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Figure 1: Generation using K-Flow with three K-amplitude decompositions: Fourier, Wavelet, and PCA.

ABSTRACT

In this work, we propose K-Flow, a novel generative learning paradigm that flows
along theK-amplitude domain, where k is a scaling parameter that organizes pro-
jected coefficients (frequency bands), and amplitude refers to the norm of such
coefficients. We instantiate K-Flow with three concrete K-amplitude transforma-
tions: Fourier transformation, Wavelet transformation, and PCA. By incorporat-
ing the K-amplitude transformations, K-Flow enables flow matching across the
scaling parameter as time. We discuss six properties of K-Flow, covering its the-
oretical foundations, energy and temporal dynamics, and practical applications.
Specifically, from the perspective of practical usage, K-Flow allows for steerable
generation by controlling the information at different scales. To demonstrate the
effectiveness of K-Flow, we conduct experiments on both unconditional and con-
ditional image generation tasks, showing that K-Flow achieves competitive perfor-
mance. Furthermore, we perform three ablation studies to illustrate how K-Flow
leverages the scaling parameter for controlled image generation. Additional re-
sults, including scientific applications, are also provided.

1 INTRODUCTION

Generative Artificial Intelligence (GenAI) represents a pinnacle achievement in the recent wave of
AI. This field has evolved from foundational methods such as autoregressive models (AR) (Radford,
2018), energy-based models (Hinton, 2002; Carreira-Perpinan & Hinton, 2005; LeCun et al., 2006;
Gutmann & Hyvärinen, 2010; Song & Kingma, 2021), variational auto-encoders (Kingma, 2013),
and generative adversarial networks (Goodfellow et al., 2014), diffusion model (Ho et al., 2020),
to the most cutting-edge flow-matching (FM) framework (Lipman et al., 2022; Liu et al., 2022b;
Albergo & Vanden-Eijnden, 2022).

Among these, flow matching (FM) stands out as a density transport method that converts an initial
simple distribution into a complex target distribution through continuous-time flow dynamics. For
instance, in the context of image generation, FM learns to map a random Gaussian distribution to
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the pixel-space distribution of images. This process, termed continuous flow, is governed by a local-
ized k-dependent vector field (or velocity field) and produces a time-dependent density path, which
represents the evolution of the probability distribution over time. As a versatile framework, FM
can incorporate a diffusion density path, linking it to established methods such as denoising score
matching (DSM) (Vincent, 2011; Song & Ermon, 2019) and the denoising diffusion probabilistic
model (DDPM) (Ho et al., 2020).

Motivation. Natural data exhibits an inherent frequency structure, with most of its energy con-
centrated in the low-frequency bands (Abry et al., 1995; Van der Schaaf & van Hateren, 1996).
Reflecting this property, empirical evidence (Dieleman, 2024) shows that DDPMs tend to denoise
from low to high frequencies when transforming white noise (with a uniform frequency spectrum)
into meaningful data, allowing earlier recovery of low-frequency components (Biroli et al., 2024).
Conventional FMs, however, exhibit different path characteristics (Sun et al., 2025), and their fre-
quency progression is not quantitatively established (Figure S2). In parallel, from the reconstruction
perspective, recent research (Kouzelis et al., 2025; Skorokhodov et al., 2025) advocates for explicit
frequency consistency constraints as a regularization strategy for auto-encoders. This supports the
expectation that introducing frequency-aware path into generation can achieve generation quality on
par with or exceeding that of conventional FMs. These observations point to a clear opportunity:
developing generative models that offer fine-grained control in the frequency domain can open new
frontiers in both generation quality and applicability, e.g., frequency editing and restoration.

Key Concepts. To formalize our approach, we first establish a unified framework that integrates key
frequency-related concepts from the literature, including Fourier frequency analysis and multi-scale
transformations. Central to this framework is the introduction of K-amplitude space, parameterized
by a scaling parameter k. The scaling parameter k is defined as a systematic measure for orga-
nizing frequency bands (or coefficients) across different physical systems and processes (Cardy,
1996; Luijten & Blöte, 1996; Behan et al., 2017; Bighin et al., 2024)1. Within this framework, we
define amplitude as the norm of coefficients obtained by projecting data onto bases corresponding
to different scaling parameters k, forming what we term the K-amplitude space, or equivalently,
scaling-amplitude space.

Our Method. Such an understanding of scaling parameter and K-amplitude space inspires a new
paradigm for generative modeling, which we term K Flow Matching (K-Flow). In essence, K-
Flow performs flow along the K-amplitude. There are two main components in K-Flow, and the
first is the K-amplitude decomposition. The K-amplitude decomposition encompasses a family
of transformations through a linear basis in the K-amplitude space, and in this work, we explore
three types: Wavelet, Fourier, and principal component analysis (PCA) decomposition, as illustrated
in Figure 1. Specifically, K-Flow first applies a K-amplitude transformation to project data from
the spatial domain into the K-amplitude space, where we formulate a novel stochastic interpolant
that naturally accommodates the hierarchical structure. In Appendix A, we provide a comprehensive
analysis of K-Flow through six properties, from theoretical foundations (a & b), energy and temporal
dynamics (c & d) to practical applications (e & f), with a detailed pipeline illustrated in Figure 2.

Our Results. We demonstrate the effectiveness of K-Flow through extensive experiments on
generation tasks. Qualitatively, our ablation studies reveal the model’s scaling controllability that
aligns with our theoretical motivation, enabling two key capabilities: (1) efficient class-conditional
generation with minimal guidance, where class information is only required during low-k inference
stages, which has the potential of reducing computational overhead; and (2) unsupervised frequency
editing through various discretizations of the scaling parameter k. Quantitatively, K-Flow achieves
state-of-the-art or comparable performance in both unconditional generation and training-free
image restoration tasks across natural image and scientific datasets.

2 BACKGROUND

2.1 SCALING PARAMETER k, AMPLITUDE, AND K-AMPLITUDE DECOMPOSITION

Our data generation framework leverages the implicit hierarchical structure of the data manifold. By
‘implicit’, we refer to the hierarchical characteristics that emerge when a generalized K-amplitude

1We distinguish “scaling parameters” in the context of parameterization from “scale” in general discussions
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decomposition is applied, transitioning the representation from the original data space to the K-
amplitude space. Illustrations are in Figure 2. More formally, we represent data as a signal ϕ :
Rd → Rm, or a finite discretization of Rd and Rm, where this signal function is equivalent to a
vector. For example, In the case of image data, each pixel of one RGB channel can be viewed as
a signal mapping from the spatial grid R2 to a pixel intensity value in R1. Combining the three
channels, they form a vector-valued signal from R2 to R3. An alternative approach is to consider
data as a high-dimensional vector Rd×m. However, treating data as signal functions better fits the
decomposition framework in this work.

Without loss of generality, we take dimension m = 1 for illustration. A K-amplitude decom-
position involves the decomposition of a function using a complete basis set {ej}nj=1, where n
can be infinite. We introduce a scaling parameter k, which partitions the set {ei}ni=1 into subsets:
{ei}ni=1 =

⋃
k{ek}, each with nk basis. Hence, signal ϕ is expressed as:

ϕ =
∑
k

ϕk, (1)

where ϕk :=
∑nk

j=1(ϕ · ejk)ejk for ejk ∈ {ek}. Inspired by the concept of frequency amplitude,
we refer to the norm of ϕk as the K-amplitude. The parameter k is termed the scaling parameter as
we expect the natural scaling law exists in well-structured data: the amplitude decays as the value
of k increases (Field, 1987).

Finally, we define K-amplitude decomposition (or equivalently, K-amplitude transform) F as the
map that sends ϕ to the collection of ϕk, and denote the collection of all {(ϕ·ejk)ejk}j asF{ϕ}(k).
Then,

F{ϕ} :=
⋃
k

F{ϕ}(k). (2)

We further assume that this transform has an inverse, denoted by F−1.

Splitting Probability. Denote the probability of data as pdata, then the transformations F and F−1

induce a probability measure on the associated K-amplitude space. In particular, we denote the
induced splitting probability of ϕk as p(k) for each scaling parameter k.

In this work, we explore three types of K-amplitude decomposition: Wavelet, Fourier, and princi-
pal component analysis (PCA). In Section 2.2, we will provide a classic example using the Fourier
frequency decomposition on the three-dimensional space. This example serves to illustrate the con-
struction of the scaling parameter k and K-amplitude.

