
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

SUPPLEMENTARY FILES

We will begin by restating some preliminaries, these are the exact copy of the initial text in Section 3
of the paper.

A PRELIMINARIES

Let x and y be random variables corresponding to input and output probability spaces with support
X and Y and B(X ) and B(Y) representing the corresponding Borel algebras. Define t as a random
variable denoting the joint space of x × y with a model f(w,h) : X → Y being specified using
weights w and hyperparameters h. Given compact sets W over w and H over h, the goal is to
learn the weights by searching over the hypothesis space f = {f(w,h),∀h ∈ H, w ∈ W} through
a loss function ℓw,h(t). In this paper, we will assume that the hyperparameter/architecture is fixed
and therefore, will drop the notation h and denote loss simply as ℓw(t). Throughout the paper, we
will assume xk = x(k) and use them interchangeably, and k = [1, 2, · · · , k]. In this context, we
characterize the effective model capacity as follows.

Effective Model Capacity: We will assume that ℓw(t) is continuous and twice differentiable over
the support X × Y or X , and the compact set W . Under these assumptions, let ℓmin = OW(T ) =
minw∈W Et∈T [ℓw(t)] be the optimization procedure with T being a dataset of samples t with
T ⊂ B(T ). Then, given the best hyperparameter/architecture configurations, the optimization
procedure OW seeks to find the weights w∗ ∈ W that minimizes the loss over a dataset. Given this
setting, we define the effective model capacity (the upper/lower bounds derived in the appendix) as
the smallest achievable loss value using OW that remains unchanged even when additional data or
training is used.

Definition 1 [Effective Model Capacity (EMC)] Given W as the weight space and T ∈ B(T ) with
an optimization procedure OW(T ), the EMC of the model f is given as

ϵ = min
T∈B(T )

[
OW(T )

]
= min

T∈B(T )

[
min
w∈W

E
t∈T

[ℓw(t)]
]

Given a feasible weight set Wk, and loss function ℓwk
(t), t ∈ Tk, the model at k is denoted by fwk

,
the goal of CL is to maintain memory of all observed tasks, then, the CL forgetting cost for the
interval k = [1, k] is given as

min
wk∈Wk

Jwk
(Tk) = min

wk∈Wk

∑k
i=1 γi

[
E

t∈T (i)
[ℓwk

(t)]

]
, ∀T (i) ∈ Tk,

where, γ ensures boundedness of Jwk
(Tk) (see [45], Lemma 1). For a fixed h ∈ H, the complete CL

problem is

V (∗)(uk) = min
uk

∑K

i=k
[Jwi

(Ti)] , uk = {wi, i = k, k + 1, · · ·K}

CL Effective Model Capacity and Balance Point: For ease of exposition, we begin by stating

Definition 2 [Forgetting Effective Model Capacity (FEMC)] For task k ∈ [1,K], dataset Tk, weight
space Wk, optimization procedure OWk

(Tk), EMC at k, ϵk = minTk,wk
Jwk

(Tk), we define FEMC
at task k as:

FEMC(k) = max
k

ϵk = max{ϵ1, ϵ2, · · · , ϵk}

FEMC(k) at each k is defined by the highest forgetting loss in the interval [1, k]. We now define
CL effective model capacity as follows.

Definition 3 [Effective Model Capacity for CL (CLEMC)] For a task k ∈ [1,K], we define CLEMC
as the sum of FEMC across all possible tasks as

ϵ
(∗)
k =

K∑
i=k

FEMC(i) =
K∑
i=k

max
i

ϵi

We will derive the notion of first difference in capacity as a function of the forgetting cost

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

B FIRST DIFFERENCE

Lemma 1. For k ∈ [1,K], let uk = {wi, i = k, k + 1, · · ·K} be weight sequences from k with
U(k) = {Wi, i = k, k + 1, · · · }– the compact sets. Next define (JF ), (CL) and (CLEMC) to write

ϵ
(∗)
k+1 − ϵ

(∗)
k = mink {max

Ti

{⟨∂wk
V (∗)(uk), dwk⟩+

∑
T∈Tk

⟨∂TV (∗)(uk), dT ⟩}}

Proof. We first derive the current forgetting cost as a function of infinitesimal change in V (∗)(uk) in
the following technical lemma.

