SUPPLEMENTARY FILES

We will begin by restating some preliminaries, these are the exact copy of the initial text in Section
of the paper.

A PRELIMINARIES

Let z and y be random variables corresponding to input and output probability spaces with support
X and Y and B(X) and B()) representing the corresponding Borel algebras. Define ¢ as a random
variable denoting the joint space of x x y with a model f,, ») : & — ) being specified using
weights w and hyperparameters h. Given compact sets VW over w and H over h, the goal is to
learn the weights by searching over the hypothesis space f = {f(w,1), Vh € H,w € W} through
a loss function ¢, 5, (¢). In this paper, we will assume that the hyperparameter/architecture is fixed
and therefore, will drop the notation h and denote loss simply as ¢,,(t). Throughout the paper, we
will assume z;, = x(k) and use them interchangeably, and k = [1,2,--- , k]. In this context, we
characterize the effective model capacity as follows.

Effective Model Capacity: We will assume that ¢,,(t) is continuous and twice differentiable over
the support X x ) or X, and the compact set W. Under these assumptions, let £,,,;, = O (T) =
mingew Frer[lw(t)] be the optimization procedure with T being a dataset of samples ¢ with
T C B(T). Then, given the best hyperparameter/architecture configurations, the optimization
procedure Oy seeks to find the weights w* € WV that minimizes the loss over a dataset. Given this
setting, we define the effective model capacity (the upper/lower bounds derived in the appendix) as
the smallest achievable loss value using Oy that remains unchanged even when additional data or
training is used.

Definition 1 [Effective Model Capacity (EMC)] Given W as the weight space and T € B(T) with
an optimization procedure Oy (T'), the EMC of the model f is given as

oty OOl = i Ly SO

Given a feasible weight set W, and loss function £, (t),t € Ty, the model at k is denoted by f,,, ,
the goal of CL is to maintain memory of all observed tasks, then, the CL forgetting cost for the
interval k = [1, k] is given as

' Ty) = mi F vl E T(i)eT
u;l%zﬂkawk( k) w?;;nézltl\/k Zl:l % |:t€T(i) ka(t)]:| ’ v (Z)E ko

where, 7y ensures boundedness of .J,,, (T) (see [43], Lemma 1). For a fixed h € H, the complete CL
problem is

K
V) (uy,) = min Z [Jw, (T))],ur = {ws, i =k, k+1,--- K}
Uk i=k

CL Effective Model Capacity and Balance Point: For ease of exposition, we begin by stating

Definition 2 [Forgetting Effective Model Capacity (FEMC)] For task k € [1, K], dataset T, weight
space W, optimization procedure Oy, (T}),[EMClat k, €, = minrt, w, Juw, (Tk), we define FEMC
at task k as:

FEMC(k) = max ex = max{ey, €, - €}

FEMC(k) at each k is defined by the highest forgetting loss in the interval [1, k]. We now define
CL effective model capacity as follows.

Definition 3 [Effective Model Capacity for CL (CLEMC)] For a task k € [1, K], we define CLEMC
as the sum of FEMC across all possible tasks as

K K
e = > FEMC(i) = ) max ¢
ik ik
We will derive the notion of first difference in capacity as a function of the forgetting cost
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B FIRST DIFFERENCE

Lemma 1. For k£ € [1, K], let uy, = {w;,i = k,k + 1,--- K} be weight sequences from k with
Uk) = {W;,i =k, k+1,- - }—the compact sets. Next define (Jz), (CL) and (CLEMC) to write

61(:421 — e,(:) = ming {ngrabx {<8ka(*)(uk),dwk> + Z (5TV(*)(uk),dT>}}
TET

Proof. We first derive the current forgetting cost as a function of infinitesimal change in V' *) (ug) in
the following technical lemma.

Lemma. Consider k € [0, K| with the forgetting cost as in (Jg) and CL problem in (CL). Then,

— min Ju, (Tx) = <6ka(*)(uk), dwk> + 3 <8TV(*)(uk), dT> +0O2) )

TeTy,

where d is the first difference operator, O refers to the first derivative and O(2) represent the higher
order derivative terms.