2.2 EXAMPLE: FOURIER AMPLITUDE DECOMPOSITION

Suppose the data ϕ : R3 → R, is drawn from a certain function distribution pdata. The challenge
of directly fitting the distribution pdata is often complex and computationally demanding. Fourier
frequency decomposition, however, offers a powerful technique to address this challenge by trans-
forming ϕ into the Fourier space or Fourier domain. In what follows, we will use the terms ‘space’
and ‘domain’ interchangeably.

By applying Fourier frequency decomposition, we express ϕ as a sum of its frequency components.
This transformation can potentially unveil the hidden structure within the distribution pdata, which is
not apparent in the spatial or time domain, and it is thus beneficial for understanding the underlying
patterns in the data manifold. To illustrate, the continuous Fourier transform F of data ϕ(x, y, z) :
R3 → R is expressed as:

F{ϕ}(kx, ky, kz) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ϕ(x, y, z) e−2πi(kxx+kyy+kzz) dx dy dz. (3)

After this transformation, the spatial variables (x, y, z) are converted into frequency variables
(kx, ky, kz), thereby representing the data in the frequency domain.

Note that the Fourier frequency is characterized by the high-dimensional vector representation
(kx, ky, kz). For our purposes, we aim to distill the notion of frequency into a one-dimensional
scaling parameter. Namely, we define the scaling parameter k as the diameter of the expanding
ball in Fourier space: k =

√
k2x + k2y + k2z . This definition of k provides a simple index that cap-

tures the overall scaling parameter of the frequency components in all directions. Moreover, we can

3
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decompose the Fourier transform F{ϕ} into groups indexed by the scaling parameter k:

F{ϕ}(k) =
⋃

√
k2
x+k2

y+k2
z=k

F{ϕ}(kx, ky, kz). (4)

Intuitively, F{ϕ}(k) represents the set of all frequency components that share the same scaling
parameter k. This grouping allows us to examine the contributions of various spatial frequencies of
ϕ when viewed through the lens of frequency k. Furthermore, ϕk is just the summation of F{ϕ}(k).
On the other hand, we can recover ϕ from F{ϕ}, because the Fourier transform is an invertible
operation: ϕ = F−1F{ϕ}. Such an invertibility establishes the Fourier transform as a valid example
of K-amplitude decomposition. For discrete data, which inherently possess one highest resolution,
the variables (kx, ky, kz) are situated on a discrete lattice rather than spanning the entire continuous
space. Consequently, the scaling parameter k, derived from these discrete components, is itself
discrete and bounded.

2.3 FLOW MATCHING

In this work, we primarily focus on the flow matching (FM) generative models and their fami-
lies (Lipman et al., 2022; Liu et al., 2022b; Albergo & Vanden-Eijnden, 2022). In FM, the flow
Ψt is defined by solutions of an ordinary differential equation (ODE) system with a time-dependent
vector field v:

d

dt
Ψt(x) = vt(Ψt(x)), (5)

and we focus on the probability transport aspects of Ψt. In particular, the flow provides a means of
interpolating between probability densities within the sample space. Suppose Ψt follows an initial
probability p0, then for t > 0, Ψt induces a probability measure pt: pt(B) = p0(Ψ

−1
t (B)), where

B is a measurable set. Assume that Ψt is differentiable, and define a surrogate velocity at time t
as vt(xt, θ) using a deep neural network with parameter θ. Then the vector field matching loss is
defined as:

LFM :=

∫ ∫ 1

0

dx0 dt

∥∥∥∥dΨt

dt
(xt)− vt(xt, θ)

∥∥∥∥2 . (6)

By aligning the learned vector field with the true gradient field of the frequency decomposition, this
loss function ensures robust approximation and reconstruction of the data. Additionally, every inter-
polation π(x0, x1) with a time-continuous interpolating function ft(x0, x1) between probabilities
p0 and p1 induces a vector field vt through the continuity equation:

∂pt(xt)

∂t
= −∇x (pt(xt)vt(xt)) , (7)

and vt is explicitly expressed as: vt = 1
pt

Eπ(x0,x1)[
∂ft(x0,x1)

∂t ]. Although explicit matching of vt
via the continuity equation is intractable, flow matching permits a conditional version:

LCFM = Eπ(x0,x1)

∫ t

0

dt

∥∥∥∥∂ft(x0, x1)∂t
− vt(xt, θ)

∥∥∥∥2 + constant. (8)

As detailed in Section 3, our framework reinterprets the time variable t as the scaling parameter k.
Our goal is to construct a K-amplitude-respected π(x0, x1) with differentiable functions fk.

3 METHODOLOGY: K-FLOW

In this section, we introduce K-Flow. It is constructed from the collection of F{ϕ}(k), indexed by
a specific scaling parameter k. As we will demonstrate in Section 3.1, our approach is independent
of the specific construction of the invertible transformation F and the explicit definition of k. This
flexibility enables us to extend to various K-amplitude decompositions.

3.1 K-AMPLITUDE INTERPOLANTS

According to the concept of stochastic interpolants (Albergo et al., 2023), all flow models can be
viewed as constructing stochastic paths that interpolate between a known tractable prior distribution
and an unknown target distribution, including flow matching (Lipman et al., 2022), rectified

4
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Figure 2: Pipeline of K-Flow. We have a bat figure as the input and three inverted images after three transfor-
mations at different granularities.
flow (Liu et al., 2022b), and denoising diffusion (Ho et al., 2020). By incorporating the scaling
parameter k for K-amplitude decompositions, we can formulate a stochastic interpolant that grad-
ually emerges each amplitude component from white noise. Given that k traverses monotonically
from zero to a maximum value kmax, this process draws a natural analogy to continuous normalizing
flows. Since we require F to be invertible, we can reconstruct the data once the complete spectrum
in the K-amplitude space is generated.

To build a continuous flow Ψk out of Equation (1), we explore two paradigms in designing the
interpolants: (1) We generalize the original discrete-valued k to continuous values; (2) We ensure
that the generation flow, which maps the white noise to the real data, remains invertible such that no
information is lost throughout the process. Still taking the three-dimensional signal ϕ(x, y, z) and
the Fourier transform F{ϕ} as an example, we realize the second ingredient by introducing noise
padding ϵ for each k and define the discrete flow φk as follows:

φk = F−1
(
I√

k2
x+k2

y+k2
z≤k

· F{ϕ}(kx, ky, kz) +
(
1− I√

k2
x+k2

y+k2
z≤k

)
· ϵ
)
, (9)

where I is the indicator function that selects K-amplitude components up to the scaling step k.
This formulation ensures that for each step k, the reconstruction incorporates the relevant K-Flow
components of data ϕ and pads the rest with noise ϵ. Here, the noise ϵ is independently drawn
from a known distribution (e.g., uniform or Gaussian) for each coordinate (kx, ky, kz). Through this
construction, ϕk serves as a stochastic interpolant for the data ϕ, ensuring that: limk→kmax φk = ϕ,
where kmax represents the maximum scaling parameter of data. This limit condition guarantees that
as k approaches its maximum value, the reconstructed φk converges to the original data ϕ. This
behavior is pivotal for the accuracy and fidelity of the generative process. Conversely, ϕ0 simply
follows the law of a tractable distribution.

Inter-scaling Interpolant. Since most of the data we aim to generate is discrete in nature, the
(kx, ky, kz) values in the K-amplitude decomposition are inherently defined on a lattice. Conse-
quently, the derived scaling parameter k also takes discrete values. This discreteness implies that
φk is originally defined only for discrete values of k. However, this discrete flow imposes a lim-
itation: we cannot leverage the powerful flow-matching objective as the optimization framework,
which requires taking derivatives with respect to continuous scaling step k.