Lemma. Consider k ∈ [0,K] with the forgetting cost as in (JF ) and CL problem in (CL). Then,

−min
wk

Jwk
(Tk) =

〈
∂wk

V (∗)(uk), dwk

〉
+

∑
T∈Tk

〈
∂TV

(∗)(uk), dT
〉
+O(2) (1)

where d is the first difference operator, ∂ refers to the first derivative and O(2) represent the higher
order derivative terms.

Proof. Let uk = {wi, i = k, k + 1, · · ·K} be the sequence of weights starting from k with U(k) =
{Wi, i = k, k + 1, · · · } being the sequence of their respective compact sets. Under the assumption
that the optimal cost V (∗)(uk) is given by the optimal trajectory of weights uk corresponding to the
tasks sets {Ti ∈ Ti, i = k, k + 1, · · ·K}, we can write the following system of recursive equations

V (∗)(uk) = min
uk∈Uk

∑K

i=k
[Jwi

(Ti)] (2a)

V (∗)(uk+1) = min
uk+1∈Uk+1

∑K

i=k+1
[Jwi

(Ti)] (2b)

V (∗)(uk) = min
wk

Jwk
(Tk) + V (∗)(uk+1) (2c)

where (2a) and (2b) follow directly from using (JF ) and (2c) is obtained by simply rewriting (2a)
using (2b).

Now, given two trajectories uk and uk+1, the change introduced by uk+1 to V (∗)(uk) is given by
Taylor series approximation of V (∗)(uk) around wk and Tk as,

V (∗)(uk+1) = V (∗)(uk) +
〈
∂wk

V (∗)(uk), dwk

〉
+

∑
T∈Tk

〈
∂TV

(∗)(uk), dT
〉
+O(2) (3)

where dTk and dwk are the infinitesimal perturbations to data and weights respectively and O(2)
represent higher order derivative terms. Substituting (3) into (2c) to get

����
V (∗)(uk) = min

wk

Jwk
(Tk) +����

V (∗)(uk) +
〈
∂wk

V (∗)(uk), dwk

〉
+

∑
T∈Tk

〈
∂TV

(∗)(uk), dT
〉
+O(2)

which proves the result stated in the technical Lemma.

Using the above result, we can now prove Lemma (1). Towards this end, we begin by writing,

ϵ
(∗)
k =

K∑
i=k

maxi ϵi = maxk ϵk + ϵ
(∗)
k+1 (4a)

ϵ
(∗)
k+1 − ϵ

(∗)
k = mink{ −ϵk} = mink{ −{min

Ti

min
wi

Jwi
(Ti)}, i ∈ k} (4b)

= mink {max
Ti

(−min
wi

Jwi
(Ti)), i ∈ k} (4c)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

where (4a) is obtained by applying (CLEMC), and (4b) is obtained by rewriting ϵk using (JF ).
Substituting (1) into (4c), and ignoring the higher order derivative terms denoted by O(2) [3], we
obtain the result as

ϵ
(∗)
k+1 − ϵ

(∗)
k = mink∈k {max

Ti

(−min
wi

Jwi
(Ti)), i ∈ k} (5a)

= mink∈k {max
Ti

{
〈
∂wk

V (∗)(uk), dwk

〉
+

∑
T∈Tk

〈
∂TV

(∗)(uk), dT
〉
} (5b)

Next, we will derive the lower bound on the first difference in capacity which stems from a lower and
upperbound on capacity.

