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SUPPLEMENTARY FILES

We will begin by restating some preliminaries, these are the exact copy of the initial text in Section 3
of the paper.

A PRELIMINARIES

Let x and y be random variables corresponding to input and output probability spaces with support
X and Y and B(X ) and B(Y) representing the corresponding Borel algebras. Define t as a random
variable denoting the joint space of x × y with a model f(w,h) : X → Y being specified using
weights w and hyperparameters h. Given compact sets W over w and H over h, the goal is to
learn the weights by searching over the hypothesis space f = {f(w,h),∀h ∈ H, w ∈ W} through
a loss function ℓw,h(t). In this paper, we will assume that the hyperparameter/architecture is fixed
and therefore, will drop the notation h and denote loss simply as ℓw(t). Throughout the paper, we
will assume xk = x(k) and use them interchangeably, and k = [1, 2, · · · , k]. In this context, we
characterize the effective model capacity as follows.

Effective Model Capacity: We will assume that ℓw(t) is continuous and twice differentiable over
the support X × Y or X , and the compact set W . Under these assumptions, let ℓmin = OW(T ) =
minw∈W Et∈T [ℓw(t)] be the optimization procedure with T being a dataset of samples t with
T ⊂ B(T ). Then, given the best hyperparameter/architecture configurations, the optimization
procedure OW seeks to find the weights w∗ ∈ W that minimizes the loss over a dataset. Given this
setting, we define the effective model capacity (the upper/lower bounds derived in the appendix) as
the smallest achievable loss value using OW that remains unchanged even when additional data or
training is used.

Definition 1 [Effective Model Capacity (EMC)] Given W as the weight space and T ∈ B(T ) with
an optimization procedure OW(T ), the EMC of the model f is given as

ϵ = min
T∈B(T )

[
OW(T )

]
= min

T∈B(T )

[
min
w∈W

E
t∈T

[ℓw(t)]
]

Given a feasible weight set Wk, and loss function ℓwk
(t), t ∈ Tk, the model at k is denoted by fwk

,
the goal of CL is to maintain memory of all observed tasks, then, the CL forgetting cost for the
interval k = [1, k] is given as

min
wk∈Wk

Jwk
(Tk) = min

wk∈Wk

∑k
i=1 γi

[
E

t∈T (i)
[ℓwk

(t)]

]
, ∀T (i) ∈ Tk,

where, γ ensures boundedness of Jwk
(Tk) (see [45], Lemma 1). For a fixed h ∈ H, the complete CL

problem is

V (∗)(uk) = min
uk

∑K

i=k
[Jwi

(Ti)] , uk = {wi, i = k, k + 1, · · ·K}

CL Effective Model Capacity and Balance Point: For ease of exposition, we begin by stating

Definition 2 [Forgetting Effective Model Capacity (FEMC)] For task k ∈ [1,K], dataset Tk, weight
space Wk, optimization procedure OWk

(Tk), EMC at k, ϵk = minTk,wk
Jwk

(Tk), we define FEMC
at task k as:

FEMC(k) = max
k

ϵk = max{ϵ1, ϵ2, · · · , ϵk}

FEMC(k) at each k is defined by the highest forgetting loss in the interval [1, k]. We now define
CL effective model capacity as follows.

Definition 3 [Effective Model Capacity for CL (CLEMC)] For a task k ∈ [1,K], we define CLEMC
as the sum of FEMC across all possible tasks as

ϵ
(∗)
k =

K∑
i=k

FEMC(i) =
K∑
i=k

max
i

ϵi

We will derive the notion of first difference in capacity as a function of the forgetting cost
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B FIRST DIFFERENCE

Lemma 1. For k ∈ [1,K], let uk = {wi, i = k, k + 1, · · ·K} be weight sequences from k with
U(k) = {Wi, i = k, k + 1, · · · }– the compact sets. Next define (JF ), (CL) and (CLEMC) to write

ϵ
(∗)
k+1 − ϵ

(∗)
k = mink {max

Ti

{⟨∂wk
V (∗)(uk), dwk⟩+

∑
T∈Tk

⟨∂TV (∗)(uk), dT ⟩}}

Proof. We first derive the current forgetting cost as a function of infinitesimal change in V (∗)(uk) in
the following technical lemma.

