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ABSTRACT

Diffusion models are known for the supreme capability to generate realistic im-
ages. However, ethical concerns, such as copyright protection and generation of
inappropriate content, pose significant challenges for the practical deployment of
diffusion models. Recent work has proposed a flurry of watermarking techniques
that inject visually noteless patterns into generated images, offering a promising
solution to these issues. While effective, the essential elements for watermark-
ing and the interconnections among various methods are still chaos. In this pa-
per, we dissect the design principles of state-of-the-art watermarking techniques
and introduce a unified framework. We identify a set of dimensions that explain
the manipulation enforced by watermarking methods, including the distribution
of individual elements, the specification of watermark regions within each chan-
nel, and the choice of channels for watermark embedding. Moreover, under this
framework we instantiate a new watermarking method to minimize impacts on
the model performance from a distributional perspective. Through the empirical
studies on regular text-to-image applications and the first systematic attempt on
watermarking image-to-image diffusion models, we thoroughly verify the effec-
tiveness of our proposed framework through comprehensive evaluations. On all
the diffusion models, including Stable Diffusion, our approach induced from the
proposed framework not only preserves image quality but also outperforms exist-
ing methods in robustness against a range of attacks.

1 INTRODUCTION

The rise of diffusion models has significantly impacted image generation, enabling the creation of
diverse and high-quality images across various styles. However, the widespread use of these mod-
els also introduces critical ethical challenges, particularly concerning copyright protection and the
generation of inappropriate or misleading content. In this regard, watermarking generated images
offers a promising approach to tracing image origins and mitigating potential misuse.

A core challenge in image watermarking is the trade-off between the robustness of the watermark
and the quality of the generated images. Traditional watermarking techniques (Al-Haj, 2007; Navas
et al., 2008) primarily rely on post-processing methods to embed subtle modifications into the im-
age’s frequency representation, making them imperceptible to human users. Though effective, these
approaches suffer from reduced image quality and insufficient robustness against common attacks
such as compression and cropping, to name a few.

To improve the trade-off, Zhang et al. (2019); Zhu et al. (2018); Hayes & Danezis (2017) pro-
posed end-to-end deep learning methods to construct watermarks with powerful learning capabil-
ities, while such methods are black-box and require additional training. Specifically for diffusion
models, Wen et al. (2023); Yang et al. (2024) developed latent-representation-based watermarks,
which manipulate latent representations to match specific patterns.

Despite the empirical successes of image watermarking, the key components thereof are poorly un-
derstood, and the connections between watermarking methods remain unclear. In this paper, we
carefully analyze the state-of-the-art watermarking methods, and introduce a unified framework that
identifies and connects the underlying design principles. This framework reveals three critical design
dimensions, including ❶ the distribution of individual elements, ❷ the specification of watermark
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regions within each channel, and ❸ the choice of channels for embedding. Under the unified frame-
work, we integrate the key designs from both image and language watermarking; we propose a novel,
training-free watermarking approach that applies directly to diffusion models without altering the
training process. Notably, our method embeds watermarks directly into the latent space of diffusion
models (rather than the frequency domain), avoiding extraneous operations and errors during detec-
tion. Extensive experiments are conducted; in addition to the conventional focus on text-to-image
generation, we extend the application scope of our proposed image watermarking to the scenarios
involving image-to-image diffusion model. Our method turns out both preserving visual quality of
generated images and providing robustness against a wide range of adversarial attacks.

In summary, our paper contributes the following:
• We present a unified framework that identifies and connects the key design principles underlying

state-of-the-art watermarking methods.
• Under the unified framework, we propose a novel, training-free watermarking method, and theo-

retical analysis showing preservation of the latent representation distribution is accompanied.
• We extend watermarking techniques beyond the traditional focus on text-to-image generation sce-

nario, and give the first systematic approach to watermarking image-to-image diffusion models.
Our proposed method exhibits robustness against a variety of adversarial attacks and high visual
quality, validating the efficacy of our method as well as the unified framework.

2 RELATED WORKS

In this section, we comprehensively review the related works on watermarking images and recent
extensions to diffusion models.

Watermarking Image. Digital watermarking (Van Schyndel et al., 1994) embeds traceable iden-
tification information in carrier data for copyright protection and content authentication. Traditional
image watermarking techniques, often applied in post-processing, focus on frequency domain meth-
ods (Cox et al., 2007; Al-Haj, 2007; Hamidi et al., 2018; Kundur & Hatzinakos, 1997; Lee et al.,
2007; Navas et al., 2008) to enhance robustness. For instance, DwtDctSvd (Cox et al., 2007) com-
bines Discrete Wavelet Transform, Discrete Cosine Transform, and Singular Value Decomposition
for watermark embedding. More recently, deep learning-based approaches (Zhu et al., 2018; Tancik
et al., 2020; Fernandez et al., 2022; Zhang et al., 2019; Hayes & Danezis, 2017) like RivaGAN
(Zhang et al., 2019) leverage neural networks to improve watermarking, employing adversarial net-
works for both embedding and extraction. Despite advancements, post-hoc watermarking often in-
troduces visible noise and is vulnerable to attacks like cropping and compression (Fernandez et al.,
2023), as it is applied to the final image, making the watermark prone to distortion or removal.

Watermarking Diffusion Models. With the rise of generative models, particularly diffusion mod-
els, watermarking AI-generated content or the models themselves has gained importance. Yu et al.
(2021) and Zhao et al. (2023b) proposed embedding watermarks into training datasets, so models
inherently generate watermarked content. However, this is impractical for large-scale diffusion mod-
els trained on vast datasets. To overcome this, researchers have embedded watermarks during the
generation process. For example, Fernandez et al. (2023) and Feng et al. (2024) fine-tuned model
weights to modify latent representations, with Stable Signature (Fernandez et al., 2023) fine-tuning
LDM decoders to embed hidden watermarks in generated images.

