A REGULARIZATION THEORY

Theorem A.1. Given a deep neural network A which consists of only convolution and linear layers.
Let the network use one of f(x) = min{x, 0} (relu) or f(x) = x (linear) as the activation function.
Let the network be trained using the adjoined loss function as defined in Eqn. 3. Let X be the set of
parameters of the network A which is shared across both the smaller and bigger networks. Let Y be
the set of parameters of the bigger network not shared with the smaller network. Let p be the output
of the larger network and let q be the output of the smaller network where p;, q; represents their ith
component. Then, the adjoined loss function induces a data-dependent regularizer with the following
properties.

* Forall x € X, the induced Ly penalty is given by >, p; (log’ p; — log’ qi)2
* Forally € Y, the induced Ly penalty is given by . p; (log’ pi)2

Proof. We are interested in analyzing the regularizing behavior of the following loss function.
—ylogp + KL(p,q) y is the ground truth label, p is the output probability vector of the bigger
network and ¢ is the output probability vector of the smaller network. Recall that the parameters of
smaller network are shared across both. We will look at the second order taylor expansion for the
kl-divergence term. This will give us insights into regularization behavior of the loss function.

Let x be a parameter which is common across both the networks and y be a parameter in the bigger
network but not the smaller one.

sz)(log pi(x) — log g;(w)) and D(y sz (logpi(y) —log ;)
For the parameter Y, q; is a constant. Now, computing the first order derivative, we get that

sz (logpi(y) —log i) + pi(y)

Now, computing the second derivative for both the types of parameters, we get that

D)= Sk) (og(e) - 1ogqi<x>)+p;<x><pg(“’”)qg(x))w;’(x)

pi(®) qi(x)
A)q'i(i (x) + qi(x)q (2)pi(x) — q;(z)q;(x)pi(x)
q; (x)

" N Pwpiy) .
D"(Zp)(log pi(y) —log ¢:) + oty TP

" pz za? _ 2pi(2)gi(z) | gi(z)gi(@)pi(x)
D=2 w@) @)

2
= Zpi(x) <zzgg - qli(x)> = Zpi(log/ pi —log' ¢;)° (M

()

Similarly, for the pararneters only in the bigger network, we get that
D'(y) =) pz pZ sz (log’ pi) ®)

Note that y represents the over-parameterized weights of the model. The equations above show
that the regularization imposed by the KL-divergence term on these parameters is such that if these
parameters change a lot (on the log scale) then the penalty imposed on such parameters is more. Thus,
the kl-divergence term encourages such parameters not to change by a lot. [

13

B DATA AUGMENTATION AND HYPERPARAMETERS

We use different data-augmentation techniques for different datasets. Below are the details.

* CIFAR-100
We apply the following set of transforms for these datasets. (1) We horizontal flip the
image with probability 0.5. (2) We normalize the image by using the following mean
[0.5071,0.4867,0.4408] and standard [0.2675, 0.2565, 0.2761].

* ImageNet
On these two datasets, we apply the following set fo transforms. (1) Random resize cropping
- Crop a rectangular region with aspect ratio in [3/4,4/3] (selected uniformly at random)
with area in [0.08, 1.0] of the original area. (2) Flip the image horizontally with probability
0.5. (3) Normalize the image by dividing all pixel values of 255.0.

For CIFAR-100, input size is 32 x 32 for all the other datasets, the input size is 224 x 224. The above
transforms are applicable for the training dataset. For validation, we use center crop - select the center
of the image with 85% area, followed by a normalization step. Note that our data augmentation are
not heavily optimized for accuracy. Rather our goal is to compare adjoined training with standard
training. Hence, we use the same data augmentation steps for both the trainings. For standard training,
our accuracies are still comparable to the accuracies reported in the literature on these datasets using
the ResNet-18 and ResNet-50 architectures. However, the adjoined training methodology proposed
in this paper outperforms the network trained in the standard way.