To handle this issue, a straightforward approach is to extend φk to continuous k by intra-scaling
interpolation. That is, we want a continuous flow Ψk, where k ∈ [0,K] and satisfy Ψk = φk for
integer values of k. Let t := k − ⌊k⌋ represent the continuous scaling step, where ⌊k⌋ denotes the
integer part of k. Then, the differentiable interpolation of Ψk is:

Ψk = Ψ⌊k⌋+t =F−1

(
I√

k2
x+k2

y+k2
z<⌊k⌋ · F{ϕ}(kx, ky, kz) + I√

k2
x+k2

y+k2
z≥⌊k⌋+1

· ϵ

+ I√
k2
x+k2

y+k2
z∈[⌊k⌋,⌊k⌋+1)

· (µ(t) · F{ϕ}(kx, ky, kz) + (1− µ(t)) · ϵ)

)
, (10)
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where µ(t) is a bump function such that µ(0) = 1, µ(1) = 0 and µ′(0) = −µ′(1). The antisymmet-
ric property of µ′(t) ensures that Ψk is differentiable from k for all R+, allowing the flow matching
loss and other gradient-based optimization techniques. In Equation (10), we have three components:

1. I√k2
x+k2

y+k2
z<⌊k⌋ applies to the amplitude components up to the integer part of k.

2. I√k2
x+k2

y+k2
z≥⌊k⌋+1 applies noise padding to components beyond the next integer.

3. I√k2
x+k2

y+k2
z∈[⌊k⌋,⌊k⌋+1) performs linear interpolation of the intermediate amplitude com-

ponents based on the current t.

Localized Vector Fields. Instead of directly modeling Ψk, we pivot our focus to its conditional
gradient field, dΨk

dk . By concentrating on the gradient field, we facilitate a dynamic view of how
ϕk evolves with respect to k. To derive an analytical expression of dΨk

dk conditioned on a given
instance pair of data and noise: (ϕ, ϵ), in what follows, we assume that F is a linear transform.
Then, following Equation (10), we have the conditional vector field:

dΨk

dk
(ϕ, ϵ) = F−1

(
I√

k2
x+k2

y+k2
z∈[[k],[k]+1)

· µ′(t)(ϵ−F{ϕ}(kx, ky, kz))
)
, (11)

for k ∈ [⌊k⌋, ⌊k⌋ + 1) and t = k − ⌊k⌋. Then, following Equation (8), the training objective of
K-Flow is to learn the unconditional vector field in Equation (5) by the conditional flow matching:

LK-Flow := Eϕ0

∫ K

0

dϕ0 dk

∥∥∥∥dΨk

dk
− vk(Ψk, θ)

∥∥∥∥2 . (12)

By examining Equation (10) closely, we observe that the vector field is naturally localized around
a subset of points in the K-amplitude space that satisfy

√
k2x + k2y + k2z ∈ [⌊k⌋, ⌊k⌋ + 1). This lo-

calization means that the reconstruction at any given k primarily involves K-amplitude components
within a narrow frequency band around k. Compared with the flow scheme in the pixel space, the
K-amplitude in K-Flow reduces the optimization complexity by restricting the conditional vector
field to be within a sub-manifold for each k. This sub-manifold is of low dimensionality, allowing
for more focused updates and reducing the optimization space’s dimensionality at each step. We will
investigate how this localized conditional vector field affects the generation path in Appendix B. The
inference computational complexity of our method is discussed in appendix D.

We can further generalize the interpolation interval from (⌊k⌋, ⌊k⌋ + 1) to (km, kn), where km
and kn are two integers such that km < kn. This adjustment broadens the range for intermediate
amplitude components from

√
k2x + k2y + k2z ∈ [⌊k⌋, ⌊k⌋ + 1) to

√
k2x + k2y + k2z ∈ [km, kn). For

example, for our experiments, we partition theK-amplitude into two or three parts. See Appendix D
for detailed implementations of these partitioning strategies.

3.2 EXAMPLES OF K-AMPLITUDE TRANSFORMATION

As we can see from Equation (1), all K-amplitude decompositions are achieved through expansion
across a complete set of basis functions. However, the behavior of a K-amplitude decomposition
(transform) can vary significantly depending on the choice of basis functions. Besides the Fourier
transform introduced in Section 2, we provide two representative examples of K-amplitude decom-
position: Wavelet transformation, and PCA transformation. More details are in Appendix D.

Wavelet Transform. Wavelet decomposition (transform) deals with data that are not only scaling-
localized but also spatially localized. The scaling parameter of wavelet transform is closely related
to the notion of multi-resolution analysis (Mallat, 1989), which provides a systematic way to de-
compose a signal into approximations and details at successively finer scales. This hierarchical de-
composition is achieved through a set of scaling functions ω(x), and wavelet functions ψ(x), which
together serve as basis functions for the wavelet transformation. More precisely, in the wavelet trans-
form, a signal f(t) is expressed as a sum of scaled and translated versions of these basis functions
times the corresponding coefficients c and d:

f(t) =
∑
j

ck0,jωk0,j(t) +
∑
k≥k0

∑
j

dk,jψk,j(t), (13)
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where ωk0,j(t) and ψk,j(t) are the scaled and translated scaling and wavelet functions, respectively.
The index j, which originally denotes the translation parameter, groups the basis within each fixed
scaling parameter k naturally. Let ϕk :=

∑
j dk,jψk,j for k > k0 and ϕk :=

∑
j ck0,jωk0,j for

k = k0, then eq. 13 is just one realization of K-amplitude decomposition. Concrete formulas for
different families of wavelet bases, such as Daubechies (db), can be found in Appendix D.

In this article, we employ the discrete version of wavelet transform (DWT) as our K-amplitude
transformation F , which shares the linearity property with the Fourier transform with a bounded
scaling parameter k, providing a structured yet flexible means of decomposing discrete data.

Date-dependent PCA Transform. Note that Fourier and wavelet decompositions are nonpara-
metric k-amplitude decompositions that are independent of data. While these transformation
methods are powerful, we also aim to find data-dependent decompositions that can capture common
characteristic features specific to a dataset. This motivation leads to principal component analysis
(PCA), a technique widely used for the low-dimensional approximation of the data manifold and
vision features (Izenman, 2012; Chen et al., 2024). Please consult Appendix D for the K-amplitude
realization of PCA transform.

4 EXPERIMENTS

We conduct a comprehensive experimental evaluation of K-Flow focusing on its technical innova-
tions in k-amplitude adapted generation. Using standard backbone architectures, we perform exten-
sive experiments spanning image and molecular assembly generation tasks and k scaling guidance
editing and restoration. Complete implementation details, experimental configurations, ablation
studies, and scientific generation tasks are provided in Appendix E (Algorithm 1) and Appendix D.

4.1 IMAGE UNCONDITIONAL AND CONDITIONAL GENERATION

Table 1: Unconditional generation on CelebA-HQ.

Model FID↓ Recall↑
K-Flow, Fourier-DiT L/2 (Ours) 5.11 0.47
K-Flow, Wave-DiT L/2 (Ours) 4.99 0.46
K-Flow, PCA-DiT L/2 (Ours) 5.19 0.48

LFM, ADM (Dao et al., 2023) 5.82 0.42
LFM, DiT L/2 (Dao et al., 2023) 5.28 0.48
FM (Lipman et al., 2022) 7.34 -

LDM (Rombach et al., 2022) 5.11 0.49
LSGM (Vahdat et al., 2021) 7.22 -
WaveDiff (Phung et al., 2023) 5.94 0.37
DDGAN (Xiao et al., 2021) 7.64 0.36
Score SDE (Song et al., 2020) 7.23 -

Image Unconditional Generation The first
task is to generate random samples after fit-
ting a target data distribution, which is typi-
cally concentrated around a low-dimensional sub-
manifold within the ambient space.

Dataset and Metrics. We conduct experiments
on the CelebA-HQ (Karras, 2017) dataset with
the resolution of 256 × 256. To evaluate the
performance of our proposed method, we em-
ploy two metrics: the Fréchet Inception Dis-
tance (FID) (Heusel et al., 2017), which evaluates
the quality by measuring the statistical similarity
between generated and real images, and Recall
(Kynkäänniemi et al., 2019), which measures the diversity of the generated images.

Results. Table 1 summarizes the comparison between our proposed K-Flow model and other gen-
erative models. For a fair comparison, both the baseline ordinary flow matching (LFM (Dao et al.,
2023)) and our K-Flow flow utilize the same VAE’s latent from (Rombach et al., 2022) and the Dif-
fusion Transformer with the same size (e.g., DIT L/2 (Peebles & Xie, 2023)) as the backbone model.
We can observe that (1) K-Flow achieves the best performance in FID, especially w/ the db6-based
wavelet K-Flow. (2) Although the latent diffusion model (Rombach et al., 2022) gets the highest
score in Recall (diversity), the Fourier and PCA-based K-Flow is comparable with the ordinary la-
tent flow matching. We also evaluated the sensitivity of K-Flow to frequency resolution by varying
the discretization levels of the scaling parameter k on the LSUN Church dataset (Yu et al., 2015),
with comprehensive results provided in Appendix F.