Other approaches, like Tree-ring watermark (Wen et al., 2023), modify the initial noise in the sam-
pling process, requiring deterministic samplers like DDIM (Song et al., 2020) for watermark extrac-
tion through inversion. Similarly, Yang et al. (2024) adjusts the initial noise naturally, improving
image quality and robustness against attacks. Inspired by these works, we examine critical design
dimensions for embedding watermarks in the latent space, offering insights into diffusion water-
marking techniques

3 PRELIMINARIES

This section recaps key concepts of Latent Diffusion Models (LDMs), focusing on the diffusion
process, denoising methods like DDIM, and inversion techniques for watermark detection. We
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also introduce image watermarking from a cryptographic perspective, highlighting scenarios for
protecting model ownership and detecting illicit image use.

3.1 RECAP OF THE DIFFUSION PROCESS

To map a regular image x ∈ RH×W×3 to the latent space, Latent Diffusion Models (LDMs) formally
behave as an autoencoder, using an encoder E to obtain the representation z0 as z0 = E(x) ∈
Rh×w×c; conversely, a decoder D reconstructs the image x from the latent space as x = D(z0). In
generating images, (dropping the encoder E and) directly feeding a random signal z0 to the decoder
D of a pre-trained LDM can provably return an image following the pre-training distribution.

Despite the autoencoder framework, the magic of LDMs comes from its diffusion-like process to
obtain z0. Specifically, an initial latent representation zT ∈ Rh×w×c is first sampled from a standard
Gaussian distribution N (0, I); subsequently, iterative denoising methods like DDIM (Song et al.,
2020) are used to transform zT into z0, and the decoder then generates the image: x = D(z0).

Beyond standard LDMs, inversion techniques enable moving in the opposite direction—from a
generated image back to the initial noise state. It is based on the assumption that the Ordinary
Differential Equation (ODE) process can be reversed in the limit of small steps. Dhariwal & Nichol
(2021) gave an inverse process based on DDIM (named DDIM inversion), which reconstructs the
initial noise tensor zT given an image x. The inversion can be expressed as:

ẑt+1 =

√
αt+1

αt
ẑt +

(√
1

αt+1
− 1−

√
1

αt
− 1

)
· ϵθ(ẑt, c), t = 0, 1, · · · , T − 1,

where αt and αt+1 are model hyperparameters that control the diffusion process, ϵθ(ẑt, c) represents
the noise predicted by the model at step t, c denotes the conditioning input (such as text prompts or
images), and ẑ0 = z0 = E(x) is the encoded representation of the input image. Previous empirical
findings (Wen et al., 2023) suggest that DDIM inversion reliably reconstructs the initial noise, with
ẑT ≈ zT . This reliable inversion performance holds for both unconditional and conditional diffusion
models, even when the conditioning c is absent.

DDIM inversion can thus be used for watermark detection. Given a generated image x and its
associated starting noise zT , we apply DDIM inversion to recover ẑT . This property allows us to
compare the reconstructed noise to the original to detect embedded watermarks effectively.

3.2 IMAGE WATERMARKING: A CRYPTOLOGICAL PERSPECTIVE

In general, image watermarking strategy is designed for a comprehensive scenario involving three
key players: John, the thief Emma, and two types of users, David and Sarah. John is responsible
for training the model, deploying it on a platform, and providing an API for users in the case of not
open-sourcing the code or model weights. Emma, instead of using John’s services, steals images
generated by his model and falsely claims copyright ownership as if she is the artist. Meanwhile,
David and Sarah, as community users, utilize the API to generate and share images. David adheres
to community guidelines, while Sarah engages in the creation of deep fakes and infringing content.

To evade detection and traceability, Sarah applies various data augmentation techniques to alter illicit
images. To prevent this misuse, John embeds a watermark into each generated image. Extracting
this watermark not only provides proof of John’s rightful ownership but also confirms that the image
is artificially generated, distinguishing it from natural images.

4 METHODOLOGY

In this section, we will provide a detailed description of each dimension of our watermark. Our goal
is to provide a comprehensive guide that details the step-by-step process for watermarking diffusion
models, thereby facilitating knowledge transfer and enabling others to replicate and enhance our
work.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

4.1 A COMPREHENSIVE FRAMEWORK FOR LATENT REPRESENTATION WATERMARKING

To embed a robust and stealthy watermark within diffusion models, it is crucial to preserve the
distribution of the initial latent representation zT ∈ Rh×w×c (which is intricately linked with im-
age semantics), enhancing detectability against various attacks. To this end, various watermarking
methods are raised.

We attempt to categorize watermarking methods for latent representations along three dimensions,
which serves as our method framework: ❶ the distribution of individual elements, ❷ the speci-
fication of watermark regions within each channel, and ❸ the choice of channels for watermark
embedding. The three dimensions constitute a comprehensive image watermarking framework, and
each of them all plays a pivotal role in the effectiveness of the watermarking method, impacting
both the quality of the generated images and the resilience of the watermark. As a prologue, we
decompose existing image watermarking methods under our proposed framework in the following.

Distribution of Individual Elements. The first dimension concerns the domain used and how
the values are set for each element. Previous work such as Tree-ring (Wen et al., 2023) set the
value to a constant in the Fourier frequency domain within each circle, creating a ring-like pattern.
Ring-ID (Ci et al., 2024) advances this approach by imprinting the tree-ring pattern only in the
real part of the Fourier transform and leaving the imaginary part blank, satisfying the odd function
constraint and improving imperceptibility. Post-hoc processing methods like DwtDctSVD (Cox
et al., 2007) embed the watermark by modifying wavelet coefficients; they alter the singular values of
the Discrete Cosine Transform (DCT) coefficients in the Discrete Wavelet Transform (DWT) domain
to encode the watermark. Gaussian-shading (Yang et al., 2024) imprints the watermark in the spatial
domain by selecting the value of each element from a sub-distribution of the original, maintaining
the overall distribution while embedding the watermark. Notably, learning-based methods, such
as Stable Signature (Fernandez et al., 2023) and AquaLoRA (Feng et al., 2024), tuned the model
weights to learn the values to inject, allowing the model to embed the watermark seamlessly during
the generation process.