C LOWER BOUND ON FIRST DIFFERENCE

Theorem 1. The first difference in CLEMC (FD) is lower bounded as

ϵ
(∗)
k − ϵ

(∗)
k+1 ≥ max

k∈k
{min

Ti

{∥∂wk
Jw∗

k
(Ti)∥∥dw∗

k∥

+
∑

T (k)∈Ti

K∑
i=k

∥∂T (k)Et∈T (i)ℓw∗
i
(t)∥∥dT (k)∥}},

Proof. From Lemma (1) we get

ϵ
(∗)
k+1 − ϵ

(∗)
k = mink∈k {max

Tk

{
〈
∂wk

V (∗)(uk), dwk

〉
+

∑
T∈Tk

〈
∂TV

(∗)(uk), dT
〉
}}

≤ mink∈k {max
Tk

{∥∂wk
V (∗)(uk)∥∥dwk∥+

∑
T∈Tk

∥∂TV (∗)(uk)∥∥dT∥}} (6a)

where (6a) is obtained using Cauchy-Schwarz inequality, ⟨a, b⟩ ≤ ∥a∥∥b∥. We then bound both the
gradient norm terms in (6a) as follows.

For the first gradient norm term, we assume that the optimal cost, V (∗), is given by the weight
trajectory uk with uk = {wi, i = k, k + 1, · · ·K}. We can then bound it through the following
inequalities.

∥∂wk
V (∗)(uk)∥ = ∥∂wk

min
uk

K∑
i=k

Jwi
(Ti)∥ (7a)

≤ ∥∂wk

K∑
i=k

minwi
Jwi

(Ti)∥ (7b)

≤ ∥
K∑
i=k

∂wk
minwiJwi(Ti)∥ (7c)

≤ ∥∂wk
minwk

Jwk
(Ti)∥ (7d)

where (7b) is because the norm of the gradient, with respect to weights, at the optimal cost (due to
an optimal trajectory) is always less than the norm of the gradient, with respect to the weights, at a
forgetting cost corresponding to any arbitrary weight trajectory. (7c) follows from the sum rule of
derivatives and (7d) is because all terms from wk+1 onwards vanish due to lack of dependence on wk.

For the second norm of the gradient term in (6a), we again write the optimal cost V (∗)(uk) =∑K
i=k minwi

Jwi
(Ti) such that Ti = {T (1), · · ·T (i)}. We further observe that if the optimal cost

is differentiated with respect to T (k) only the kth term in the inner sum will remain. We can then
bound it through the following inequalities.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

∥∂T (k)V
(∗)(uk)∥ ≤ ∥∂T (k)

K∑
i=k

minwi
Jwi

(Ti)∥ (8a)

≤ ∥
K∑
i=k

∂T (k)minwi

i∑
p=1

Et∈T (p)ℓwi
(t)∥ (8b)

≤ ∥
K∑
i=k

∂T (k)Et∈T (i)ℓw∗(i)(t)∥ (8c)

Then, upon substituting (7d) and (8c) into (6a) we get,

ϵ
(∗)
k+1 − ϵ

(∗)
k ≤ min

k∈k
{max

Ti

{∥∂wkJw∗
k
(Ti)∥∥dw∗

k∥+
∑

T (k)∈Ti

K∑
i=k

∥∂T (k)Et∈T (i)ℓw∗
i
(t)∥∥dT (k)∥}}, (9)

where we have replaced the inner minimization problem with respect to weights by the corresponding w∗.
Multiplication with −1 provides the lower bound as

ϵ
(∗)
k − ϵ

(∗)
k+1 ≥ max

k∈k
{min

Ti

{∥∂wkJw∗
k
(Ti)∥∥dw∗

k∥+
∑

T (k)∈Ti

K∑
i=k

∥∂T (k)Et∈T (i)ℓw∗
i
(t)∥∥dT (k)∥}}, (10)

This lower bound then leads to the conclusion that capacity is non-stationary and diverges with
increase in weight update or divergence between subsequent tasks. This non-stationarity extends to
experience replay and experience replay with regularization

