

s�i. We reach the conclusion.

C PROOF OF THEOREM 3

Suppose k0 is randomly sampled from the same key space where k is generated. Given an arbitrary
p 2 [0, 1], Theorem 1 (or Theorem 2) can be used to calculate �(p) that satisfies the inequality
Pr(kk� k0k1 � �(p)) � p (or Pr(kk� k0k

H
� �(p)) � p), which yields a set of keys S(p) =

k0| kk� k0k1 � �(p) (or S(p) = k0| kk� k0k
H
� �(p)).

Using a Monte-Carlo method, we randomly sample k0
1,k

0
2, · · · ,k0

T
from S(p) with corresponding

utilities U1, U2, · · · , UT . Recall that T 0 =
P

T

i=1 1(Ui  U) and qU is the probability that the utility
of a key k0 2 S(p) is no larger than U . Based on the definitions of T 0 and qU , T 0 ⇠ Binomial(T, qU).
The probability mass function of T 0 is Pr(T 0 = t) =

�
T

t

�
· qt

U
· (1� qU)T�t, where t = 0, 1, · · · , T .

Therefore, we can further apply the standard Clopper-Pearson method to compute the lower bound
of qU such that qU = Beta(↵;T, T � T

0 + 1), where 1� ↵ is the confidence level. Thus, given an
arbitrary q 2 [0, 1], we can obtain Ū such that it is the smallest U that qU · (1� ↵) is no smaller than
q. Since p and q are the probabilities of independent events, the probability that a randomly sampled
k0 has a utility that is no larger than Ū is simply pq. We reach the conclusion.

13

Under review as a conference paper at ICLR 2024

Table 5: Mutual Information results on the locked vision model.

Model
Downstream

dataset
MI(a, b) MI(a, c) MI(a, d)

CLIP

CIFAR10 2.05 1.93 7.50

STL10 2.60 2.49 7.28

SVHN 2.43 2.21 7.85

EuroSAT 1.93 1.83 6.20

GTSRB 4.04 3.90 7.74

D USING MUTUAL INFORMATION TO MEASURE THE OUTPUTS OF THE
LOCKED MODEL

In this section, we use Mutual Information (MI) Kraskov et al. (2004) to further show that the outputs
generated by the locked model for inputs without the true secret key are low-quality. To estimate
the Mutual Information, we follow the open-source implementation released at (Ranawat & Zaidan,
2018). We define a = correct-key outputs of the locked model, b = incorrect-key outputs of the locked
model, c = outputs of a randomly initialized model, and d = a + constant (i.e., 5.0 in our settings).
Then, for each downstream dataset, we calculate MI(a, b), MI(a, c), and MI(a, d) on its test set.

The results are shown in Table 5, which reveal that the dependency between a and b is close to the
dependency between a and c, but much smaller than the dependency between a and d. The MI
results show that the outputs of the locked model for incorrect-key inputs are as not informative as
the outputs of a randomly initialized model.

E DETAILED FMLOCK SETTINGS

For vision foundation models, we use SGD optimizer with S = 64, lr = 0.0001 for ImageNet model
and lr = 0.000001 for CLIP model, e = 1 for ImageNet model and e = 10 for CLIP model, and
D contains 50,000 images randomly sampled from ImageNet (Deng et al., 2009). For language
foundation models, we set S = 256, lr = 0.0001, e = 100, and D is Wikitext (Merity et al.,
2016). For text-to-image foundation models, we use Adam optimizer with S = 128, lr = 0.0001,
e = 500, and D is LAIONAesthetics v2 6.5+ (Schuhmann et al., 2022). The secret key for vision
foundation models is sampled from the key space [0, 1]L. The secret key for language and text-to-
image foundation models is sampled from the key space Vs with s = 5, where V is the vocabulary of
BERT (Devlin et al., 2018).

F DETAILED DOWNSTREAM EVALUATION SETTINGS

For vision foundation models, following previous works (He et al., 2016; Liu et al., 2022a), we
use linear classifiers as the downstream classifiers. Specifically, we use Adam optimizer with an
initial learning rate 0.0001 and batch size 256 to train a downstream classifier for 100 epochs.
We use STL10 (Coates et al., 2011), CIFAR10 (Krizhevsky et al., 2009), SVHN (Netzer et al.,
2011), EuroSAT (Helber et al., 2018), and GTSRB (Stallkamp et al., 2012) as downstream datasets.
For language foundation models, following previous works (Cui et al., 2022), we also train linear
downstream classifiers using the Adam optimizer with an initial learning rate 0.001 and batch size 256
by 100 epochs. We use SST-2 (Socher et al., 2013), Yelp (Zhang et al., 2015), Amazon (Bittlingmayer,
2019), IMDb (Maas et al., 2011), and HSOL (Davidson et al., 2017) as downstream classification
tasks. Table 6 shows a summary of the downstream datasets we use for vision and text foundation
models.

For text-to-image foundation models, following previous works (Rombach et al., 2022; Struppek
et al., 2022), we use MS-COCO 2014 validation split (Lin et al., 2014) for downstream evaluation. In
particular, we randomly sample 1,000 captions from its validation set as text prompts to generate
images.

14

Under review as a conference paper at ICLR 2024

Table 6: Dataset summary.