Specification of Watermark Regions. The second dimension addresses the selection of water-
mark regions within each channel of size h×w. Tree-ring (Wen et al., 2023) and Ring-ID (Ci et al.,
2024) introduce a watermark as a ring shape consisting of several concentric circles in the frequency
domain, targeting specific frequency components to achieve a balance between robustness and invis-
ibility. DwtDctSVD (Cox et al., 2007) embeds the watermark into pixel blocks within the combined
DWT and DCT frequency domains. Similarly, Gaussian-shading (Yang et al., 2024) defines blocks
as the regions to inject the watermark. Learning-based methods typically inject the watermark into
all locations within the channel, allowing the model to determine the optimal embedding regions
during training.

Choice of Channels for Watermark Embedding. The third dimension pertains to the choice of
channels for watermark embedding among the c channels. Tree-ring (Wen et al., 2023) and post-hoc
processing methods like DwtDctSVD (Cox et al., 2007) added the watermarks into specific chan-
nels based on empirical observations, often selecting channels that are less sensitive to perceptual
changes to maintain image quality. In contrast, Gaussian-shading (Yang et al., 2024), Ring-ID (Ci
et al., 2024), and learning-based methods injected the watermark into all channels, leveraging the
entire latent space for embedding and potentially increasing robustness against attacks.

4.2 GENERALIZING RED/GREEN LIST FOR SAMPLING

As discussed in Section 4.1, previous methods like Tree-ring, Ring-id, and DwtDctSvd heavily
relied on setting selected watermarked elements to pre-defined constants. However, the fixed-value
operations definitely introduce noticeable artifacts that degrade generation quality, considering the
h×w×c elements in a latent representation are indeed independent and identically distributed (IID)
standard univariate Gaussians N (0, 1). Moreover, under various attacks these elements can easily
be altered, making the watermark difficult to detect.

To overcome these limitations, we propose a distribution-preserving watermarking technique (the
characteristic of distribution preservation is reflected in Lemma 4.1). Inspired by the Red/Green
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Original 𝐦=0 𝐦=1

Figure 1: Standard normal distribution partitioning based on watermark value m. The left shows
the original PDF, while the middle and right plots illustrate the “green” and the “red” domains for
m = 0 and m = 1, respectively, with the dividing line at x = 0. Best viewed when zoomed in.

List watermarking method (Kirchenbauer et al., 2023; Zhao et al., 2024b) widely studied in large
language models (LLMs), we divide the density function ϕ(x) of the standard Gaussian distribution
into two domains of equal probability 0.5. Specifically, we partition the distribution at the origin,
creating two truncated distributions disjointly over (−∞, 0] and (0,∞). The watermarking process
assigns each latent element zeT to one of these intervals based on the watermark value m, which can
be either 0 or 1. This ensures that the latent representations conform to the conditional distribution:

p(zeT | m = i) =

{
2 · ϕ(zeT ) if Q

(
i
2

)
< zeT ≤ Q

(
i+1
2

)
0 otherwise

where Q(·) is the quantile function of the standard Gaussian distribution N (0, 1), i.e., the inverse
of its cumulative distribution function (CDF). By dividing the continuous standard Gaussian dis-
tribution into two portions based on the watermark value m, we effectively discretize it to define
“green” and “red” domains, similar to the green/red list method in LLM watermarking. The fol-
lowing lemma shows our proposed watermarking technique is distribution-preserving (the proof is
deferred to Appendix B.1):
Lemma 4.1 (Marginal Distribution of Elements). Every element in the latent representation
marginally follows the standard normal distribution N (0, 1).

As a closing remark, the key difference between the green/red list method and ours is that, rather
than globally sharing the green/red list, we assign different “green” domains—either (−∞, 0] or
(0,∞)—for different elements. Figure 1 illustrates the sampling process of our proposed method.
This approach can also be extended to multiple (i.e., more than 2) cumulative probability portions.
Importantly, when averaged over all possible watermark values, the marginal distribution p(zeT ) of
the watermarked latent tensor remains the same as the original latent representation.

4.3 REGION SPECIFICATION

Compared to LLM watermarking, image watermarking needs to specify the regions (the collec-
tions of elements) to be separately watermarked; watermarks that span the entire initial input can
be overly sensitive to various transformations, making detection vulnerable to noise, distortions, or
local perturbations. In this regard, previous works primarily define watermark embedding regions
as ring-shaped (Wen et al., 2023), block-shaped (Cox et al., 2007), or learnable values distributed
across all locations (Zhang et al., 2019). Specifically, Cox et al. (2007); Yang et al. (2024) introduced
block-based structures, which enhance robustness by localizing the watermark to discrete regions,
demonstrating resilience against noise addition, particularly global noise. On the other hand, ring-
shaped regions offer robustness against geometric transformations such as rotation. In this section,
we will illustrate how to specify the regions for the watermark, to further improve the distribution-
preserving generalized red/green list method proposed in Section 4.2; the corresponding watermark
detection processes are deferred to the “Detection aggregation along channels” paragraph in Sec-
tion 4.4.