Image Class-conditional Generation Then we explore howK-amplitude decomposition behaves
when the generation path is conditioned on class labels, where the class label (e.g., dog, cat, fish, etc)
delegates the low-scaling information of each image. This investigation could potentially pave the
way for multi-scaling control, where different scaling components are influenced by specific caption
information. We list the detailed class-conditional generation algorithm in Appendix E.
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(a) Controllable class-conditional generation. (b) Scaling-controllable generation (low scaling).

Figure 3: Pipeline of two ablation studies on controllable generation.

Table 2: Class-conditional generation on ImageNet.

Model FID↓ CDR↓ Recall↑
K-Flow, Wave-DiT L/2 (Ours) 17.8 - 0.56
+ cfg=1.5 4.49 - 0.44
K-Flow, Fourier-DiT L/2 (Ours) 13.0 - 0.57
+ cfg=1.5 2.64 1.49 0.45
LFM, DiT L/2 14.0 - 0.56
+ cfg=1.5 2.77 3.25 0.42

LDM-8 (Rombach et al., 2022) 15.51 - 0.63
LDM-8-G 7.76 - 0.35
DiT-B/2 Peebles & Xie (2023) 43.47 - -

Dataset and Metric. We use ImageNet as the
middle-size conditional generation dataset (Deng
et al., 2009). Beyond evaluating the uncondi-
tional FID for the ImageNet dataset, we are also
interested in studying how the class control in-
teracts with scaling generation in a quantitative
manner.

Results. The results are presented in Table 2. Our
primary focus for the FID metric is the classifier-
free guidance inference method applied to flow
matching models. The data indicates that K-Flow achieves results comparable to LFM. In terms
of the recall metric, which assesses the diversity of the generated distribution, our model outper-
forms the standard LFM. This improvement may be attributed to the fact that the inference path
of K-Flow includes a greater number of dimensions during the low-scaling period, as discussed in
Appendix B.1.

4.2 IMAGE CONTROLLABLE CLASS-CONDITIONAL GENERATION

The latent flow matching model can implicitly learn low- and high-resolution features (Dao et al.,
2023), but the boundary between each resolution is vague, and we cannot explicitly determine which
timestep in the inference process corresponds to a specific resolution or frequency. In comparison,
our proposed K-Flow enables finer-grained controllable generation. As demonstrated in Figures 3a
and 4, K-Flow effectively preserves high-frequency details even when class conditions are omitted
during the last 70% of scaling steps, whereas ordinary latent flow exhibits significant blurring. To
quantitatively validate this observation, we analyze the conditional discrimination ratio (CDR, for-
mally defined in Appendix F). From Table 2, our model maintains a CDR close to one, indicating
robust performance regardless of high-scale condition omission, while conventional LFM shows sig-
nificantly higher CDR, suggesting performance degradation. These results confirm that K-Flow’sK-
amplitude-aware architecture enables more efficient computational resource allocation by exploiting
the natural correlation between scaling parameters and the class-label conditional information.

4.3 IMAGE SCALING-CONTROLLABLE GENERATION AND RESTORATION

Our method guarantees that the generation path is disentangled with respect to k (check Ap-
pendix B). This allows us to control initial noise at each scaling level (see Algorithm 2), enabling
unsupervised editing of different scaling components. We also conduct ablation studies on Pre-
serving Low Scaling, Modifying High Scaling. Please check Appendix F for more details and
visualizations.

Figure 5: Results of scaling-controllable generation: Each col-
umn presents an image pair that shares high-frequency components
while exhibiting distinct low-frequency characteristics.

Preserving High Scaling, modi-
fying Low Scaling. This scaling-
controllable generation pipeline is il-
lustrated in Figure 3b. It involves
sampling multiple images while en-
suring that the noise in the high-
scaling components remains consis-
tent across all samples. In scaling-
controllable image generation, the

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 4: Results of controllable class-conditional generation. ‘Drop’ means we drop the class conditions
during the last 70% scaling steps, while ‘undrop’ means we keep the condition all the time.

goal is to maintain consistency in the high-scaling details while allowing variations in the low-
scaling context among the generated images, thus this allows K-Flow to achieve unsupervised steer-
ability in a finetuning-free manner. The results on CelebA are presented in Figure 5, where we apply
a pretrained Daubechies wavelet (db6-based) K-Flow. It can be observed that facial details, such as
eyes, smiles, noses, and eyebrows, remain consistent within each group of images. In contrast, the
low-scaling components, including background, gender, age, and hairstyle, vary across the images
within the same group. These qualitative results demonstrate how frequency bands naturally corre-
spond to semantic features - facial details persist in high-frequency components while attributes like
global background and overall appearance vary in low-frequency components. When applying the
same editing protocol to conventional LFM, the results show no such organized frequency-semantic
correspondence (Figure S10), highlighting the advantage of K-Flow.

Image Restoration. While traditional semantic metrics cannot directly assess unsupervised
frequency-based editing, we quantitatively validate our scaling-aware generation path via image
restoration tasks, where frequency-specific changes are objectively measurable. This includes super-
resolution, inpainting, and deblurring. From Table S8 in Appendix, K-Flow achieves state-of-the-art
performance in terms of PSNR and SSIM metrics on the CelebA dataset, while requiring only half
the iterations compared to the baseline PnP-flow (Martin et al., 2024). This demonstrates that our
frequency-domain formulation enables more efficient and accurate high-frequency reconstruction.
Detailed experimental settings and algorithms are provided in Appendix F.

5 CONCLUSION

In this paper, we introduce K-Flow Matching (K-Flow), an efficient flow-matching model that flows
along the K-amplitude for generative modeling. K-Flow naturally generalizes the multi-scales of
data (e.g., multi-resolution or frequencies in images) to multi-scales in the K-amplitude space.

Future Directions. As we have verified the effectiveness of K-Flow exclusively on image
generation tasks, moving forward, two promising directions are worth exploring. (1) Multimodal
generation: This includes tasks such as large-scale data generation guided by dense captions, which
could better showcase the steerability of K-Flow by aligning images with natural language inputs.
(2) We outline six properties of K-Flow in Section 1, e.g., the amplitude naturally corresponds to
energy. While Section 3 briefly discusses how energy is represented in K-Flow, this aspect has not
been explored in depth. We believe that such energy term holds potential for integration with the
utility of energy-based models in future work.
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THE USE OF LARGE LANGUAGE MODELS

We employ an LLM to refine the language and edit the draft of this paper, including:

• Correcting grammatical errors, punctuation, and spelling.
• Improving sentence structure to enhance clarity, flow, and readability.
• Suggesting alternative phrasing for more precise and professional academic expression.

All modifications suggested by the LLM were critically reviewed, vetted, and approved by the au-
thors. The final text accurately reflects our own ideas, arguments, and research findings.

A PROPERTIES OF K-FLOW

(a) K-Flow provides a first-principle way to organize the scaling k. Unlike perception-based
computer vision tasks, which often favor certain scaling (frequency) bands, a K-amplitude based
generative model strives for an optimal organization of all scalings to ensure that the final generated
sample is of high fidelity. By constructing K-amplitude scaling-based vector fields, the integrated
flow naturally incorporates all scaling information, and the conditional flow matching training ob-
jective provides a perfect trade-off of accuracy-efficiency inside localized scalings. We will also
demonstrate how different discretizations of K-Flow with related works, highlighting the connec-
tions and integrations with existing methods in the field.

(b) K-Flow enables multi-scale modeling in theK-amplitude space. Compared to the original data
space, such as the pixel space in images, the K-amplitude space provides a more natural perspective
for defining and analyzing multi-scale information, namely, K-amplitude decomposition empowers
K-Flow for effective multi-scale modeling. By decomposing the feature representation into multiple
scaling components in the K-amplitude space, K-Flow associates each scaling with an amplitude.
Higher values of K-amplitude correspond to higher-frequency information, capturing fine-grained
details, while lower values encode lower-frequency information, representing more coarse-grained
features. Let us take the image for illustration. Images inherently exhibit a hierarchical structure,
with information distributed across various resolution levels. Low-resolution components capture
global shapes and background information, while high-resolution components encode fine details
like textures, often sparse and localized. By projecting these components into the K-amplitude
space, K-Flow captures such hierarchical information effectively and naturally, enabling precise
modeling of the interplay between scales.