Number of Classes Number of Training Examples Number of Testing Examples

CIFAR10 10 50,000 10,000

STL10 10 5,000 8,000

SVHN 10 73,257 26,032

EuroSAT 10 24,300 2,700

GTSRB 43 39,209 12,630

SST-2 2 673,000 872

Yelp 2 560,000 38,000

Amazon 2 3,600,000 400,000

IMDB 2 25,000 25,000

HSOL 3 223,200 24,800

G REVERSE ENGINEERING SECRET KEY

Neural Cleanse (Wang et al., 2019) detects whether an image classifier is backdoored or not by
reverse engineering backdoor triggers. Specifically, suppose we have an image classifier h which is
trained for a C-class classification task. Neural Cleanse views each class c, where c = 1, 2, · · · , C,
as a potential target class and reverse engineers a backdoor trigger for it. Suppose �c and mc are
the trigger pattern and trigger mask of the reverse engineered trigger, respectively. Formally, Neural
Cleanse aims to find them by solving the following optimization problem:

min
mc,�c

L =
1

|X| ·
X

x2X

CL(c, h((1�mc) · x+mc · �c)) + a · |mc|, (7)

where CL is the cross-entropy loss, X is a set of clean images, (1�m) · x+m · � is an operation
to inject the trigger into the example x, and a is the weight to penalize the mask size of the backdoor
trigger. Neural Cleanse then obtains the `1 norms of the reverse engineered triggers and applies an
outlier detection method. If there exists at least one outlier, it treats h as a backdoored classifier.
Otherwise, it predicts h as a clean one.

We generalize Neural Cleanse as an adaptive attack to reverse engineer the secret key of a locked
foundation model. In particular, given a locked foundation model f 0 and a downstream classification
task, our goal is to reverse engineer the secret key (denoted by kr) such that the locked foundation
model can achieve good performance on the downstream classification task with kr. In other words,
our goal is to find kr such that an input embedded with kr is correctly predicted by a downstream
classifier for the downstream task. As the goal of finding kr is different from reverse engineering
a backdoor trigger, we make the following modifications for Neural Cleanse to find kr. First, we
remove the regularization term (second term in Equation 7) because the `1-norm of the true secret
key could be very large. The secret key is different from a backdoor trigger which is usually very
small to stay stealthy. Second, we replace (1�mc) · x+mc · �c with x� kr. The reason is that
embedding the secret key into an input is different from embedding a backdoor trigger to the input.
x � kr aligns with how we embed the secret key into an input. Note that we also clip each entry
of x � kr to the range [0, 1] following our key embedding operation. Formally, we formulate the
following optimization problem to find kr:

min
kr

L =
1

|Ddt|
·

X

(x,y)2Ddt

CL(y, g(f 0(x� kr))), (8)

where f
0 is the locked foundation model, g is the downstream classifier, and Ddt is the downstream

training dataset. We need to train a downstream classifier g to solve the optimization problem. We
iterative update kr and train the downstream classifier g. Specifically, we first train a downstream
classifier g on Ddt based on the locked foundation model with the secret key kr. Then, we use SGD
to update kr based on Equation 8. Note that kr is randomly initialized in the first round. We iterate
until convergence.

15

Under review as a conference paper at ICLR 2024

Table 7: Performance of FMLock on vision foundation models.

Model
Downstream

dataset
ACC-baseline (%) ACC-lock with key (%) ACC-random (%) ACC-lock without key (%)

CLIP

CIFAR10 86.06 85.46 17.82 20.17

STL10 96.59 95.14 16.10 15.76

SVHN 56.80 56.91 19.59 19.59

EuroSAT 83.52 82.30 15.41 12.74

GTSRB 53.61 52.43 5.94 6.63

Table 8: Impact of shadow dataset on FMLock. The shadow dataset size is 50,000. The locked
foundation model is pre-trained on ImageNet. a subset of the pre-training dataset means the
shadow dataset examples are sampled from ImageNet training set; same dist. as the pre-training
dataset means the shadow dataset examples are sampled from ImageNet validation set; diff.
dist. as the pre-training dataset means the shadow dataset examples are sampled from STL10
unlabeled data.

Downstream
dataset

Shadow dataset ACC-lock with key (%) ACC-lock without key (%)

CIFAR10

a subset of the pre-training dataset 86.75 29.32

same dist. as the pre-training dataset 87.56 29.04

diff. dist. as the pre-training dataset 86.58 30.62

STL10

a subset of the pre-training dataset 92.12 22.62

same dist. as the pre-training dataset 92.09 23.00

diff. dist. as the pre-training dataset 91.13 22.04

SVHN

a subset of the pre-training dataset 62.85 18.00

same dist. as the pre-training dataset 63.12 19.58

diff. dist. as the pre-training dataset 62.20 20.63

EuroSAT

a subset of the pre-training dataset 86.96 20.85

same dist. as the pre-training dataset 87.07 19.19

diff. dist. as the pre-training dataset 86.35 20.63

GTSRB

a subset of the pre-training dataset 50.80 5.95

same dist. as the pre-training dataset 49.06 6.06

diff. dist. as the pre-training dataset 49.01 6.82

16

	Introduction
	Problem Setup
	Our FMLock
	Design of KeyGen
	Design of ModelLocking

	Theoretical Analysis
	Empirical Evaluation
	Experimental Setup
	Main Results
	Ablation Study
	Adaptive Attacks

	Related Work
	Conclusion and Future Work
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Using mutual information to measure the outputs of the locked model
	Detailed FMLock settings
	Detailed downstream evaluation settings
	Reverse Engineering Secret Key