“Random Gaussian” Watermarking with Redundant and Dispersed Watermarks. Our first
idea is to introduce redundancy to attain resistance to attacks. Inspired by Vision Transformers
(Dosovitskiy et al., 2020), we split the initial input into patches, each carrying an identical watermark
matrix W of the same shape as the patch; every element of W is a watermark value m denoting
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the “green” domain. This redundancy strengthens robustness, as information from multiple patches
can be aggregated during detection; even if some patches are compromised, ensemble methods help
reconstruct the watermark, ensuring reliable detection.

However, redundant patterns over block-shaped patches notably introduces another challenge—the
substantial degradation of generation quality due to the artificial structuring of the input. To main-
tain image fidelity while preserving watermark robustness, we move away from the concept of fixed
block-shaped patches, and instead suggest randomly coordinated regions that exhibit more nat-
ural distribution (c.f. the illustration in Figure 2 and the technical analysis in Proposition 4.2).
Technically, we will uniformly sample a permutation of the representation elements and then adopt
the block-shaped specification, which thoroughly disperse the elements. This change reduces the
visual artifacts commonly associated with rigid patterns and better preserves the generation quality.

Fixed Randomized

Figure 2: Comparison of Random Gaussian watermarking between fixed and randomized patches.
Different colors represent distinct patches. The left plot shows a fixed patch arrangement, while the
right plot displays a randomized patch configuration.

To validate the claim that dispersed watermarks induce more natural representation distribution, we
show in the following proposition that the correlation of two elements quickly diminish with the
patch size n, and the limiting covariance matrix is thus akin to the one of a multivariate standard
normal distribution. (The proof is provided in Appendix B.2.)

Proposition 4.2 (Correlation Between Elements). Let p be the number of patches and n indicate
the number of pixels in a patch. The correlation between any two elements X and Y in the tensor is
given by

Corr(X,Y ) =
2

π
· p− 1

np− 1
.

Furthermore, for a fixed representation size np, Corr(X,Y ) is exclusively influenced by the number
of patches p.

The proposition above suggests selecting a small p to minimize the correlation; however, this choice
will damage the robustness, which reflects a trade-off between quality and robustness.

“Gaussian Ring” Watermarking for Geometric Robustness. Given the more specific require-
ment to handle geometric transformations, the preceding approach is too general and thus sub-
optimal; we introduce an alternative approach to complement our framework: injecting the so-called
“Gaussian Rings” into the representation of the latent space.

The concept of “ring” implies a representation tensor is divided by a series of disjoint rings, which
naturally inherits the “redundancy” idea and enhances robustness. In detail, each Gaussian Ring is a
meticulously structured ring-shaped region carrying a specific watermark value, designed to provide
rotational invariance. As shown in Figure 3, the elements on a ring with a specific radius share the
same watermark value, all sampled from a truncated Gaussian with a designated (“green”) domain.

Unlike previous works that embed rings in the frequency domain (Wen et al., 2023), our method
remains entirely within the spatial domain, which simplifies operations and avoids error propaga-
tion that can arise from spatial-frequency transformation. Working only in the spatial domain also
enables direct manipulation of the latent space without the need for frequency-based transforma-
tions, reducing computational overhead and improving integration with mainstream spatial-based
generative models.
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Figure 3: Visualization of Gaussian Ring Watermarking for geometric robustness. The left image
shows two Gaussian rings embedded in the latent space, with deep green and light green indicating
the two rings. The top and bottom examples on the right illustrate how different truncated Gaussian
distribution are mapped to these rings in the latent space.

4.4 MULTI-CHANNEL WATERMARKING AND DIRECT APPLICATIONS

We have proposed two types of region specification in Section 4.3. To further enhance the ro-
bustness and versatility of our watermarking approach, we propose a hybrid watermarking strat-
egy that combines the strengths of the “Random Gaussian” and “Gaussian Ring” watermark-
ing techniques, through dynamically applying the watermarking techniques according to a third
dimension—watermarking channels .

Imprinting To effectively integrate these two methods, we adopt a channel rating strategy to de-
termine the watermarking technique to apply, specifically through calculating the sensitivity to ge-
ometric transformations. For a channel c (the notation is slightly abused here), we compute the
magnitude of the gradient w.r.t. to a geometric transformation loss Lgeo:

gc = ∥∂Lgeo/∂z
c
T ∥2 , Lgeo(z0, z

rot
0 ) = ∥D(z0)−D(zrot

0 )∥22,

where zcT represents the latent representation of channel c at time step T , D(z0), D(zrot
0 ) denote

the images generated by zT before and after 90 degree rotation, respectively, and ∥·∥2 denotes the
Euclidean norm. Clearly, the channels with larger gradient magnitudes gc are more sensitive to geo-
metric transformations, and we will apply Gaussian Ring watermarking to enhance their robustness
against geometric attacks. Conversely, for channels with smaller gradient magnitudes we will apply
Random Gaussian watermarking to better handle non-geometric attacks. In summary, by embedding
both random and structured watermark patterns, even if part of the watermarks are compromised by
a specific attack, the others can still be detected, enhancing overall robustness.

Detection aggregation along channels. During the watermark detection process, we calculate
the accuracy for each channel by evaluating whether the elements of ẑ(c)T (a certain channel of the
representation ẑT , an h×w matrix) fall into the specified “green” region1. The so-called “accuracy”
Acc(z

(c)
T , wc) for channel c is calculated as:

Acc(ẑ
(c)
T ,mc) =

1

Nc

Nc∑
i=1

1{zci ∈ Green Region(mc)}

where Nc is the number of watermarked elements in channel c, zci is the i-th element of channel c,
mc is the watermark value for channel c, and 1{·} is the indicator function, which equals 1 if the
event is true and 0 otherwise. The overall watermark recovery accuracy is determined by aggregating
the accuracy across all channels. To adaptively address varying attack conditions, we propose the
combined watermark accuracy to select the most robust component:

Acc(m̂) = max
c∈Cm

Acc(ẑ
(c)
T ,mc)

1In addition to the practical detection based on the accuracy metric, a testing procedure is depicted in
Appendix B.3.
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where Cm is the set of all channels where the watermark is embedded. In practice, we embed the
watermark across all channels to enhance overall robustness. The detection process is guided by
the intuition that a robust watermark will maintain higher accuracy when compared to ground-truth
watermark patterns than those that are not resilient to certain attacks. Our approach allows for the
adaptive selection of the most robust watermark under different attack scenarios.