Proof. Letuy, = {w;,i =k, k+1,--- K} be the sequence of weights starting from k with U (k) =
{W,,i=k,k+1,---} being the sequence of their respective compact sets. Under the assumption
that the optimal cost V (*) (ug) is given by the optimal trajectory of weights u;, corresponding to the
tasks sets {T; € T;,i = k,k + 1,--- K}, we can write the following system of recursive equations

K
v () = mi Jo. (T; 2
(ur) = min > [, (T3)] (2a)
K
() _ n Y .
Vv (Uk+1) kalnelgk+l imkt1 [Jun (Tz)] (Zb)
V) (ug) = min Ju, (Te) + V& (upp1) (2¢)
Wk

where (2a) and (Zb) follow directly from using (Jz) and is obtained by simply rewriting (2a))

using (2b).
Now, given two trajectories uy, and uy1, the change introduced by w41 to V *) (ug) is given by
Taylor series approximation of V *) (uy,) around wy, and T}, as,

VO (1) = VO () + <6‘ka(*)(uk),dwk> + Y <8TV(*)(uk), dT> 102 3
TeTy

where dT}, and dwy, are the infinitesimal perturbations to data and weights respectively and O(2)
represent higher order derivative terms. Substituting (3) into to get

VAT = min Jy, (Ty) + V5] + <0ka(*)(uk), dwk> + 3 <8TV(*)(uk), dT> o)

TeTk

which proves the result stated in the technical Lemma. O

Using the above result, we can now prove Lemma (). Towards this end, we begin by writing,

K
e,(:) = Z max; € = Maxyk €x + 61(:21 (4a)
i=k
61(;21 - e,(:) = mink{ —ex} = mink{ —{Tr%m n}um Jw; (T)}, i € k} (4b)
= miny {mrax (=min Jy, (Ty)), i € k} (4c)
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where (@) is obtained by applying (CLEMC)), and (@b) is obtained by rewriting €y using (Jz).
Substituting (I)) into (@), and ignoring the higher order derivative terms denoted by O(2) [3]], we
obtain the result as

51(;21 _ e,(:) = Minkek {mTa:E (—ﬂbzln Jw; (Ti)),1 € k} (5a)

— mingex {maz {(9,, V) (ur), dwy ) + > {00V (wi),dT')} (5b)
‘ TEeTy,

]

Next, we will derive the lower bound on the first difference in capacity which stems from a lower and
upperbound on capacity.

C LOWER BOUND ON FIRST DIFFERENCE

Theorem 1. The first difference in CLEMC (EFD) is lower bounded as

e — 51(:421 > magx {min {[|0u, Juwi (Ta) ||| dwi]|

K
+ S0 S 100w Brerttw: ONIT R},

T(k)ET; i=k
Proof. From Lemma (T)) we get

61(:21 - 65:) = Mingex {”%ﬁx {<6ka(*)(uk), dwk> + Z <8TV(*)(uk),dT>}}
TeTy,

< minyex {max {1100, V& (wr) [l dwr | + D 1100V (wy)|[14T 3} (62)
k TeTy

where (6a)) is obtained using Cauchy-Schwarz inequality, {(a, b) < ||a/|||b]|. We then bound both the
gradient norm terms in (6a)) as follows.

For the first gradient norm term, we assume that the optimal cost, V*), is given by the weight
trajectory ug with up = {w;,i = k,k + 1,--- K}. We can then bound it through the following
inequalities.

K
”auwv(*) (uk) || = ”awk muin Z Juw; (Tz)H (7a)
 i=k
K
< 0w, Z My, Juw, (T3] (7b)
i=k
K
< | Z O vy, Juw, (T5) | (7¢)
i=k
< ||8wkminwk lec (Tl)H (7d)

where is because the norm of the gradient, with respect to weights, at the optimal cost (due to
an optimal trajectory) is always less than the norm of the gradient, with respect to the weights, at a
forgetting cost corresponding to any arbitrary weight trajectory. follows from the sum rule of
derivatives and (7d) is because all terms from w1 onwards vanish due to lack of dependence on wy,.