D DIVERGENCE WITH RESPECT TO WEIGHTS

Theorem 2. Fix k ∈ N and I , the number of weight updates required to obtain the optimal
value. Assume that ∥∂wk

Jw∗
k
(Ti)∥ ≥ Φw, ∥∂T (k)Et∈T (i)ℓw∗

i
(t)∥ ≥ ΦT , and let the smallest value

of minT (k)∥dT (k)∥ ≥ ΦdT . Let L,R be the Lipschitz constants for the cost function and the
regularization function respectively with αMIN being the smallest learning rate. Then,

∑K
k dϵ

(∗)
k

diverges as a function of K, and I with and without the regularization factor.

Proof. We first prove the technical Lemma below.

Lemma. Fix k ∈ N and let the weights at any task k be updated for a total of I steps. Assume
T (k) is provided through a series of batches such that T (k) = {t(i)k , i = 1, · · · , I} with t

(i)
k be a

tensor corresponding to batch of data at the ith step for the kth task, sampled uniformly from the
underlying support. For the ith update step of the kth task, let the forgetting cost be denoted by
Jwk

(Tk), gradient be denoted by g
(i)
k , and learning rate by α

(i)
k . Then,

dw∗
k = −

I−1∑
i=0

α
(i)
k g

(i)
k (11)

Proof. Note now that, we abuse notation to define dw∗
k = w∗

k − w
(0)
k = w

(I)
k − w

(0)
k assuming that

the optimal point is achieved after I updates (indicated by parenthesis). Then, at any particular update
step, we obtain

w
(i+1)
k = w

(i)
k − α

(i)
k g

(i)
k (12)

where g
(i)
k is the update gradient at the this step.

w
(i+1)
k = w

(i)
k − α

(i)
k g

(i)
k (13)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

We may now write the sum over the I steps at a

w
(1)
k = w

(0)
k − α

(0)
k g

(0)
k (14a)

w
(2)
k = w

(1)
k − α

(1)
k g

(1)
k (14b)

... (14c)

w
(I)
k = w

(I−1)
k − α

(I−1)
k g

(I−1)
k (14d)

Adding all these terms to write

dw∗
k = −

I−1∑
i=0

α
(i)
k g

(i)
k (15)

Given the first difference in capacity from the technical Lemma above, and under the assumption that
∥∂wk

Jw∗
k
(Ti)∥ ≥ Φw and ∥∂T (k)Et∈T (i)ℓw∗

i
(t)∥ ≥ ΦT

ϵ
(∗)
k − ϵ

(∗)
k+1 ≥ max

k∈k
{min

Ti

{∥∂wk
Jw∗

k
(Ti)∥∥dw∗

k∥+
∑

T (k)∈Ti

K∑
i=k

∥∂T (k)Et∈T (i)ℓw∗
i
(t)∥∥dT (k)∥}}

≥ max
k∈k

{min
Ti

{Φw∥dw∗
k∥+

∑
T (k)∈Ti

K∑
i=k

ΦT ∥dT (k)∥}} (16a)

≥ max
k∈k

{Φw∥dw∗
k∥+min

Ti

∑
T (k)∈Ti

K∑
i=k

ΦT ∥dT (k)∥}} (16b)

≥ max
k∈k

{Φw∥dw∗
k∥+

∑
T (k)∈Ti

K∑
i=k

ΦTmin
T (k)

∥dT (k)∥}} (16c)

Let the smallest value of min
T (k)

∥dT (k)∥ ≥ ΦdT , then, we can write

ϵ
(∗)
k − ϵ

(∗)
k+1 ≥ max

k∈k
{Φw∥dw∗

k∥+
∑

T (k)∈Ti

K∑
i=k

ΦTΦdT } (17)

≥ max
k∈k

{Φw∥dw∗
k∥}+ max

k∈k
{

∑
T (k)∈Ti

K∑
i=k

ΦTΦdT } (18)

Taking sum from k to K provides with the fact that each Tk has a total of k sub datasets.