This adaptive approach leverages the advantages of both watermarking techniques, enhancing the
overall robustness and reliability of the watermark. Moreover, by combining these methods, the
total watermark capacity is greatly increased, as the combined capacity becomes the product of
the individual capacities of each technique. The increased capacity allows users to embed more
information, improving the efficacy of traceability across diverse use cases. We validate this strategy
through empirical studies in Section 5.2.

5 EMPIRICAL RESULTS

We conduct experiments on two widely-used diffusion scenarios: text-to-image diffusion models
and image-to-image diffusion models, to evaluate the effectiveness and robustness of our water-
marking technique across various attack scenarios. Additionally, we perform ablation studies in
Section 5.3 for a deeper analysis of the method.

5.1 EXPERIMENTAL SETTING

This paper first examines the proposed method on text-to-image diffusion models, with a particular
focus on Stable Diffusion (SD) models (Rombach et al., 2022). The generated images have a dimen-
sion of 512×512, while the latent space is sized at 64×64×4. For inference, we use prompts from
Stable-Diffusion-Prompt, setting the guidance scale to 7.5. Image generation is conducted over 50
steps using the DPMSolver (Lu et al., 2022). The watermark radius r ranges from 5 to 15, with an
interval of 2. We divide the images into patches, with each patch containing 64 elements. Consid-
ering the common user practice of sharing generated images without retaining the original prompts,
we perform inversions using an empty prompt and a guidance scale of 1. Inversions are executed
with 50 steps using the DDIM method (Song et al., 2020).

We further evaluate the effectiveness of our watermarking approach in image-to-image editing tasks
using pre-trained image-conditioned diffusion models. Specifically, we leverage the instruct-pix2pix
model (Brooks et al., 2023), a high-performance model fine-tuned from Stable Diffusion on paired
image datasets. For these editing tasks, we apply DDIM inversion, again using an empty prompt and
an empty original image with a guidance scale of 1. Both inference and inversion are performed with
100 steps to maintain consistency with the original setup, while all other hyperparameters remain
consistent with Stable Diffusion.

For evaluating generation quality, we adopt the Frechet Inception Distance (FID) (Heusel et al.,
2017) and CLIP-Score (Radford et al., 2021). FID is calculated on the COCO2017 validation set,
which contains 5,000 images, to assess image quality. Additionally, prompts from Stable-Diffusion
(Rombach et al., 2022) and images from Instructpix2pix (Brooks et al., 2023) are used to generate
images. For the Stable Diffusion model, we calculate the CLIP score between the generated images
and the text prompts, while for the instruct-pix2pix model, we evaluate the CLIP score between the
generated images and the ground truth descriptions.

In the detection scenario, we compute the true positive rate (TPR) corresponding to a fixed false
positive rate (1% FPR). In the traceability scenario, we assess identification accuracy across var-
ious watermark patterns. For AUC and TPR@1%FPR, we generate 1,000 watermarked and 1,000
unwatermarked images in each run. All reported metrics are averaged across three runs, each using
different random seeds in line with this protocol.

5.2 PERFORMANCE OF THE PROPOSED METHOD

To benchmark the robustness of our watermarking method, we document its performance under
several widely-used augmentation-based attacks. The details of the attacks are deferred to Ap-
pendix A.1. The results, shown in Table 1, present the average detection performance against various
types of attacks. These findings demonstrate that our proposed method offers robust watermarking
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Table 1: Performance comparison of different watermarking methods on Stable Diffusion under
clean and adversarial conditions. The metrics are split into two categories: Fidelity and Robustness.

Methods
Robustness Fidelity

TPR @1%FPR AUC Acc FID (↓) CLIP-ScoreClean Adversarial Clean Adversarial Clean Adversarial

Stable Diffusion - - - - - - 25.23 0.363

DwtDct 0.909 0.166 0.974 0.574 0.950 0.527 25.28 0.364
DwtDctSvd 1.000 0.269 1.000 0.702 1.000 0.691 25.01 0.359
RivaGAN 0.997 0.472 0.999 0.854 0.998 0.802 24.51 0.361
Stable Signature 1.000 0.414 1.000 0.818 1.000 0.751 25.45 0.364
Tree-Ring 1.000 0.922 1.000 0.993 1.000 0.979 25.29 0.363
Gaussian Shading 1.000 0.809 1.000 0.911 1.000 0.864 25.20 0.364
AquaLoRA 1.000 0.738 1.000 0.871 1.000 0.817 25.50 0.363

Ours 1.000 0.984 1.000 0.999 1.000 0.994 25.20 0.363

Table 2: TPR@1%FPR under different attacks for Stable Diffusion, showing the effectiveness of
our method over a number of attacks.