Lemma. Consider k ∈ [0,K] with the forgetting cost as in (JF ) and CL problem in (CL). Then,

−min
wk

Jwk
(Tk) =

〈
∂wk

V (∗)(uk), dwk

〉
+

∑
T∈Tk

〈
∂TV

(∗)(uk), dT
〉
+O(2) (1)

where d is the first difference operator, ∂ refers to the first derivative and O(2) represent the higher
order derivative terms.

Proof. Let uk = {wi, i = k, k + 1, · · ·K} be the sequence of weights starting from k with U(k) =
{Wi, i = k, k + 1, · · · } being the sequence of their respective compact sets. Under the assumption
that the optimal cost V (∗)(uk) is given by the optimal trajectory of weights uk corresponding to the
tasks sets {Ti ∈ Ti, i = k, k + 1, · · ·K}, we can write the following system of recursive equations

V (∗)(uk) = min
uk∈Uk

∑K

i=k
[Jwi

(Ti)] (2a)

V (∗)(uk+1) = min
uk+1∈Uk+1

∑K

i=k+1
[Jwi

(Ti)] (2b)

V (∗)(uk) = min
wk

Jwk
(Tk) + V (∗)(uk+1) (2c)

where (2a) and (2b) follow directly from using (JF ) and (2c) is obtained by simply rewriting (2a)
using (2b).

Now, given two trajectories uk and uk+1, the change introduced by uk+1 to V (∗)(uk) is given by
Taylor series approximation of V (∗)(uk) around wk and Tk as,

V (∗)(uk+1) = V (∗)(uk) +
〈
∂wk

V (∗)(uk), dwk

〉
+

∑
T∈Tk

〈
∂TV

(∗)(uk), dT
〉
+O(2) (3)

where dTk and dwk are the infinitesimal perturbations to data and weights respectively and O(2)
represent higher order derivative terms. Substituting (3) into (2c) to get

����
V (∗)(uk) = min

wk

Jwk
(Tk) +����

V (∗)(uk) +
〈
∂wk

V (∗)(uk), dwk

〉
+

∑
T∈Tk

〈
∂TV

(∗)(uk), dT
〉
+O(2)

which proves the result stated in the technical Lemma.

Using the above result, we can now prove Lemma (1). Towards this end, we begin by writing,

ϵ
(∗)
k =

K∑
i=k

maxi ϵi = maxk ϵk + ϵ
(∗)
k+1 (4a)

ϵ
(∗)
k+1 − ϵ

(∗)
k = mink{ −ϵk} = mink{ −{min

Ti

min
wi

Jwi
(Ti)}, i ∈ k} (4b)

= mink {max
Ti

(−min
wi

Jwi
(Ti)), i ∈ k} (4c)
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where (4a) is obtained by applying (CLEMC), and (4b) is obtained by rewriting ϵk using (JF ).
Substituting (1) into (4c), and ignoring the higher order derivative terms denoted by O(2) [3], we
obtain the result as

ϵ
(∗)
k+1 − ϵ

(∗)
k = mink∈k {max

Ti

(−min
wi

Jwi
(Ti)), i ∈ k} (5a)

= mink∈k {max
Ti

{
〈
∂wk

V (∗)(uk), dwk

〉
+

∑
T∈Tk

〈
∂TV

(∗)(uk), dT
〉
} (5b)

Next, we will derive the lower bound on the first difference in capacity which stems from a lower and
upperbound on capacity.