For the second norm of the gradient term in (6a), we again write the optimal cost V) (uy) =
ZiK:k MiNy, Jow, (Ti) such that T; = {T'(1),---T(i)}. We further observe that if the optimal cost

is differentiated with respect to T'(k) only the k" term in the inner sum will remain. We can then
bound it through the following inequalities.
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K
1070V (i)l < 107y Y mina, Ju, (T)| (8a)

1=k
K 7
< 1D dryminw, Y Brerplw: (1) (8b)
1=k p=1
K
< 11D Ormm Ereri by 0 (8¢)
1=k

Then, upon substituting (7d) and into (6a) we get,

K
et — e < min {maz {[|0u Juy (To)| duwi | + WZ@ Zj 107 Breroybuwr O R)[}}, 9

where we have replaced the inner minimization problem with respect to weights by the corresponding w™.
Multiplication with —1 provides the lower bound as

K
(%) (%) ; *
€ T €hf1 2 TRAT {W%” 110wy, Jwy (T) ||| dwp ]| + T(HZET‘ Zk 107 (k) Erer bw; (O 1AT (K)[|}}, (10)

O
This lower bound then leads to the conclusion that capacity is non-stationary and diverges with

increase in weight update or divergence between subsequent tasks. This non-stationarity extends to
experience replay and experience replay with regularization

D DIVERGENCE WITH RESPECT TO WEIGHTS

Theorem 2. Fix £ € N and I, the number of weight updates required to obtain the optimal
value. Assume that ||Oy, Juw: (Ti)|| > Puw, [|0rk) Erer(iylw: (t)|| > @, and let the smallest value
of minyy)||dT (k)| > ®4r. Let L, R be the Lipschitz constants for the cost function and the

regularization function respectively with ayn being the smallest learning rate. Then, ZkK de,(c*)
diverges as a function of K, and I with and without the regularization factor.

Proof. We first prove the technical Lemma below.

Lemma. Fix k € N and let the weights at any task k be updated for a total of I steps. Assume
T (k) is provided through a series of batches such that T'(k) = {t,(;),i =1,---,I} with t,(;) be a

tensor corresponding to batch of data at the i*" step for the k'" task, sampled uniformly from the

underlying support. For the it" update step of the k" task, let the forgetting cost be denoted by

Jw, (T1), gradient be denoted by g,(:), and learning rate by agj). Then,

-1
dwp ==Y alPg® (11)

i=0
Proof. Note now that, we abuse notation to define dwj, = wj, — w,(co) = w,(f) - w}(@()) assuming that

the optimal point is achieved after I updates (indicated by parenthesis). Then, at any particular update
step, we obtain
w](:Jrl) _ w](:) . a](j)g](:) (12)

where g,(j) is the update gradient at the this step.

w](:Jrl) _ w](qi) _ a](ci)g](:) (13)
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We may now write the sum over the I steps at a

w,(:) = w,(co) — a,(co)g,(co) (14a)
w,(cz) = w,(cl) — oz,(cl)g,il) (14b)
: (14¢)
w](CI) _ wl(cI 1) a,(f*l)g,(f*l) (14d)
Adding all these terms to write
-1
dwy = al’g® (15)
i=0
O

Given the first difference in capacity from the technical Lemma above, and under the assumption that
10uws Ty (Ti)|| = Po and (|01 (k) Ereriiy bu; ()| = D7

K
o = ety 2 maz {min {10, Jup (T)llldwill + Y- D l0rw Brerbu; OIIAT R}

T(k)ET; i=k

> i *

> maz {min {@u|dwi] + Z%lldT )]3; (16a)
T(k)ET; i=k

> X )

> maz {yldwi]| +min Z%IIdT )} (16b)
(k)eT i=k

> *

> maz {®y|dwi] + > Z%mmlldT k)Y (16¢)

T(k)ET; i=k

Let the smallest value of ’I%’L(’LIngT( )|| > ®4r, then, we can write

K
e,(c*) - 61(:421 > magz { D@y ||dwyi || + Z Z(I)T(I)dT} (17)
’ T(k)ET; i=k
K
> *
> maz {@ulldwill} + mag { > > Orear} (18)
T(k)ET; i=k

Taking sum from £ to K provides with the fact that each T, has a total of k£ sub datasets.

() Z maz { Py |dwi]|} + mam{ Z Z@Tq)dT} (19)
k T(k)ETy, i=k
K
ZZ az {Dy||dwi]|} + Zmax{ > (K = k)rPar} (20)
k T(k)ET
K
> > maz {®y||dwi |} + k(K — k)* maz {®rPer} @1)
k

Since, maz {PrPyr} = OrPar, maz {@w®Paw} = PPy and ||dwi|| > Pgo, we write
€ €

K K
6 — el 2 D maz (®u®au} +h(K k) @r®ar = D" @by + k(K — k)’ Ordar
k k

(22a)
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We will now assume that the changes introduced by the task are bounded over all future and past
tasks. Given that K > 0,k > 0, ®,, > 0,®7 > 0, D47 > ¢, we obtain

e =€) > (K — k) u®ay + k(K — k) Orc @3)

Now, by assumption that, for each task, the optimal value of weight is obtained after updating
the weights for a total of I steps provides g, > — Y1 aVgl? > 1o p) >

Zf;ol avinL > Taygn L. Thus, we obtain
e — ) > (K — k)@, Tanin L + k(K — k)? ®pc (24)
Then 51(:) - GS) diverges as a function of K, k., I, c.