Method Clean Rotation JPEG Cr. & Sc. Blurring GauNoise Color Jitter S&PNoise DeNoise Flip Avg
DwtDct 0.909 0.027 0.008 0.092 0.011 0.354 0.126 0.089 0.016 0.023 0.166
DwtDctSvd 1.000 0.011 0.156 0.057 0.538 0.732 0.117 0.021 0.018 0.042 0.269
RivaGan 0.997 0.012 0.756 0.762 0.428 0.541 0.694 0.477 0.025 0.027 0.472
Stable Signature 1.000 0.032 0.713 0.816 0.015 0.624 0.843 0.072 0.011 0.018 0.414
Tree-Ring 1.000 0.477 0.995 0.932 0.999 0.926 0.900 0.987 1.000 1.000 0.922
Gaussian Shading 1.000 0.007 0.999 1.000 1.000 0.999 0.992 0.999 1.000 0.097 0.809
AquaLoRA 1.000 0.013 0.987 0.941 1.000 0.954 0.847 0.693 0.812 0.133 0.738

Ours 1.000 0.852 1.000 1.000 1.000 0.996 0.996 1.000 1.000 0.998 0.984

solutions, outperforming different baselines in withstanding a wide range of adversarial manipula-
tions. In terms of fidelity, our method achieves comparable performance to other techniques, with
similar FID and CLIP-Score values, indicating minimal impact on image quality.

Further, we show the TPR@1%FPR for each attack setting in Table 2. Our spatial domain water-
marking method outperforms Tree-Ring, particularly under rotational attacks (0.852 vs. 0.477) and
various noisy conditions, such as Gaussian noise (0.996 vs. 0.926). While Gaussian Shading excels
in noisy settings (e.g., 1.000 for blurring), it struggles with geometric transformations like rotation
(0.007). Overall, our method achieves the highest average performance, demonstrating outstanding
robustness across both geometric and noise-based adversarial attacks. More experimental results on
the instruct-pix2pix model and the image-to-image edit task are shown in Table 6 in Appendix A.2.
The analysis of watermark capacity and identification is shown in Appendix A.3. All the experi-
mental results demonstrate the superior performance of our method.

5.3 ABLATION STUDIES

We conduct extensive ablation studies on several key hyperparameters of our proposed method to
demonstrate the effectiveness of our method.

To validate the generalization of our approach, we evaluated five commonly used sampling methods
in diffusion: DDIM (Song et al., 2020), UniPC (Zhao et al., 2024a), PNDM (Liu et al., 2022), DEIS
(Zhang & Chen, 2022), and DPMSolver (Lu et al., 2022). As shown in Table 3, with our proposed
watermarking technique, all sampling methods demonstrate excellent and comparable performance,
particularly in clean conditions where all methods achieved a perfect detection rate. Under adver-
sarial noise, DPMSolver shows a marginally better detection rate, but overall, all sampling methods
maintain high robustness.

Table 4 shows that increasing the patch size improves robustness against adversarial attacks but
reduces image quality, as reflected by a lower CLIP-Score. For the ring radius, placing the ring near
the center (c.f. the column “0-5” in Table 5) harms generation quality since it embeds key structural
and semantic information for diffusion. The medium ring radius (“5-15”) offers the best balance,
providing strong rotation robustness, while maintaining image quality. Due to space constraints, the
ablation study on Gaussian Ring and Random Gaussian watermarks is provided in Appendix A.4,
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Table 3: Detection TPR with different sampling methods in diffusion models.

Noise Sampling Method
DDIM UniPC PNDM DEIS DPMSolver

Clean 1.000 1.000 1.000 1.000 1.000
Adversarial 0.978 0.972 0.983 0.982 0.984

CLIP-Score 0.363 0.362 0.363 0.363 0.363

Table 4: Detection TPR@1%TPR with dif-
ferent patch sizes.

Patch Size 4 16 64 256
None 0.993 1.000 1.000 1.000
Adversarial 0.757 0.924 0.984 0.986

CLIP-Score 0.364 0.363 0.363 0.359

Table 5: Detection TPR@1%TPR with dif-
ferent ring radii.

Ring Radius 0-5 5-10 0-10 5-15 10-15
None 1.000 1.000 1.000 1.000 1.000
Rotation 0.512 0.643 0.828 0.852 0.767

CLIP-Score 0.361 0.363 0.359 0.363 0.363

the analysis of inversion and inference steps is in Appendix A.5, and the impact of channels is
discussed in Appendix A.6. All results demonstrate the effectiveness of our method.

5.4 VISUALIZATION

In this subsection, we visualize the watermarked and non-watermarked diffusion-generated images
in Figure 4. It demonstrates that our watermarked images successfully preserve the semantic in-
formation and maintain high visual quality across different scenarios. In text-to-image diffusion,
the watermarked images remain visually similar to the non-watermarked images while keeping the
intended semantics intact. In the image-to-image diffusion setting, the watermarked images exhibit
even greater visual similarity to both the original and non-watermarked images, due to the input
image providing additional guidance. These illustrations empirically validate that our watermarking
method effectively maintains image integrity while embedding the watermark.

Non-watermarked Watermarked

Three wild 
turkeys on top of 
the dried pasture 

A blue train on 
some train tracks 
about to go 
under a bridge 

(a) Text-to-image Diffusion

Make the pathway be made of gold

Make it a painting

Original Non-watermarked Watermarked

(b) Image-to-image Diffusion

Figure 4: Visualization of both the watermarked and non-watermarked generated images in different
scenarios. For image-to-image editing, we also include the original images.

6 CONCLUDING REMARKS

In this paper, we introduce a unified framework to dissect watermarking approaches for diffusion
models along three distinct dimensions. By further adapting the principle of LLM watermarking,
we innovatively instantiate a more effective hybrid model under this framework, maintaining high
fidelity, ensuring robust watermarking against a variety of attacks, and attaining minimal computa-
tional overhead. We extensively evaluate the resulting model derived from the framework on text-
to-image applications, which outperforms existing state-of-the-art image watermarking methods.
Moreover, we directly apply the proposed model to less studied image-to-image diffusion models;
the exceptional performance further evidence a significant advancement in digital watermarking.
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A MORE ON EXPERIMENTS

The code and model weights will be open-sourced after the review procedure.