(c) K-Flow supports a well-defined scale along with energy. The amplitude is also used to reflect
the energy level at each scale of the data. In physics, it is proportional to the square of the amplitude.
In comparison, for the modeling on the original data space, though we can inject application-specific
inductive bias, such as multiple pixel resolutions for images, they do not possess a natural energy
concept.

(d) K-Flow interprets scaling as time. From elucidating the design space of the traditional flow
matching perspective, K-Flow re-defines the artificial time variable (or the signal-to-noise ratio vari-
able proposed in (Kingma et al., 2021)) as the ordering index of frequency space. In this context, the
artificial time variable effectively controls the traversal through different levels of a general notion
of frequency decompositions, scaling each frequency component appropriately. This perspective
aligns with the concept of renormalization in physical systems, where behavior across scales is sys-
tematically related.

(e) K-Flow supports the fusion of intra-scaling and inter-scaling modeling. K-Flow flows across
scaling as time, and namely, K-Flow naturally merges the intra- and inter-scaling during the flow
process. Thus the key module turns to the smooth interpolant, as will be introduced in Section 3.
This is in comparison with existing works on multi-modal modeling (Burt & Adelson, 1987; Tian
et al., 2024; Atzmon et al., 2024), where the special design of the intra-scaling and inter-scaling is
required.

(f) K-Flow supports explicit steerability. The flow process across scales enables K-Flow to control
the information learned at various hierarchical levels. This, in turn, allows finer-grained control of
the generative modeling, facilitating more precise and customizable outputs. By understanding and
leveraging K-Flow’s steerability, its utility can be significantly enhanced across diverse domains,

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

including Artificial Intelligence-Generated Content (AIGC), AI-driven scientific discovery, and the
safe, responsible development of AI technologies.

B DISCUSSION

B.1 FROM CONDITIONAL TO UNCONDITIONAL PATH IN K-FLOW

In Section 3, our frequency-localized path is defined at the conditional level (dΨk

dk (ϕ, ϵ) ) , and it
is only related to the unconditional vector field (vk(Ψk, θ) in eq. (12)) through the equivalence of
conditional flow matching and unconditional flow matching at the loss level (Lipman et al., 2022).
In this section, we try to study the splitting property of the unconditional K-amplitude vector field.

By the K-amplitude decomposition, the transformed data probability pdata satisfies the telescoping
property:

pdata = p(k0)p(k1|k0) . . . p(kmax|kmax − 1, . . . , k0), (14)
with k0 and kmax denoting the lowest and highest scaling. Then, according to the definition of our
proposed K-Flow Ψk, the interpolated probability at scaling step t is also localized:

pt(·) = p(k0) · · · pt(·|⌊k⌋, . . . , k0)pϵ(⌊k⌋+ 1) · · · pϵ(kmax|kmax − 1, . . . , k0), (15)

where pϵ denotes the distribution of the initial noise and t ∈ [⌊k⌋, ⌊k⌋ + 1). Combining Equa-
tion (15), the localization property of the bump function, and Lemma 1 of (Zheng et al., 2023), the
unconditional vector field has an explicit form: vt(Ψk) = at · Ψk + bt∇ log pt(Ψk), where at and
bt are hyper-parameters determined by the bump function we choose.

Supplementary Figure S1: On the low-scaling hypothesis. The graph illustrates the relative norm dis-
tribution for each scaling component as defined by the wavelet decomposition in the latent space. It can be
observed that the low-scaling component exhibits a significantly higher norm (energy), nearly twice that of the
high-scaling component.

Noise Splitting. A key characteristic of flow models is their deterministic nature after the initial
noise sampling. Specifically, once the initial noise is sampled, the flow follows a fixed path to
generate the final data sample. According to Equation (15), during scaling step t: (1) the scaling
components below ⌊k⌋ remain unchanged; (2) the scaling components above ⌊k⌋ remain unchanged;
(3) The distribution of higher scaling components maintains the same characteristics as their initial
noise distribution.

By these observations, we now investigate how segmented initial noise in the K-Flow space influ-
ences the final output of the K-Flow flow. Suppose we discretize scaling parameter k into two parts:
F{Ψk} = {ϕlow(k), ϕhigh(k)}. When flowing along the low-scaling component, the vector field vk
can be re-expressed in a conditional form:

vk(Ψk) = vk(ϕlow(k), c) (16)
where constant c represents the (static) initial noise for the high-scaling part. This noise-conditioned
property in the k-amplitude domain leads us to explore whether fixing the high-scaling noise and
altering the low-scaling noise allows for unsupervised editing of relative low-scaling semantics in
an image. Indeed, we observed this phenomenon, the qualitative results will be discussed in section
4.3.

From Figure 5, we observe that a targeted common high-scaling initial noise guides our K-Flow flow
toward generating human faces with similar detail but varying low-level content. See the experiment
section for a more detailed analysis.
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Supplementary Figure S2: Projection Error Comparison with Different flow Models. The graph il-
lustrates the PCA projection errors of two trained models throughout the entire inference process, with distinct
segments marked by dashed lines. The red and blue lines represent the original latent flow matching (LFM)
and the K-Flow with two amplitude components, respectively. The projection error is quantified by the recon-
struction error for each generation step from the PCA compression, using the first two principal components.
Owing to the scaling-aware nature of our flow, the low-amplitude portion (the initial part of the curve) resides
in a relatively high-dimensional space, resulting in higher projection errors for the two-dimensional PCA pro-
jection.

B.2 THE EFFECT OF SCALING STEP k FOR IMAGE RECONSTRUCTION

K-Flow’s ability to leverage the low-dimensional structure of data is primarily enabled by its K-
Flow localization property. This enables a strategic path through low-dimensional spaces, which
can be directly compared with the generation path of conventional flow models. In our model, this
path incorporates an explicit frequency hierarchy, which hypothesizes that the low-frequency com-
ponents - concentrated in the earlier stages of the model - may share more dimensions in common,
particularly from a semantic perspective, than the high-frequency components positioned later in the
generative process. Conversely, an ordinary flow model may exhibit a more uniform distribution of
dimensionality across the entire generative path.

Motivated by this hypothesis, we conduct a case study using PCA to approximate the dimension
of the generation trajectory {Ψk}kmax

k=k0
. As illustrated in Figure S2, we measure how closely the

dimension of the generation path aligns with a two-dimensional subspace spanned by the first two
components of the model’s PCA decomposition, denoted by {Ψ̃k}kmax

k=k0
. Inspired by (Zhou et al.,

2024), the reconstruction ratio is defined by 1−∥Ψk− Ψ̃k∥2/∥Ψk∥2. In other words, a higher value
of the reconstruction ratio indicates that the model’s dimension is closer to two. Therefore, the trend
of the error curve with respect to the scaling parameter k reveals a distinct separation in the effective
dimension between low- and high-scaling components. Evidently, the low-scaling segments display
more semantic consistency and thus, occupy a larger dimensional space, whereas the high-scaling
segments converge to a more confined or lower-dimensional structure.

It is important to note that this exploration into the dimensionality of generative paths is practi-
cally meaningful. Previous study (Zhou et al., 2024) has shown that the effectiveness of distilling
a generative model with fewer steps from a pre-trained diffusion model theoretically depends on
the model’s dimensionality at each step, as informed by the high-dimensional Mean Value Theo-
rem. The observations from Figure S2 provide empirical support for this concept. Specifically, the
ability of K-Flow to maintain a lower-dimensional structure in high-scaling components suggests a
promising approach for fast sampling distillation methods.

B.3 RELATED WORK DISCUSSION

The field of generative modeling has seen significant advancements in recent years, driven by a
variety of frameworks, including adversarial generative networks (GAN) (Goodfellow et al., 2014),
variable autoencoders (VAE) (Kingma, 2013), and normalizing flows (Papamakarios et al., 2021).
In this work, we focus on continuous normalizing flow generative models (Chen et al., 2018), with
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Supplementary Figure S3: Comparison of multi-scale modeling: pixel data space and K-Amplitude space.

particular emphasis on the conditional flow matching training scheme, which originates from the
denoising score matching training framework (Vincent, 2011).