C LOWER BOUND ON FIRST DIFFERENCE

Theorem 1. The first difference in CLEMC (FD) is lower bounded as

ϵ
(∗)
k − ϵ

(∗)
k+1 ≥ max

k∈k
{min

Ti

{∥∂wk
Jw∗

k
(Ti)∥∥dw∗

k∥

+
∑

T (k)∈Ti

K∑
i=k

∥∂T (k)Et∈T (i)ℓw∗
i
(t)∥∥dT (k)∥}},

Proof. From Lemma (1) we get

ϵ
(∗)
k+1 − ϵ

(∗)
k = mink∈k {max

Tk

{
〈
∂wk

V (∗)(uk), dwk

〉
+

∑
T∈Tk

〈
∂TV

(∗)(uk), dT
〉
}}

≤ mink∈k {max
Tk

{∥∂wk
V (∗)(uk)∥∥dwk∥+

∑
T∈Tk

∥∂TV (∗)(uk)∥∥dT∥}} (6a)

where (6a) is obtained using Cauchy-Schwarz inequality, ⟨a, b⟩ ≤ ∥a∥∥b∥. We then bound both the
gradient norm terms in (6a) as follows.

For the first gradient norm term, we assume that the optimal cost, V (∗), is given by the weight
trajectory uk with uk = {wi, i = k, k + 1, · · ·K}. We can then bound it through the following
inequalities.

∥∂wk
V (∗)(uk)∥ = ∥∂wk

min
uk

K∑
i=k

Jwi
(Ti)∥ (7a)

≤ ∥∂wk

K∑
i=k

minwi
Jwi

(Ti)∥ (7b)

≤ ∥
K∑
i=k

∂wk
minwiJwi(Ti)∥ (7c)

≤ ∥∂wk
minwk

Jwk
(Ti)∥ (7d)

where (7b) is because the norm of the gradient, with respect to weights, at the optimal cost (due to
an optimal trajectory) is always less than the norm of the gradient, with respect to the weights, at a
forgetting cost corresponding to any arbitrary weight trajectory. (7c) follows from the sum rule of
derivatives and (7d) is because all terms from wk+1 onwards vanish due to lack of dependence on wk.

For the second norm of the gradient term in (6a), we again write the optimal cost V (∗)(uk) =∑K
i=k minwi

Jwi
(Ti) such that Ti = {T (1), · · ·T (i)}. We further observe that if the optimal cost

is differentiated with respect to T (k) only the kth term in the inner sum will remain. We can then
bound it through the following inequalities.
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∥∂T (k)V
(∗)(uk)∥ ≤ ∥∂T (k)

K∑
i=k

minwi
Jwi

(Ti)∥ (8a)

≤ ∥
K∑
i=k

∂T (k)minwi

i∑
p=1

Et∈T (p)ℓwi
(t)∥ (8b)

≤ ∥
K∑
i=k

∂T (k)Et∈T (i)ℓw∗(i)(t)∥ (8c)

Then, upon substituting (7d) and (8c) into (6a) we get,

ϵ
(∗)
k+1 − ϵ

(∗)
k ≤ min

k∈k
{max

Ti

{∥∂wkJw∗
k
(Ti)∥∥dw∗

k∥+
∑

T (k)∈Ti

K∑
i=k

∥∂T (k)Et∈T (i)ℓw∗
i
(t)∥∥dT (k)∥}}, (9)

where we have replaced the inner minimization problem with respect to weights by the corresponding w∗.
Multiplication with −1 provides the lower bound as

ϵ
(∗)
k − ϵ

(∗)
k+1 ≥ max

k∈k
{min

Ti

{∥∂wkJw∗
k
(Ti)∥∥dw∗

k∥+
∑

T (k)∈Ti

K∑
i=k

∥∂T (k)Et∈T (i)ℓw∗
i
(t)∥∥dT (k)∥}}, (10)

This lower bound then leads to the conclusion that capacity is non-stationary and diverges with
increase in weight update or divergence between subsequent tasks. This non-stationarity extends to
experience replay and experience replay with regularization