A.1 IMPLEMENTATION DETAILS

The attacks implemented in the paper include Gaussian blurring with a filter size of 4, Gaussian noise
with a standard deviation of 0.05, JPEG compression with a ratio of 25%, and salt-and-pepper noise
with a probability of 0.05. Additionally, we evaluate against brightness adjustments where the factor
is set to 6, random cropping and resizing with a 75% ratio, rotation by 75 degrees, and horizontal and
vertical flips with probabilities of 0.5 each. We also incorporate a model-based attack, DeNoise, as
introduced by Zhao et al. (2023a), which leverages a diffusion model to denoise the output, aiming
to remove any potential watermark.

For the Gaussian Ring Watermark, the watermark radius r ranges from 5 to 15, with an interval of 2.
For the Random Gaussian Watermark, we divide the images into patches, with each patch containing
64 elements. Furthermore, to enhance the randomness and security of the watermark, we employ a
stream key—a cryptographic key used in encryption algorithms to generate a sequence of pseudo-
random values. Following Yang et al. (2024), we employ a stream key to encrypt the watermark,
which consists of binary values (0/1), into a randomized version m using an encryption method like
ChaCha20 (Bernstein et al., 2008). The encrypted watermark W , now uniformly distributed, avoids
detectable artifacts while maintaining alignment with the natural data distribution.

A.2 EMPIRICAL RESULTS ON INSTRUCT-PIX2PIX

Table 6: AUC under each Attack for Instruct-pix2pix image-to-image diffusion, showing the effec-
tiveness of our method over a number of augmentations.

Method Clean Rotation JPEG Cr. & Sc. Blurring GauNoise Color Jitter S&PNoise DeNoise Flip Avg
Tree-Ring 0.751 0.586 0.689 0.653 0.695 0.625 0.615 0.673 0.602 0.605 0.649
Gaussian Shading 0.963 0.532 0.961 0.924 0.943 0.912 0.942 0.912 0.916 0.525 0.853
Ours 0.988 0.830 0.976 0.947 0.970 0.914 0.946 0.920 0.942 0.841 0.927

The experimental findings in Table 6 demonstrate that, even in the more challenging image-to-
image diffusion scenarios, our method maintains high robustness across various attack types, with an
average AUC of 0.927. In contrast, the performance of the Tree-Ring method significantly declines,
possibly because it sets selected values to constants, heavily relying on inversion precision. In
image-to-image settings, inversion is more difficult due to the absence of multiple inputs including
the conditional editing prompt and input image during the inversion process. This highlights the
strength of our method, which can achieve robustness even when inversion accuracy is compromised,
further underscoring its effectiveness in complex scenarios.

A.3 WATERMARK CAPACITY AND IDENTIFICATION

Table 7: Traceability and identification accuracy across 32 distinct watermark patterns.

Method Clean Rotation JPEG Cr. & Sc. Color Jitter GauNoise Avg
Tree-Ring 0.435 0.012 0.401 0.045 0.412 0.505 0.302
Ours 1.000 0.828 0.992 0.984 0.980 0.982 0.961

The experimental results in Table 7 demonstrate the superior capacity and robustness of our wa-
termarking method compared to the Tree-Ring approach. In our method, two distinct watermarks
are injected into different channels, each carrying a and b bits of information. This results in 2a

and 2b possible patterns for each channel, and when combined, the total capacity becomes 2a+b.
This significantly increases the capacity and enhances the distinguishability of the watermarks com-
pared to constant value-based approaches like Tree-Ring. The results show that across various use
cases and watermark patterns, our method consistently achieves high identification accuracy, while
the Tree-Ring approach fails, especially under adversarial conditions. These findings underscore
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the effectiveness of our method in maintaining both traceability and identification accuracy, even in
challenging adversarial scenarios.

A.4 ABLATION STUDY ON RANDOM GAUSSIAN AND GAUSSIAN RING

Table 8: Comparison of detection performance (TPR@1%FPR) across various methods under differ-
ent attack scenarios, including Random Gaussian removal, Gaussian Ring removal, and the proposed
method (Ours).

Method Clean Rotation JPEG Cr. & Sc. Blurring GauNoise Color Jitter S&PNoise DeNoise Flip Avg
w/o Random Gaussian 1.000 0.841 0.966 0.954 0.937 0.923 0.982 0.984 0.931 0.997 0.952
w/o Gaussian Ring 1.000 0.011 1.000 1.000 0.986 0.994 0.988 0.996 1.000 0.015 0.799

Ours 1.000 0.852 1.000 1.000 1.000 0.996 0.996 1.000 1.000 0.998 0.984

The experimental results in the Table 8 show that both the Random Gaussian and Gaussian Ring
watermark patterns are critical to the success of our method. The Random Gaussian watermark
demonstrates greater robustness against noise-based attacks, as indicated by the high performance
in noise-related tests (e.g., Salt & Pepper Noise: 0.996), while the Gaussian Ring watermark shows
superior robustness to geometric transformations, such as rotation (0.011 for without Gaussian Ring,
compared to 0.841 with Gaussian Ring). Despite this, both patterns perform well individually,
achieving strong results across various attack scenarios. The combination of the two watermarks
in our method results in the highest overall performance (average 0.984), demonstrating that these
patterns are not only effective but also complementary, enhancing the overall robustness when used
together.

A.5 ABLATION STUDY ON INFERENCE AND INVERSION STEPS.

Table 9: Detection TPR@1%FPR with different inversion and inference steps.