Both diffusion models and continuous flow matching models aim to lower the complexity of directly
optimizing the log-likelihood of data by introducing an additional stochastic path. However, as
proved in (Lavenant & Santambrogio, 2022), the canonical path for diffusion models and rectified
flows is not optimal. This realization motivates our introduction of frequency decomposition as a
key design element in generative models.

By breaking down the formula of our K-Flow vector field with respect to the scaling parameter k,
we can summarize three successful factors as general principles for scaling modeling.

• A good K-amplitude decomposition can leverage the problem’s inherent biases towards
certain scaling bands. For generative tasks, it is crucial that all K-Flow bands are effectively
modeled to ensure the generation of high-quality, controllable outputs. In addition, the
computational resources required may vary between different scales, thus necessitating
careful consideration of resource allocation.

• Modeling within each scaling component, which is formulated in our K-Flow-localized
vector fields.

• Modeling bridges along different scalings, which is achieved through our flow ODE and
the (time) K-Flow embedding block for the U-Net or DIT architecture.

This approach to inter- and intra-modeling forK-amplitude is also applicable to scenarios emphasiz-
ing certain frequencies or scalings. For instance, (Li et al., 2024a) enhanced oscillatory motion con-
trol in video generation by discarding the high-frequency component of the Fourier decomposition.
As discussed in Section 3, the scaling parameter of spatially localized wavelet (multi-resolution)
decomposition is closely linked to image resolution. Notable contributions in this domain include
(Atzmon et al., 2024) and (Lei et al., 2023), which introduced a multi-stage resolution for fine-
grained editing, and (Jin et al., 2024), which concentrated on efficient video generation. We provide
a systematic review of frequency- or scaling-based generative approaches in Appendix C, highlight-
ing key developments in this direction.

In related research on auto-regressive modeling, (Mattar et al., 2024) presented wavelets as an effec-
tive auto-regressive unit, while (Tian et al., 2024) focused on the scale as a key element for image
auto-regression. A significant example is (Phung et al., 2023), which transitioned the latent space
from pixel to wavelet space for generative models using wavelet diffusion. However, their method
employed the same conditional noising schedule for score matching as traditional diffusion models.
In contrast to their approach, our proposed K-Flow integrates wavelet decomposition as a multi-
channel module within the neural network architecture for training diffusion models. Additionally,
our work extends the notion of wavelet space to the more general K-amplitude space.

We also want to highlight another research line that has recently caught the attention: the auto-
regressive modeling over the pixel space for image generation. One classic work is VAR Tian et al.
(2024). It introduces a hierarchical down and up sample paradigm that models images in a coarse-
to-fine manner across multiple resolutions and models the data distribution in an auto-regressive
manner. In contrast, our proposed K-Flow integrates the flow paradigm for density estimation and
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leverages the K-amplitude space as a stronger inductive bias, as illustrated in Figure S3. Another
related work is the auto-regressive flow model proposed in (Ren et al., 2024), that implements con-
ditional flow matching sequentially across scales. Although (Ren et al., 2024) shares some common
terminology with our work (e.g., scales, flow matching), K-Flow provides significant advantages
through its unified flow process, architecture-agnostic design, and theoretically grounded frequency
domain framework. On the practical implementation side, Unlike (Ren et al., 2024), which requires
separate flow matching for each scale and relies on specific architectures (autoregressive transform-
ers that treat scaling as conditional input), our approach implements a single coherent flow that
connects all frequency scales during inference while maintaining architecture flexibility.

Summary. In summary, K-Flow is a more general framework, with its three key factors potentially
benefiting generation-related tasks like super-resolution and multi-resolution editing. For example,
(Liu et al.) utilized a learnable Fourier transform to construct a harmonic module in the bottleneck
layer of an autoencoder. We provide a comprehensive list of related works in Appendix C.

B.4 CONNECTING K-FLOW WITH SSL REPRESENTATION AND GENERATION

From the above discussion, we have seen how pretrained vision models leverage the sparsity and
locality of natural data in various K-amplitude domains for perception and generation-based tasks.
In the realm of unsupervised learning, (Liu et al., 2022a; 2024a; Chen et al., 2024) explore whether
generative-based representations, particularly those derived from denoising diffusion models, can
achieve parity with contrastive-based representation learning methods for downstream tasks. A key
observation from their findings Chen et al. (2024), which aligns with our approach of employing
K-amplitude decomposition (the PCA instance), is the revelation that the most powerful represen-
tations are obtained through denoising within a latent space, such as the compressed PCA space.
Another merit of PCA is that denoising along the PCA directions can achieve faster convergence for
denoising, which is revealed in (Du et al., 2023).

To transition from unsupervised representation learning to real data generation, incorporating all K-
amplitude scalings is essential. Rather than compressing or amplifying specific scaling bandwidths,
generative tasks require novel organization or ordering of all frequencies. Besides our flow-based
frequency generation approach, (Tian et al., 2024) connects different scales (which can be inter-
preted as the wavelet K-amplitudes) using residual connections with an auto-regressive training
objective. Residual connections, as a discretization of ordinary differential equations (ODEs) pro-
posed in (Ee, 2017), suggest that (Tian et al., 2024)’s approach can be seen as a special discretization
of our K-Flow with a flexible flow matching training objective.

Supplementary Table S1: Comparison among PCA, contrastive, and generative SSL.

Basis Learning Reconstruction Learning

PCA SSL Non-parameterized, Determined By Data Parameterized
Contrastive SSL Parameterized N/A
Generative SSL Parameterized Parameterized

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C RELATED WORK ON FREQUENCY, AND MULTI-SCALING

There have been multiple research lines on studying generative modeling, especially in terms of
multi-scale modeling. In this work, we would like to summarize them as the following three venues.

C.1 MULTI-SCALE IN PIXEL RESOLUTION, FLOW AND DIFFUSION

Laplacian Pyramid and Laplacian Operator. In mathematics, the Laplacian operator computes
the second derivative of a function, emphasizing regions with significant intensity changes, such
as edges or high-frequency details. Similarly, the Laplacian Pyramid (Burt & Adelson, 1987) de-
composes an image into multiple scales, extracting the low-frequency components (smooth regions)
through downsampling. The high-frequency details, such as edges and textures, are modeled as the
residuals between adjacent resolution layers. The primary objective of the Laplacian Pyramid is to
represent these residuals across scales in a hierarchical fashion.

LAPGAN (Laplacian Generative Adversarial Networks) (Denton et al., 2015) adopts the Lapla-
cian pyramid idea into the generative adversarial network (GAN) framework (Goodfellow et al.,
2014). By focusing on learning residuals between successive levels of resolution, it effectively gen-
erates high-quality super-resolution images.

SR3 (Super-Resolution via Repeated Refinement) (Saharia et al., 2022) leverages DDPM (De-
noising Diffusion Probabilistic Models) (Ho et al., 2020) and DSM (Denoising Score Match-
ing) (Vincent, 2011; Song & Ermon, 2019) for high-resolution image generation. Specifically, SR3
enhances low-resolution images to high-resolution by utilizing multiple cascaded conditional diffu-
sion models. In this framework, the low-resolution images serve as conditions, and the model’s aim
is to predict the corresponding high-resolution images as outputs.

PDDPM (Pyramidal Denoising Diffusion Probabilistic Models) (Ryu & Ye, 2022) is a follow-up
work of SR3, and it improves the model by only modeling one score network. The key attribute to
enable this is by adding the fractional position of each pixel to the score network, and such fractional
position information can be naturally generalized to different resolutions.

f-DM (Gu et al., 2022) is developed concurrently with PDDPM and shares the approach of utilizing
only one diffusion model. It distinguishes itself by explicitly applying a sequence of transformations
to the data and emphasizing a resolution-agnostic signal-to-noise ratio within its diffusion model
design.

Edify Image (Atzmon et al., 2024) is a state-of-the-art model capable of generating photorealistic,
high-resolution images from textual prompts (Atzmon et al., 2024). It operates as a cascaded pixel-
space diffusion model. To enhance its functionality, Edify Image employs a downsampling process
that extracts low-frequency components and creates three distinct resolution levels, ranging from
low to high frequency, with the original image representing the highest frequency level. Another
key innovation of Edify Image is its meticulously crafted training and sampling strategies at different
resolutions, utilizing attenuated noise schedules.