ϵ
(∗)
k − ϵ

(∗)
K ≥

K∑
k

[
max
k∈k

{Φw∥dw∗
k∥}+ max

k∈k
{

∑
T (k)∈Tk

K∑
i=k

ΦTΦdT }
]

(19)

≥
K∑
k

max
k∈k

{Φw∥dw∗
k∥}+

K∑
k

max
k∈k

{
∑

T (k)∈Tk

(K − k)ΦTΦdT } (20)

≥
K∑
k

max
k∈k

{Φw∥dw∗
k∥}+ k(K − k)2 max

k∈k
{ΦTΦdT } (21)

Since, max
k∈k

{ΦTΦdT } = ΦTΦdT , max
k∈k

{ΦwΦdw} = ΦwΦdw and ∥dw∗
k∥ ≥ Φdw, we write

ϵ
(∗)
k − ϵ

(∗)
K ≥

K∑
k

max
k∈k

{ΦwΦdw}+ k(K − k)2 ΦTΦdT ≥
K∑
k

ΦwΦdw + k(K − k)2 ΦTΦdT

(22a)

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

We will now assume that the changes introduced by the task are bounded over all future and past
tasks. Given that K > 0, k > 0,Φw > 0,ΦT > 0,ΦdT > c, we obtain

ϵ
(∗)
k − ϵ

(∗)
K ≥ (K − k)ΦwΦdw + k(K − k)2 ΦT c (23)

Now, by assumption that, for each task, the optimal value of weight is obtained after updating
the weights for a total of I steps provides Φdw ≥ −∑I−1

i=0 α
(i)
k g

(i)
k ≥ −∑I−1

i=0 α
(i)
k (−L) ≥∑I−1

i=0 αMINL ≥ IαMINL. Thus, we obtain

ϵ
(∗)
k − ϵ

(∗)
K ≥ (K − k)ΦwIαMINL+ k(K − k)2 ΦT c (24)

Then ϵ
(∗)
k − ϵ

(∗)
K diverges as a function of K, k, I, c.

Similarly, for the case with regularization we may write dΦdw ≥ −∑I
i=0 α

(i)
k g

(i)
k ≥ −∑I−1

i=0 α
(i)
k −

(L+ βR) ≥ ∑I−1
i=0 αMIN(L+ βR) ≥ IαMIN(L+ βR), where L,R are the Lipschitz bounds on the

gradients and regularizer function respectively and β > 0 is a coefficient. Thus, we obtain

ϵ
(∗)
k − ϵ

(∗)
K ≥ (K − k)ΦwIαMIN(L+ βR) + k(K − k)2 ΦT c (25)

and we observe divergence as a function of K, k.

Finally we show our main result, that is, if a small change is introduced by every task, it accumulate
to result in a divergent capacity.

E DIVERGENCE WITH RESPECT TO TASKS

Theorem 3. Under the condition of Theorem 2, let the maximum change in subsequent tasks and
weights be given by max

k∈k
{ΦTΦdT } = c. Then, the

∑K
k dϵ

(∗)
k diverges as a function of K, and I

without any assumptions on the weight updates.

Proof. Given the first difference in capacity, and under the assumption that ∥∂wk
Jw∗

k
(Ti)∥ ≥ Φw

and ∥∂T (k)Et∈T (i)ℓw∗
i
(t)∥ ≥ ΦT

ϵ
(∗)
k − ϵ

(∗)
k+1 ≥ max

k∈k
{min

Ti

{∥∂wk
Jw∗

k
(Ti)∥∥dw∗

k∥+
∑

T (k)∈Ti

K∑
i=k

∥∂T (k)Et∈T (i)ℓw∗
i
(t)∥∥dT (k)∥}}

≥ max
k∈k

{min
Ti

{Φw∥dw∗
k∥+

∑
T (k)∈Ti

K∑
i=k

ΦT ∥dT (k)∥}} (26a)