Similarly, for the case with regularization we may write d® g,, > — Y1_, ozk @ g,(c D> -y akZ -

(L+BR) > ZZ o Y amin(L + BR) > Tonun(L + BR), where L, R are the Lipschitz bounds on the
gradients and regularizer function respectively and 5 > O is a coefﬁ01ent Thus, we obtain

e — ) > (K — k)@ Tayn(L + BR) + k(K — k)? ®pc (25)
and we observe divergence as a function of K, k. O

Finally we show our main result, that is, if a small change is introduced by every task, it accumulate
to result in a divergent capacity.

E DIVERGENCE WITH RESPECT TO TASKS

Theorem 3. Under the condition of Theorem 2] let the maximum change in subsequent tasks and
weights be given by maz {®r P47} = c. Then, the Ef de,(:) diverges as a function of K, and
i€

without any assumptions on the weight updates.

Proof. Given the first difference in capacity, and under the assumption that ||y, Juw; (Ti)[| > ®u
and ||Or(x) Ereriylw: (1) > @1

K
& = ety 2 maz {min {10, Ty (TOllldwill + Y- D 10ra Brerobu; ONIAT R}

T(k)ET; i=k
K
> maz {min {®|[dw + > > @rlldT(k)|}} (26a)
T(k)eT; i=k
> maz { @ | dwi]| + min > Z@THdT I3} (26b)
T(k)eT i=k
> *
2> maz { Dy ||dw| + > Z%mmlldT k)13 (26¢)

T(k)ET; i=k

Let the smallest value of 777](zkr)LHdT(k) || > ®47, then, we can write

K
o) — el 2 max (@uduwfll+ Y Y Erdar}

T(k)eT; i=k
K
> *
> maz {@ulldwill} +mar{ >, > ®rdar} 27)
T(k)ET; i=k
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Taking sum from & to K provides with the fact that each T, has a total of k sub datasets.

f Z maz { P || dwi]| } + max{ Z Z@T@dT} (28a)

T(k)ET), i=k

maz ax { Dy ||dwi||} + Zmam{ Z (K —k)orP4r} (28b)
T(k)ETy

IV
= R‘MN Bl

Z maz {y[dwi |} + k(K — k)? maz {Or@qr} (28¢)
k

Since, mazx {7 Pyr} = O7Pyr, mazx {@w®Paw} = PyPaw and ||dwi|| > Pgu, we write
€ €

K
o)~ >N maz {®y®aw} + k(K — F)* rdar (29)
k

Assuming that the changes introduced by the task are bounded over all future and past tasks, i.e.,
D41 > ¢, we get

K
) = >3 0y Pay + k(K — k)20p (30a)
Even for a constant change in task, e,(c ) _ e%) diverges as a function of K. O

F DETAILS FOR CASE STUDY 4

We used the following configuration of a transformer block to instantiate the 8M model.

Embedding layer: (32000, 128); Attention layer: (k, q, v, 0): (128, 128); MLP layer: gate_projection
(128, 256), up_projection (128, 256), down_projection (256, 128); Activation function: SiLU;
Layernorm: RMSNorm ; Head layer: (128, 32000); Attention heads: 2 ; Layers: 2 Hidden size: 128.

We used the following configuration of a transformer block to instantiate the 134M model.

Embedding layer: (32000, 768); Attention layer: (k, q, v, 0): (768, 768); MLP layer: gate_projection
(768, 2048), up_projection (768, 2048), down_projection (2048, 768); Activation function: SiLU;
Layernorm: RMSNorm ; Head layer: (768, 32000); Attention heads: 12 ; Layers: 12 Hidden size:
768.

Pre-training Data Mix:
* wiki: 0.28
e git:0.28
e arxiv: 0.16
* books: 0.28

Experience Replay - Data Mix:

e wiki: 1.0

e wiki: 0.2, git: 0.8

e wiki: 0.1, git: 0.1, arxiv: 0.8

e wiki: 0.06, git: 0.07, arxiv: 0.07, books: 0.8
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