C.2 MULTI-SCALE IN PIXEL RESOLUTION, VAE AND AR

VQ-VAE2 (Vector Quantized VAE 2) (Razavi et al., 2019) enforces a two-layer hierarchical struc-
ture, where the top layer captures global features such as object shapes and geometry, while the
bottom layer focuses on local details like texture. It models data density within the variational
autoencoder (VAE) framework(Kingma, 2013) and incorporates an autoregressive (AR) module to
enhance the prior for improved generative performance.

RQ-VAE (Residual-Quantized VAE) (Lee et al., 2022) integrates recursive quantization into the
VAE framework. It constructs a representation by aggregating information across D layers, where
the first layer provides a code embedding closely aligned with the encoded representation, and each
subsequent layer refines this by reducing the quantization error from the previous layer. By stacking
D layers, the accumulated quantization error is minimized, enabling RQ-VAE to offer a coarse-to-
fine-grained approach to modeling. For modeling, the general pipeline follows the VAE framework,
while each latent code is decomposed into D layers and is predicted in an autoregressive manner.
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VAR (Visual AutoRegressive) (Tian et al., 2024) introduces a novel paradigm for density estimation
by decomposing images into multiple resolutions across various scales. This approach is inspired by
the hierarchical nature of human perception, where images are interpreted progressively from global
structures to finer details. Leveraging this concept, VAR models the entire image in a coarse-to-fine
manner, adhering to the principles of multi-scale hierarchical representation.

C.3 MULTI-SCALE IN FREQUENCY, AR, VAE, AND DIFFUSION

WaveDiff (Wavelet Diffusion) (Phung et al., 2023) leverages the discrete wavelet transform to shift
the entire diffusion process into the wavelet spectrum. Its primary objective is to reduce model
complexity by operating in the transformed spectrum space instead of the pixel domain.

PiToMe (Protect Informative Tokens before Merging) (Tran et al., 2024) is a token merging
method designed to balance efficiency and information retention. PiToMe identifies large clusters of
similar tokens as high-energy regions, making them suitable candidates for merging, while smaller,
more unique, and isolated clusters are treated as low-energy and preserved. By interpreting attention
over sequences as a fully connected graph of tokens, PiToMe leverages spectral graph theory to
demonstrate its ability to preserve critical information.

WF-VAE (Wavelet Flow VAE) (Li et al., 2024b) is a parallel work that injects the Wavelet transform
into the backbone model of the VAE framework for extracting the multi-scale pyramidal features.
We need to emphasize that WF-VAE introduces frequency decomposition as an inductive bias into
the backbone model to simulate energy flow. In contrast, our K-Flow retains the backbone archi-
tecture and instead injects the K-amplitude as the realm for energy flow. In other words, K-Flow
incorporates the multi-scale concept through the time domain.

SIT (Spectral Image Tokenizer) (Esteves et al., 2024) is a parallel work to ours that processes the
spectral coefficients of input patches (image tokens) obtained through a discrete wavelet transform.
Motivated by the spectral properties of natural images, SIT focuses on effectively capturing the high-
frequency components of images. Furthermore, it introduces a scale-wise attention mechanism,
referred to as scale-causal self-attention, which is designed to improve the model’s expressiveness
across multiple scales.
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D METHOD DETAILS

D.1 FOURIER TRANSFORM AS A K-AMPLITUDE DECOMPOSITION

We have shown how to build the K-Amplitude through the Fourier space in Section 2.2. In the
discrete setting, the Fourier transform is realized by basis functions of the form W kn

N = e−j 2π
N kn,

where N is the length of the sequential data. An effective K-amplitude decomposition exploits this
structure by aligning with the inherent hierarchical structure of the data manifold. For example, if
most of the energy or amplitudes are concentrated in the low-scaling range, the generative capability
of the flow can be enhanced by allocating more steps or resources to these low frequencies (this hy-
pothesis is even true in the latent space, as it’s demonstrated in fig. S1). Conversely, fewer steps can
be allocated to high frequencies that carry minimal mass or information. For the Fourier transform,
this tendency is evident in the analysis of natural images, which often exhibit the celebrated 1/f
spectrum phenomenon (Weiss & Freeman, 2007). This phenomenon suggests that energy dimin-
ishes with increasing scaling parameter, meaning that low-scaling components hold the majority of
the signal’s information content.

D.2 PCA TRANSFORM AS A K-AMPLITUDE DECOMPOSITION

From the K-amplitude perspective, PCA is an eigen-decomposition obtained by the data covariance
matrix. The covariance matrix is given by:

C =
1

n
X⊤

centeredXcentered,

where Xcentered = X − X is the centered data matrix. In this context, the principal components
reveal the relative importance of each transformed direction. To translate PCA into a K-amplitude
decomposition, we define the scaling parameter k as the relative order of the principal components.
For implementation, we utilize the eigenvalue decomposition of C for PCA, and the eigenvalues in
their descending ordering define the scaling parameter k.

D.3 DWT TRANSFORM AS A K-AMPLITUDE DECOMPOSITION

The Discrete Wavelet Transform (DWT) (Akansu & Haddad, 1992) is utilized to decompose a sig-
nal at multiple scales, capturing both time and frequency characteristics. It involves scaling and
translating wavelets.

The DWT decomposes the input signal into approximation and detail coefficients:

- Given a discrete signal x[n] (expressed by a finite-dimensional vector), use the scaling function
ϕ(t) and wavelet function ψ(t) to generate coefficients:

ck[j] =
∑
n

x[n] · ϕk,j [n], dk[j] =
∑
n

x[n] · ψk,j [n].

Here, ck[j] are the approximation coefficients at scale k, and dk[j] are the detail coefficients at scale
k. Comparing with our definition of K-Flow decomposition, k is just a discrete scaling parameter.

The inverse transform then reconstructs the original signal from the coefficients:

x[n] =
∑
k

cj [k]ϕj,k[n] +
∑
k

dj [k]ψj,k[n]

Recursive Relationship between different Scales (k) Different levels of decomposition are recur-
sively related:

1. k = 1: A single level decomposition results in approximation coefficients c1 and detail
coefficients d1;

2. k = 2: A two-level decomposition first produces coefficients c1 and d1. Then, the ap-
proximation coefficients c1 are further decomposed into a second level of approximation
coefficients c2 and detail coefficients d2.
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For k = 2, the decomposition looks like: x[n] → (c2, d2, d1), where d1 represents the high-
frequency components (level 1 detail coefficients) and c1 is the low-frequency component (level 1
approximation coefficients). Further decomposing c1 yields c2 (level 2 approximation coefficients)
and d2 (level 2 detail coefficients). This recursive relationship illustrates why we can effectively
take a finite maximum scaling parameter kmax and still own an inverse transform.

Practical Design choice. In this paper’s experiments, especially the Wavelet version of K-Flow
flow, we take the kmax to be one or two. One means decomposing the data into two scales, and two
means decomposing the data into three scales.

Pre-conditioning the data based on scaling As illustrated in fig. S1, the energy distribution exhibits
significant heterogeneity across different frequency bands, which consequently leads to non-uniform
vector field norms in our localized K-Flow. To address this training instability, two approaches can
be considered: First, following the methodology proposed in conventional diffusion models (Karras
et al., 2022), we could incorporate input-output preconditioning modules into the neural architecture.
However, this approach necessitates modifications to the backbone network structure, potentially
affecting model compatibility and transfer learning capabilities.

In this paper, we propose a more flexible solution through component-wise normalization of the
multi-scale decomposed data. Specifically, after performing K-amplitude decomposition, we com-
pute the statistical moments (mean and standard deviation) for each discretized scaling component
independently. This normalized representation is then processed through the flow, followed by an
inverse normalization step to restore the original scale. This pre-processing approach effectively
stabilizes the training dynamics while preserving the architectural integrity of the backbone model.

D.4 IMPLEMENTATION DETAILS OF K-FLOW VECTOR FIELD

K-Flow is architecture-agnostic in terms of its vector field implementation, making it compatible
with classical architectures such as U-Net (Song et al., 2020) and Vision Transformers (Peebles
& Xie, 2023) that are widely adopted in continuous normalizing flows and diffusion models. The
integration of our method requires only one targeted modification: replacing the conventional time-
embedding module with a K-amplitude-embedding module, where the temporal input is substituted
by the scaling parameter k. This modification enables direct incorporation of scaling information
while preserving the original architectural benefits, though we leave the exploration of specialized
architectures for K-amplitude flow as future work.