≥ max
k∈k

{Φw∥dw∗
k∥+min

Ti

∑
T (k)∈Ti

K∑
i=k

ΦT ∥dT (k)∥}} (26b)

≥ max
k∈k

{Φw∥dw∗
k∥+

∑
T (k)∈Ti

K∑
i=k

ΦTmin
T (k)

∥dT (k)∥}} (26c)

Let the smallest value of min
T (k)

∥dT (k)∥ ≥ ΦdT , then, we can write

ϵ
(∗)
k − ϵ

(∗)
k+1 ≥ max

k∈k
{Φw∥dw∗

k∥+
∑

T (k)∈Ti

K∑
i=k

ΦTΦdT }

≥ max
k∈k

{Φw∥dw∗
k∥}+max

k∈k
{

∑
T (k)∈Ti

K∑
i=k

ΦTΦdT } (27)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Taking sum from k to K provides with the fact that each Tk has a total of k sub datasets.

ϵ
(∗)
k − ϵ

(∗)
K ≥

K∑
k

[
max
k∈k

{Φw∥dw∗
k∥}+ max

k∈k
{

∑
T (k)∈Tk

K∑
i=k

ΦTΦdT }
]

(28a)

≥
K∑
k

max
k∈k

{Φw∥dw∗
k∥}+

K∑
k

max
k∈k

{
∑

T (k)∈Tk

(K − k)ΦTΦdT } (28b)

≥
K∑
k

max
k∈k

{Φw∥dw∗
k∥}+ k(K − k)2 max

k∈k
{ΦTΦdT } (28c)

Since, max
k∈k

{ΦTΦdT } = ΦTΦdT , max
k∈k

{ΦwΦdw} = ΦwΦdw and ∥dw∗
k∥ ≥ Φdw, we write

ϵ
(∗)
k − ϵ

(∗)
K ≥

K∑
k

max
k∈k

{ΦwΦdw}+ k(K − k)2 ΦTΦdT (29a)

Assuming that the changes introduced by the task are bounded over all future and past tasks, i.e.,
ΦdT > c, we get

ϵ
(∗)
k − ϵ

(∗)
K ≥

K∑
k

ΦwΦdw + k(K − k)2ΦT c (30a)

Even for a constant change in task, ϵ(∗)k − ϵ
(∗)
K diverges as a function of K.

F DETAILS FOR CASE STUDY 4

We used the following configuration of a transformer block to instantiate the 8M model.

Embedding layer: (32000, 128); Attention layer: (k, q, v, o): (128, 128); MLP layer: gate_projection
(128, 256), up_projection (128, 256), down_projection (256, 128); Activation function: SiLU;
Layernorm: RMSNorm ; Head layer: (128, 32000); Attention heads: 2 ; Layers: 2 Hidden size: 128.

We used the following configuration of a transformer block to instantiate the 134M model.

Embedding layer: (32000, 768); Attention layer: (k, q, v, o): (768, 768); MLP layer: gate_projection
(768, 2048), up_projection (768, 2048), down_projection (2048, 768); Activation function: SiLU;
Layernorm: RMSNorm ; Head layer: (768, 32000); Attention heads: 12 ; Layers: 12 Hidden size:
768.

Pre-training Data Mix:

• wiki: 0.28
• git: 0.28
• arxiv: 0.16
• books: 0.28

Experience Replay - Data Mix:

• wiki: 1.0
• wiki: 0.2, git: 0.8
• wiki: 0.1, git: 0.1, arxiv: 0.8
• wiki: 0.06, git: 0.07, arxiv: 0.07, books: 0.8

20


	Preliminaries
	First Difference
	Lower bound on first difference
	Divergence with respect to weights
	Divergence with respect to tasks
	Details for Case Study 4