ImageNet was trained for 100 epochs using learning rate initially set to 4e — 3. We used adam
optimizer with a cosine learning rate schedule with gradual warm-up for training on ImageNet. For
CIFAR-100 we used SGD optimizer for 240 epochs with [= 0.05. MultiStepLR was used to decay
the learning rate by 0.1 at 150, 180, 210" epoch.

More details of the data-augmentation, hyper-parameter settings can be found in the code provided
with the supplementary materials.

C RESNET ARCHITECTURE DIAGRAM

conv(3, 16)
— [conv(l6, 64)] — MaxPool — ResBlock(16, 64) — ResBlock(64, 128)
conv(64, 64) x3 x4
stem

— ResBlock(128,256) — ResBlock(256,512) — AverageAdaptivePool — Linear
6 3
Figure 5: Architecture diagram for ResNet-50 network used in this paper. conv(ni, no) is a combina-

tion of convolution layer with n: input and no output channels followed by a batch norm and relu
layer. The ResBlocks are as defined in Fig. |§}

conv(4ni, no) conv(4no, no)
— | conv(no, no) | — | conv(no, no)
conv(no, 4no) conv(no, 4no)
z(l—-1)
Figure 6: A ResBlock with [layers and input n¢ and output no.

The architecture for ResNet-50 is depicted in Figs. [5|and[6] Each conv layer is actually a combination
of three layers. A standard convolution layer followed by a batch normalization layer followed by
a relu activation. The ResBlock refers to the residual blocks in ResNet architecture. Note that

14

the skip connections are not shown in these diagrams. ResNet-100 is similar to ResNet-50 but
istead of repeating blocks 3, 4, 6 and 3 times, blocks are repeated for 6, 8, 12 and 6 times. The same
architecture has been used for searching in DAN-100. In ResNet-18 architecture, each resblock is
repeated twice. Also, the resblock does not have a factor four in the convolution input and output.

For adjoined networks, the convolution parameters of all the last three resblocks are shared across
both the original and the smaller architecture. Note that both the networks have different parameters
for the batch-norm layers.

D DETAILED EXPERIMENTAL RESULTS

D.1 EXPERIMENTS ON CIFAR-10

Training with ResNet-56 on CIFAR-10
Training paradigm | Masking matrix (M) | Top-1% Full Top-1% Small # Params (M) | FLOPs
Standard 76.8 237 338.59
AN (a) a2 94.71 93.68 0.24 63.94
AN (b) a4 93.32 90.15 0.09 48.33
AN (a) a2 95.01 94.49 0.37 95
AN (b) N 94.83 93.67 0.24 87.1

Table 5: Accuracy for the various training paradigms for ResNet-56 trained on CIFAR-10. For AN
training paradigm # Params and FLOPs represents number of parameters, FLOPs of the smaller
model. For AN models, we replace the standard convolution operation by the adjoined convolution in
the last 18, 36 layers for AN-56-Small (a) and AN-56-Small (b) respectively.

D.2 EXPERIMENTS ON CIFAR-100

Training with ResNet-50 on CIFAR-100
Training paradigm | Masking matrix (M) | Top-1% Full Top-1% Small # Params (M) | FLOPs
Standard 76.8 23.7 338.59
AN a2 77.36 76.9 6.15 140.57
AN N 76.8 75.38 1.8 88.94
AN a4 77.1 74.63 0.67 74.97
AN aie 76.8 72.1 0.38 70.95

Table 6: Accuracy for the various training paradigms for ResNet-50 trained on CIFAR-100. For
AN training paradigm # Params and FLOPs represents number of parameters, FLOPs of the smaller

model.

15

Training with ResNet-18 on CIFAR-100

Training paradigm | Masking matrix (M) | Top-1% Full Top-1% Small # Params (M) | FLOPs
Standard 74.37 11.26 153.89
AN a2 74.8 73.62 3.00 78.62
AN N 74 71.61 0.91 59.47
AN as 74 68 0.39 54.29

Table 7: Accuracy for the various training paradigms for ResNet-18 trained on CIFAR-100. For AN
training paradigm # Params and FLOPs represents number of parameters (in millions), FLOPs of the

smaller model.

