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A BASELINES

For shape estimation, we compare with analytical and learning-based baselines:

Constant curvature model (Della Santina et al., [2020; [Yoo et al.l [2021). Constant curvature model
is a common representation for the continuum deformation behavior of soft robot that parametrizes
the shape with a single curvature curve (Zhang et al., 2023)). Typically, the independent parameters
of the state of the robot are defined by 7cype and 0cyrpe. Assuming a constant length, Ly, Of the
robot, we get the constraint:
LCU'I"UE = TCUT‘UQQCU'I"’UE'

In typical applications, additional term ¢y, is introduced to represent the plane of bend-
ing (Katzschmann et al.l 2019)). We implemented this simplified representation for soft robot shape
using the proposed strain model as outlined in Section and fitting r¢cyrpe and Ocyre to the ob-
served strains in each side of the curve. We transformed the cross-section boundary to the curve
during the evaluation and measured the chamfer distance to the reference.

DeepSoRo (Wang et al., 2020). DeepSoRo architecture deploys a FoldingNet (Yang et al., [2018)
decoder conditioned on visual observations to predict the current shape of a deformable body. Cru-
cially, it is trained with chamfer distance and originally trained on partial real-world shape obser-
vations, resulting in partial point cloud reconstruction outputs without frame-to-frame correspon-
dences. Additionally, the model directly outputs the point cloud positions in contrast to KineSoft,
which learns a deformation field and produces vertex displacement with frame-to-frame correspon-
dences. We augment DeepSoRo for evaluation by training the model on KineSoft’s simulated train-
ing data and using the proposed domain alignment process.

Shape-tracking Baselines. For shape tracking and task performance evaluation we provide the
results against the following: Strain Policy: Strain policy, based on prior works that directly use
sensor readings without intermediate representations for learning manipulation policies (Sieler &
Brock, 2023)), uses raw sensor measurements instead of reconstructed shapes. For shape tracking
evaluation, we modified the low-level controller from Section[d.4]to track reference sensor readings
directly through proportional tendon actuation. For task performance evaluation, we trained a diffu-
sion policy using the same 50 demonstrations we use for KineSoft, but with raw strain signals and
wrist-mounted camera observations as input states.
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B SENSOR SIGNALS
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Figure 6: Sensor signals and corresponding shape estimation
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C OTHER TASK

Task Progression
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Figure 7: Strain tracking performance on a simple task

Strain tracking can succeed in some tasks. Particularly with a weighted bottle opening task, where
one finger could flick the lid open, the strain matching policy seemed to perform consistently.
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