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A BASELINES

For shape estimation, we compare with analytical and learning-based baselines:

Constant curvature model (Della Santina et al., 2020; Yoo et al., 2021). Constant curvature model
is a common representation for the continuum deformation behavior of soft robot that parametrizes
the shape with a single curvature curve (Zhang et al., 2023). Typically, the independent parameters
of the state of the robot are defined by rcurve and θcurve. Assuming a constant length, Lcurve of the
robot, we get the constraint:

Lcurve = rcurveθcurve.

In typical applications, additional term ϕcurve is introduced to represent the plane of bend-
ing (Katzschmann et al., 2019). We implemented this simplified representation for soft robot shape
using the proposed strain model as outlined in Section 4.3 and fitting rcurve and θcurve to the ob-
served strains in each side of the curve. We transformed the cross-section boundary to the curve
during the evaluation and measured the chamfer distance to the reference.

DeepSoRo (Wang et al., 2020). DeepSoRo architecture deploys a FoldingNet (Yang et al., 2018)
decoder conditioned on visual observations to predict the current shape of a deformable body. Cru-
cially, it is trained with chamfer distance and originally trained on partial real-world shape obser-
vations, resulting in partial point cloud reconstruction outputs without frame-to-frame correspon-
dences. Additionally, the model directly outputs the point cloud positions in contrast to KineSoft,
which learns a deformation field and produces vertex displacement with frame-to-frame correspon-
dences. We augment DeepSoRo for evaluation by training the model on KineSoft’s simulated train-
ing data and using the proposed domain alignment process.

Shape-tracking Baselines. For shape tracking and task performance evaluation we provide the
results against the following: Strain Policy: Strain policy, based on prior works that directly use
sensor readings without intermediate representations for learning manipulation policies (Sieler &
Brock, 2023), uses raw sensor measurements instead of reconstructed shapes. For shape tracking
evaluation, we modified the low-level controller from Section 4.4 to track reference sensor readings
directly through proportional tendon actuation. For task performance evaluation, we trained a diffu-
sion policy using the same 50 demonstrations we use for KineSoft, but with raw strain signals and
wrist-mounted camera observations as input states.
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B SENSOR SIGNALS

Finger 1 Finger 2 Finger 3

Finger 3

Finger 2

Finger 1

Shape Estimation

Figure 6: Sensor signals and corresponding shape estimation

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C OTHER TASK
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Figure 7: Strain tracking performance on a simple task

Strain tracking can succeed in some tasks. Particularly with a weighted bottle opening task, where
one finger could flick the lid open, the strain matching policy seemed to perform consistently.
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