Training with DenseNet-121 on CIFAR-100

Training paradigm | Masking matrix (M) | Top-1% Full Top-1% Small # Params (M) | FLOPs
Standard 79 6.96 888
AN az 80.76 78.3 1.77 502
AN N 80.8 76.38 0.7 411
AN as 79 72.13 0.46 387

Table 8: Accuracy for the various training paradigms for ResNet-18 trained on CIFAR-100. For AN
training paradigm # Params and FLOPs represents number of parameters (in millions), FLOPs of the

smaller model.

D.3 EXPERIMENTS ON IMAGENET

Training with ResNet-50 on ImageNet

Training paradigm | Masking matrix (M) | Top-1% Full Top-1% Small # Params (M) | GFLOPs
Standard 76.1 255 4.7
AN a2 76.87 75.1 7.1 22
AN a4 75.84 71.84 22 1.6
AN as 73.46 64.7 0.67 1.4

Table 9: Accuracy for the various training paradigms for ResNet-50 trained on ImageNet. For AN
training paradigm # Params and FLOPs represents number of parameters (in millions), FLOPs of the

smaller model.

16

D.4 EXPERIMENTS WITH DAN

Performance on architectures found by DAN

Dataset Network Search Space | Params FLOPs Accuracy

CIFAR-100 ResNet-50 23.7 0.338 76.8
DAN-50 1,2,4,8,16 1.64 0.084 75.1
DAN-100 1,2,4 6.7 0.173 77.62

ImageNet ResNet-50 25.5 4.7 76.1
ResNet-100 46.99 8.47 71.3
DAN-50 2,4 3.49 1.74 73.33
DAN-100 2,4,8 5.22 1.85 74.78
DAN-100 4,8 6.58 2.15 75.43
DAN-100 1,2,4 12.5 2.95 75.71

Table 10: Performance on architectures found by DAN

E CHOOSING THE REGULARIZATION FUNCTION

Valid loss vs #Epochs

3.5 Cos

Exp
Linear
Quadratic

3.0 1

1.5 4

0 20 40 60 80 100 120 140

Epoch

Figure 7: Validation cross entropy loss for various regularization functions. The networks were

trained using Adj-4 mask matrix on CIFAR-100 using ResNet-18.

adjoined trained with different regularization functions
Regularization function A(t) Top-1 Full Top-1 Small
1 — cos(¥) —2.86 -3.14
t —0.1 —0.15
min{4¢%,1} 0.00 0.00
exp(t) — 1 —0.37 -+0.38

Table 11: The effect of training with different regularization functions on the top-1 accuracies of
the bigger and the smaller networks. The quadratic function min{4¢2, 1} is used as the base for

comparison.

17

Finally, we compare different choices of regularization function for the adjoined loss (Eqn. 3). For all
the previous experiments, we use the ‘quadratic’ function A(t) = min{4¢2, 1}. In this section, we fix
the architecture, dataset and mask matrix as ResNet-18, CIFAR-100 and a4 respectively and vary the
regularization function. We look at different functions which includes exponential and trigonometric
functions. Table[TT]and Fig. [7]both show the same trend. The cos function performs the worst while
the rest have similar performance. We conjecture that any function that is close to zero for ¢ <— 0
and grows to one eventually should be a reasonable choice for the regularization function. Note that
throughout our discussion, we have used \(t) = cmin{4t?, 1} with ¢ = 1. Depending on the dataset,
other values of ¢ maybe more appropriate.