D DIVERGENCE WITH RESPECT TO WEIGHTS

Theorem 2. Fix k ∈ N and I , the number of weight updates required to obtain the optimal
value. Assume that ∥∂wk

Jw∗
k
(Ti)∥ ≥ Φw, ∥∂T (k)Et∈T (i)ℓw∗

i
(t)∥ ≥ ΦT , and let the smallest value

of minT (k)∥dT (k)∥ ≥ ΦdT . Let L,R be the Lipschitz constants for the cost function and the
regularization function respectively with αMIN being the smallest learning rate. Then,

∑K
k dϵ

(∗)
k

diverges as a function of K, and I with and without the regularization factor.

Proof. We first prove the technical Lemma below.

Lemma. Fix k ∈ N and let the weights at any task k be updated for a total of I steps. Assume
T (k) is provided through a series of batches such that T (k) = {t(i)k , i = 1, · · · , I} with t

(i)
k be a

tensor corresponding to batch of data at the ith step for the kth task, sampled uniformly from the
underlying support. For the ith update step of the kth task, let the forgetting cost be denoted by
Jwk

(Tk), gradient be denoted by g
(i)
k , and learning rate by α

(i)
k . Then,

dw∗
k = −

I−1∑
i=0

α
(i)
k g

(i)
k (11)

Proof. Note now that, we abuse notation to define dw∗
k = w∗

k − w
(0)
k = w

(I)
k − w

(0)
k assuming that

the optimal point is achieved after I updates (indicated by parenthesis). Then, at any particular update
step, we obtain

w
(i+1)
k = w

(i)
k − α

(i)
k g

(i)
k (12)

where g
(i)
k is the update gradient at the this step.

w
(i+1)
k = w

(i)
k − α

(i)
k g

(i)
k (13)
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We may now write the sum over the I steps at a

w
(1)
k = w

(0)
k − α

(0)
k g

(0)
k (14a)

w
(2)
k = w

(1)
k − α

(1)
k g

(1)
k (14b)

... (14c)

w
(I)
k = w

(I−1)
k − α

(I−1)
k g

(I−1)
k (14d)

Adding all these terms to write

dw∗
k = −

I−1∑
i=0

α
(i)
k g

(i)
k (15)

Given the first difference in capacity from the technical Lemma above, and under the assumption that
∥∂wk

Jw∗
k
(Ti)∥ ≥ Φw and ∥∂T (k)Et∈T (i)ℓw∗

i
(t)∥ ≥ ΦT

ϵ
(∗)
k − ϵ

(∗)
k+1 ≥ max

k∈k
{min

Ti

{∥∂wk
Jw∗

k
(Ti)∥∥dw∗

k∥+
∑

T (k)∈Ti

K∑
i=k

∥∂T (k)Et∈T (i)ℓw∗
i
(t)∥∥dT (k)∥}}

≥ max
k∈k

{min
Ti

{Φw∥dw∗
k∥+

∑
T (k)∈Ti

K∑
i=k

ΦT ∥dT (k)∥}} (16a)

≥ max
k∈k

{Φw∥dw∗
k∥+min

Ti

∑
T (k)∈Ti

K∑
i=k

ΦT ∥dT (k)∥}} (16b)

≥ max
k∈k

{Φw∥dw∗
k∥+

∑
T (k)∈Ti

K∑
i=k

ΦTmin
T (k)

∥dT (k)∥}} (16c)

Let the smallest value of min
T (k)

∥dT (k)∥ ≥ ΦdT , then, we can write

ϵ
(∗)
k − ϵ

(∗)
k+1 ≥ max

k∈k
{Φw∥dw∗

k∥+
∑

T (k)∈Ti

K∑
i=k

ΦTΦdT } (17)

≥ max
k∈k

{Φw∥dw∗
k∥}+ max

k∈k
{

∑
T (k)∈Ti

K∑
i=k

ΦTΦdT } (18)

Taking sum from k to K provides with the fact that each Tk has a total of k sub datasets.