Inversion Step
Inference Step 10 25 50 100
10 0.975 0.976 0.973 0.970
25 0.968 0.978 0.981 0.981
50 0.965 0.967 0.984 0.982
100 0.965 0.966 0.977 0.984

The experimental findings in Table 9 demonstrate that different inversion steps consistently perform
well in terms of detection accuracy, with minimal loss even when there is a mismatch between infer-
ence and inversion steps. In real-world scenarios, the exact inference step is often unknown, which
can result in this mismatch. However, the table shows that detection performance remains robust
across various combinations of steps. Given the efficiency of existing samplers and the optimal
performance observed with 50 inversion steps, we select 50 steps as a balanced trade-off between
accuracy and computational efficiency.

A.6 ANALYSIS ON CHANNELS

The experimental findings in Figure 5 show substantial variation in performance across different
channels, with Channel 2 achieving the highest accuracy. Notably, the computed gradient values
align closely with the robustness accuracy for each channel, indicating that gradient strength is a
reliable indicator of channel performance. This suggests that channels with stronger gradients are
better suited for embedding the Gaussian Ring Watermark, providing a useful guideline for selecting
the optimal channel for watermarking to enhance specific robustness.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 5: Comparison of accuracy and normalized gradient across four channels. Each channel
contains two bars: the blue bar represents the accuracy for that channel, while the red bar shows the
corresponding normalized gradient.

B PROOFS OMITTED IN THE MAIN TEXT

B.1 PROOF OF LEMMA 4.1

Proof. Let Z be a random variable representing the value of an element in the latent representation.
The pixel Z is sampled based on a watermark bit B ∈ {0, 1}, which determines the region of the
Gaussian distribution from which Z is drawn.

The conditional distribution of Z given B is:

pZ|B(z
e
T |w) =

{
2ϕ(zeT ), if zeT ∈ R(w),

0, otherwise,

where ϕ(x) =
1√
2π

e−x2/2 is the standard normal probability density function, and R(w) is defined
as:

R(w) =

{
(−∞, 0], if w = 0,

(0,∞), if w = 1.

The watermark bits B are assumed to be independent and uniformly random, i.e., P (B = 0) =

P (B = 1) =
1

2
. The marginal distribution of Z is then:

pZ(z
e
T ) =

∑
w∈{0,1}

pZ|B(z
e
T |w)P (B = w)

=
1

2
· 2ϕ(zeT )1ze

T≤0 +
1

2
· 2ϕ(zeT )1ze

T>0

= ϕ(zeT )
[
1ze

T≤0 + 1ze
T>0

]
= ϕ(zeT ).

Therefore, Z marginally follows the standard normal distribution N (0, 1). ♢
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B.2 PROOF OF PROPOSITION 4.2

Proof. Consider two elements X and Y within a latent representation divided into p patches, each
containing n pixels, totaling N = pn pixels. Pixels within the same patch share a common water-
mark bit W , while those in different patches have independent watermark bits.

Cov(X,Y ) = E[XY ]− E[X]E[Y ].

Given E[X] = E[Y ] = 0, this simplifies to:

Cov(X,Y ) = E[XY ].

When X and Y are in the same position across different patches, they share the same watermark
bit W . Given W , X and Y are independent and follow a Half-Normal Distribution with variance
σ2 = 1.

The probability density function (PDF) of a Half-Normal Distribution with variance σ2 = 1 is

fY (y) =

√
2

π
exp

(
−y2

2

)
, y ≥ 0.

The expectation E[Y ] is calculated as

E[Y |W = 1] =

∫ ∞

0

y · fY (y) dy

=

√
2

π

∫ ∞

0

√
2t · e−t · 1√

2t
dt (where t =

y2

2
)

=

√
2

π
.

Similarly, for W = 0,

E[Y |W = 0] = −
√

2

π
.

Since X and Y are independent given W ,

E[XY |W ] = E[X|W ]E[Y |W ] =

(√
2

π

)2

=
2

π
.

When X and Y are in different positions across different patches, their watermark bits WX and WY

are independent. Therefore,

E[XY |Different Positions] = E[X]E[Y ] = 0.

The probability that two randomly selected pixels are in the same position across different patches
is

Ps =
#Same Position

#Total
=

p− 1

np− 1

Combining the cases, we have

E[XY ] = Ps ·
2

π
+ (1− Ps) · 0 =

2

π
· p− 1

np− 1
.

Given that Var(X) = Var(Y ) = 1,

Corr(X,Y ) =
Cov(X,Y )√

Var(X)Var(Y )
=

2

π
· p− 1

np− 1
.

♢
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B.3 ILLUSTRATION OF THE STATISTICAL TEST

In this work, our primary focus is on evaluating the actual performance of the watermarking method.
However, a statistical analysis can also be derived. Let m ∈ {0, 1}k represent a k-bit (independent)
watermark embedded in the model. We extract the message m′ from an image x and compare it
with m. As outlined in previous works, the detection test is based on the number of matching bits,
A(m,m′). Specifically, if

A(m,m′) ≥ τ where τ ∈ {0, . . . , k},

then the image is flagged. This approach provides a level of robustness against imperfections in the
watermarking process.

Formally, we test the statistical hypothesis H1: ”image x was generated by the watermarked model”
against the null hypothesis H0: ”image x was not generated by the watermarked model.” Under
H0 (i.e., for non-watermarked images), we assume that the bits m′

1, . . . ,m
′
k are independent and

identically distributed (i.i.d.) Bernoulli random variables with a parameter of 0.5. Consequently,
A(m,m′) follows a binomial distribution with parameters (k, 0.5). This assumption has been ex-
perimentally validated.

The theoretical FPR is defined as the probability that A(m,m′) exceeds the threshold τ . It is calcu-
lated using the CDF of the binomial distribution. A closed-form expression can be derived using the
regularized incomplete beta function Ix(α;β):

FPR(τ) = P(M > τ |H0) = I1/2(τ + 1, k − τ).
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