F COMPARISON AGAINST OTHER WORKS

Model Compression Results for ResNet-56 Architecture
Method # Params| GFLOPs| Accuracy | Reference
Gal-0.8 0.29 49.99 90.36 Lin et al. (2019)
Hrank 0.27 32.52 90.72 Lin et al. (2020a)
He at al — 62 90.8 Lin et al. (2019)
GAL-0.6 0.75 78.3 92.98 Lin et al. (2019)
ENC — 63.5 93.0 Kim et al.[(2019)
NISP 0.49 81 93.01 Yu et al.| (2018b)
L1 0.73 90.9 93.06 Li et al.[(2017)
Hrank 0.49 62.72 93.17 Lin et al. (2020a)
ABC-Prunner 0.39 58.54 93.23 Lin et al. (2020b)
CaP — 63.7 93.22 Minnehan & Savakis|(2019)
KSE 0.38 60.96 93.23 Li et al.[(2019)
FPGM - 60.9 93.26 He et al. (2019)
GBN 0.4 50.4 93.43 You et al. (2019)
Hrank 0.71 88.72 93.52 Lin et al. (2020a)
Hinge 0.41 63.5 93.69 Li et al.[(2020)
AN-56-Small az(a) (Our) 0.37 95 94.49
AN-56-Small az(b) (Our) | 0.27 63.94 93.68

Table 12: The table shows the performance of various pruning methods when trained on the CIFAR-10
dataset for ResNet-56 architecture. a,, in AN-50-Small denotes the mask matrix as defined in Eqn.
For AN models, we replace the standard convolution operation by the adjoined convolution in the last
18, 36 layers for AN-56-Small as(a) and AN-56-Small ao(b) respectively. B}

Model Compression Results for ResNet-110 Architecture
Method # Params| GFLOPs| Accuracy | Reference
ABC-Prunner 0.56 89.87 93.58 Lin et al. (2020b)
Hrank 1.04 148.7 94.23 Lin et al. (2020a)
Hrank 0.7 105.7 93.36 Lin et al. (2020a)
GAL-0.5 0.95 130.2 92.55 Lin et al. (2019)
L1 1.16 155 93.3 Lietal. (2017)
AN-110-Small a2(a) (Our) | 0.74 190.56 | 95
AN-110-Small ae2(b) (Our) | 0.49 127.64 | 94.73

Table 13: The table shows the performance of various pruning methods when trained on the CIFAR-10
dataset for ResNet-110 architecture. a,, in AN-50-Small denotes the mask matrix as defined in Eqn.
For AN models, we replace the standard convolution operation by the adjoined convolution in the last
36, 72 layers for AN-110-Small ao(a) and AN-110-Small as(b) respectively. E}

18

Sampling Filters According to Bernoulli’s Distribution

Probability (p) AN-Large AN-Small AN-Large| AN-Small|
0.25 92.8 90.98 0.71 1.47

0.5 93.04 92.25 0.47 0.2

0.75 92.89 92.58 0.62 -0.13

Table 15: We compare the fixed mask structure in AN against sampling mask M according to
Bernoulli’s Distribution. Probability (p) denotes probability of sampling a filter in each layer. AN-
Large and AN-Small denote the accuracy of large and small models on CIFAR-10 dataset with
ResNet-20. AN-Large| and AN-Small| denote the drop in accuracy of the respective models

compared to the Adjoined model trained using fixed mask matrix (o = 2).

G NORMALIZATION CONSTANT () FOR DAN

Comparison against various values of « for DAN-50

Normailization constant (y) | # Param FLOPs Accuracy
0 4.49 120 75.5
le-13 1.64 84 75.1

le-6 0.38 71 72

Table 16: We compare the performance of DAN-50 models trained on CIFAR-100 dataset against
various values of Normailization constant as Defn. in Eqn. [6. For all DAN models we use

a={1,2,4,8,16} as the search space.

19

	Introduction
	Related Work
	Adjoined networks
	regularization and compression
	DAN: Differentiable Adjoined Networks
	Experiments
	Comparison against other Structured Pruning works
	Comparison against other Knowledge Distillation Works
	Ablation study: Compression
	Ablation study: Regularization

	Conclusion
	Regularization theory
	Data augmentation and hyperparameters
	ResNet architecture diagram
	Detailed experimental results
	Experiments on CIFAR-10
	Experiments on CIFAR-100
	Experiments on ImageNet
	Experiments with DAN

	Choosing the Regularization Function
	Comparison against other works
	Normalization Constant () for DAN