ϵ
(∗)
k − ϵ

(∗)
K ≥

K∑
k

[
max
k∈k

{Φw∥dw∗
k∥}+ max

k∈k
{

∑
T (k)∈Tk

K∑
i=k

ΦTΦdT }
]

(19)

≥
K∑
k

max
k∈k

{Φw∥dw∗
k∥}+

K∑
k

max
k∈k

{
∑

T (k)∈Tk

(K − k)ΦTΦdT } (20)

≥
K∑
k

max
k∈k

{Φw∥dw∗
k∥}+ k(K − k)2 max

k∈k
{ΦTΦdT } (21)

Since, max
k∈k

{ΦTΦdT } = ΦTΦdT , max
k∈k

{ΦwΦdw} = ΦwΦdw and ∥dw∗
k∥ ≥ Φdw, we write

ϵ
(∗)
k − ϵ

(∗)
K ≥

K∑
k

max
k∈k

{ΦwΦdw}+ k(K − k)2 ΦTΦdT ≥
K∑
k

ΦwΦdw + k(K − k)2 ΦTΦdT

(22a)
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We will now assume that the changes introduced by the task are bounded over all future and past
tasks. Given that K > 0, k > 0,Φw > 0,ΦT > 0,ΦdT > c, we obtain

ϵ
(∗)
k − ϵ

(∗)
K ≥ (K − k)ΦwΦdw + k(K − k)2 ΦT c (23)

Now, by assumption that, for each task, the optimal value of weight is obtained after updating
the weights for a total of I steps provides Φdw ≥ −∑I−1

i=0 α
(i)
k g

(i)
k ≥ −∑I−1

i=0 α
(i)
k (−L) ≥∑I−1

i=0 αMINL ≥ IαMINL. Thus, we obtain

ϵ
(∗)
k − ϵ

(∗)
K ≥ (K − k)ΦwIαMINL+ k(K − k)2 ΦT c (24)

Then ϵ
(∗)
k − ϵ

(∗)
K diverges as a function of K, k, I, c.

Similarly, for the case with regularization we may write dΦdw ≥ −∑I
i=0 α

(i)
k g

(i)
k ≥ −∑I−1

i=0 α
(i)
k −

(L+ βR) ≥ ∑I−1
i=0 αMIN(L+ βR) ≥ IαMIN(L+ βR), where L,R are the Lipschitz bounds on the

gradients and regularizer function respectively and β > 0 is a coefficient. Thus, we obtain

ϵ
(∗)
k − ϵ

(∗)
K ≥ (K − k)ΦwIαMIN(L+ βR) + k(K − k)2 ΦT c (25)

and we observe divergence as a function of K, k.

Finally we show our main result, that is, if a small change is introduced by every task, it accumulate
to result in a divergent capacity.

E DIVERGENCE WITH RESPECT TO TASKS

Theorem 3. Under the condition of Theorem 2, let the maximum change in subsequent tasks and
weights be given by max

k∈k
{ΦTΦdT } = c. Then, the

∑K
k dϵ

(∗)
k diverges as a function of K, and I

without any assumptions on the weight updates.

Proof. Given the first difference in capacity, and under the assumption that ∥∂wk
Jw∗

k
(Ti)∥ ≥ Φw

and ∥∂T (k)Et∈T (i)ℓw∗
i
(t)∥ ≥ ΦT

ϵ
(∗)
k − ϵ

(∗)
k+1 ≥ max

k∈k
{min

Ti

{∥∂wk
Jw∗

k
(Ti)∥∥dw∗

k∥+
∑

T (k)∈Ti

K∑
i=k

∥∂T (k)Et∈T (i)ℓw∗
i
(t)∥∥dT (k)∥}}

≥ max
k∈k

{min
Ti

{Φw∥dw∗
k∥+

∑
T (k)∈Ti

K∑
i=k

ΦT ∥dT (k)∥}} (26a)

≥ max
k∈k

{Φw∥dw∗
k∥+min

Ti

∑
T (k)∈Ti

K∑
i=k

ΦT ∥dT (k)∥}} (26b)

≥ max
k∈k

{Φw∥dw∗
k∥+

∑
T (k)∈Ti

K∑
i=k

ΦTmin
T (k)

∥dT (k)∥}} (26c)

Let the smallest value of min
T (k)

∥dT (k)∥ ≥ ΦdT , then, we can write

ϵ
(∗)
k − ϵ

(∗)
k+1 ≥ max

k∈k
{Φw∥dw∗

k∥+
∑

T (k)∈Ti

K∑
i=k

ΦTΦdT }

≥ max
k∈k

{Φw∥dw∗
k∥}+max

k∈k
{

∑
T (k)∈Ti

K∑
i=k

ΦTΦdT } (27)
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Taking sum from k to K provides with the fact that each Tk has a total of k sub datasets.

ϵ
(∗)
k − ϵ

(∗)
K ≥

K∑
k

[
max
k∈k

{Φw∥dw∗
k∥}+ max

k∈k
{

∑
T (k)∈Tk

K∑
i=k

ΦTΦdT }
]

(28a)

≥
K∑
k

max
k∈k

{Φw∥dw∗
k∥}+

K∑
k

max
k∈k

{
∑

T (k)∈Tk

(K − k)ΦTΦdT } (28b)

≥
K∑
k

max
k∈k

{Φw∥dw∗
k∥}+ k(K − k)2 max

k∈k
{ΦTΦdT } (28c)

Since, max
k∈k

{ΦTΦdT } = ΦTΦdT , max
k∈k

{ΦwΦdw} = ΦwΦdw and ∥dw∗
k∥ ≥ Φdw, we write

ϵ
(∗)
k − ϵ

(∗)
K ≥

K∑
k

max
k∈k

{ΦwΦdw}+ k(K − k)2 ΦTΦdT (29a)

Assuming that the changes introduced by the task are bounded over all future and past tasks, i.e.,
ΦdT > c, we get

ϵ
(∗)
k − ϵ

(∗)
K ≥

K∑
k

ΦwΦdw + k(K − k)2ΦT c (30a)

Even for a constant change in task, ϵ(∗)k − ϵ
(∗)
K diverges as a function of K.

F DETAILS FOR CASE STUDY 4

We used the following configuration of a transformer block to instantiate the 8M model.

Embedding layer: (32000, 128); Attention layer: (k, q, v, o): (128, 128); MLP layer: gate_projection
(128, 256), up_projection (128, 256), down_projection (256, 128); Activation function: SiLU;
Layernorm: RMSNorm ; Head layer: (128, 32000); Attention heads: 2 ; Layers: 2 Hidden size: 128.

We used the following configuration of a transformer block to instantiate the 134M model.

Embedding layer: (32000, 768); Attention layer: (k, q, v, o): (768, 768); MLP layer: gate_projection
(768, 2048), up_projection (768, 2048), down_projection (2048, 768); Activation function: SiLU;
Layernorm: RMSNorm ; Head layer: (768, 32000); Attention heads: 12 ; Layers: 12 Hidden size:
768.

Pre-training Data Mix:

• wiki: 0.28
• git: 0.28
• arxiv: 0.16
• books: 0.28

Experience Replay - Data Mix:

• wiki: 1.0
• wiki: 0.2, git: 0.8
• wiki: 0.1, git: 0.1, arxiv: 0.8
• wiki: 0.06, git: 0.07, arxiv: 0.07, books: 0.8

20


	Preliminaries
	First Difference
	Lower bound on first difference
	Divergence with respect to weights
	Divergence with respect to tasks
	Details for Case Study 4