For practical implementation, we provide several variants of bump functions in this subsection to
facilitate exploration of the design space, with the complete training algorithm detailed in Algo-
rithm 1. For additional insights on the K-amplitude localization property and its implications for
model efficiency, we refer readers to Appendix D.5.

Remarks. Despite this model-agnostic nature, the unique K-amplitude localization property of
Equation (11) offers an opportunity to design more efficient models. For instance, consider points
that lie outside the support of function I√k2

x+k2
y+k2

z∈[⌊k⌋,⌊k⌋+1). In these regions, their derivative re-
mains zero, indicating that they do not contribute to the optimization process for the corresponding
scaling band. This selective activation allows us to focus computational efforts solely on the val-
ues within the support of the indicator function, I√k2

x+k2
y+k2

z∈[⌊k⌋,⌊k⌋+1). By doing so, the values
outside this region can be treated as static conditions, providing a fixed context.

Scaling Discretization. In the main text, we assume, by default, that the scaling parameter k takes
integer values: k ∈ {0, 1, 2, . . . , kmax}. Thus, the differentiable vector field vk for continuous k is
defined by interpolating between ⌊k⌋ and ⌊k⌋+ 1.

We now extend this concept to a more general setting where k may take a limited set of integer
values within the range from 0 to kmax. Suppose km and kn represent two specific integer values
for k. We demonstrate how to extend k continuously within the connected interval [km, kn). Let
t := k − km. The differentiable version of ϕk is then expressed as:
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Ψkm+t =F−1

(
I√k2

x+k2
y+k2

z<km
· F{ϕ}(kx, ky, kz) +

(
1− I√k2

x+k2
y+k2

z≥kn

)
· ϵ

+ I√k2
x+k2

y+k2
z∈[km,kn)

· (µ(t) · F{ϕ}(kx, ky, kz) + (1− µ(t)) · ϵ)

)
, (17)

where µ(t) is a bump function fulfilling µ(0) = µ(kn − km) = 1 and µ′(0) = −µ′(kn − km).

Replacing the Fourier transform with the general K-amplitude decomposition, the K-Flow is ex-
pressed in its general form as follows:

Ψkm+t = F−1

(
Ik<km · F{ϕ}(k) +

(
1− I√k≥kn

)
· ϵ+ Ik∈[km,kn) · (µ(t) · F({ϕ}k) + (1− µ(t)) · ϵ)

)
,

where F{ϕ}(k) is defined in the main text.

Experimental Implementation. In this paper’s experiments, particularly in the Fourier and PCA
versions of the K-Flow flow, we restrict the discrete values of k to {0, kmax

2 , kmax}, with kmax deter-
mined by resolution. We then extend k continuously using Equation 17.

Bump Function. We propose two types of bump functions: 1. Hard bump; 2. Soft bump. The hard
bump function µ : [0, 1]→ R+ satisfies the specific endpoint properties:

µ(0) = µ(1) = 1 and µ′(0) = −µ′(1). (18)

Inspired by spline functions, such bump functions can be constructed using polynomials. For exam-
ple, a quartic form used in our experiments is given by:

µ(t) = 1− 3t2 + 2t3. (19)

For more examples, readers can explore modifications of the connection functions used in Meyer
wavelets (Meyer, 1992).

In this paper, we utilize hard bump functions for constructing K-Flow flows with scaling discretiza-
tion exceeding one component.

Soft Localization with Soft Bump Function. Consider that the scaling parameter is discretized to
take values in an increasing sequence {ki}ni=0. Consequently, the continuous k lies in the interval
k ∈ [k0, kn]. Define

ψi := I√k2
x+k2

y+k2
z∈[ki,ki+1)

.

These ψi form a partition of unity for the K-Amplitude basis. The derivative of the soft bump
function µ′

i is defined for each scaling component ψi (a.k.a. frequency band), expressed as:

µ′
i(k; ai, b) =

{
c ·
(
1−

(
k−ai

b

)2)n
, if |k − ai| < b,

0, if |k − ai| ≥ b,
(20)

where ai = ki+ki+1

2 and c is the normalization constant ensuring that the integral of the function
over its compact support is 1. Note that hyper-parameter b ≤ kn − k0 dictates the width or support
region of the bump, while the degree n measures the sharpness of the bump. We retain b and n as
hyperparameters. The bump function µi(k) is then obtained by integrating µ′

i(k), which is also a
polynomial function.

It is evident that µi(k) satisfies:

µi(k0) = 0 and µi(kn) = 1.

Finally, conditioned on a sampled noise ϵ, the modified soft K-Flow flow at time t ∈ [0, kn − k0] is
expressed as:

Ψk0+t = F−1

(∑
i

ψi(kx, ky, kz) · µi(k0 + t) · F{ϕ}(kx, ky, kz) +
∑
i

ψi(kx, ky, kz) · (1− µi(k0 + t)) · ϵ

)
.

(21)
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Through the application of this formula and a family of soft bump functions {µi}, we can also
implement algorithm 1. In comparison to the hard bump functions, a K-Flow constructed with soft
bump functions assigns varying weights to each scale according to the scaling parameter k. Unlike
hard bump functions which strictly set other scales to zero for each stage of k, soft bump functions
provide a more gradual transition, allowing for multiple frequencies to flow concurrently, and the
relative weights are determined by the current scaling parameter k.

Comments on Haar and Meyer Wavelet K-amplitude. One type of wavelet that offers both
frequency and spatial localization is the Meyer wavelet. The Meyer wavelet is originally defined in
the Fourier frequency domain, making it ideal for smooth frequency transitions.

The 1D Meyer wavelet ψ(t) and its scaling function ϕ(t) are defined via their Fourier transforms,
ψ̂(ω) and ϕ̂(ω), respectively. The Meyer wavelet is constructed to ensure that the wavelet transform
will partition the frequency domain into octave bands.

The Fourier transform of the scaling function ϕ̂(ω) is defined as:

ϕ̂(ω) =


1 if |ω| ≤ 2π

3 ,

cos
(

π
2 ν
(

3|ω|
2π − 1

))
if 2π

3 < |ω| ≤ 4π
3 ,

0 if |ω| > 4π
3 ,

(22)

where ν(t) is a smooth function defined as:

ν(t) =


0 if t ≤ 0,

t if 0 < t < 1,

1 if t ≥ 1.

(23)

The Fourier transform of the Meyer wavelet ψ̂(ω) is then defined as:

ψ̂(ω) =

{
sin
(

π
2 ν
(

3|ω|
2π − 1

))
if 2π

3 < |ω| ≤ 4π
3 ,

0 otherwise.
(24)

In other words, Meyer transformation can be seen as the Fourier transform with a spatial cutoff
window. Note that the scaling function and the wavelet function play different roles, where the
low-frequency content of data is obtained by convolving the signal with the scaling function.

In the ablation section, we will employ a specific discretization of the Meyer wavelet to generate
our data. Additionally, we will explore the Haar wavelet method, which is implemented solely
through spatial convolution kernels and scaling operations. The Haar wavelet, being the simplest
form of wavelet, is particularly interesting because it uses piecewise constant functions to capture
local features at varying scales, providing a contrast to the smoother Meyer wavelet.

D.5 IMPLEMENTATION DETAILS

Hyper-parameters. In our experiments, we use the pretrained VAE from Stable Diffusion (Rom-
bach et al., 2022). The VAE encoder has a downsampling factor of 8 given an RGB pixel-based
image x ∈ Rh×w×3, z = E(x) has shape h

8 ×
w
8 × 4. All experiments are operated in the fixed

latent space.

In Table S2, we provide training hyperparameters for the image generation tasks on the two datasets.
For implementing training algorithm Algorithm 1, the bump function is provided in eq. (19). For
the classifier-free sampling on the conditional generation task, the cfg-scale is set to be 1.5.

D.6 RESOURCE REQUIREMENT AND TIME COMPLEXITY

Resources Requirement. All experiments were conducted on NVIDIA H100 GPUs, with a total
computational budget of approximately 3,000 GPU-hours.

Time Complexity. Our main focus is on comparing the computational complexity of the K-
amplitude flow with that of ordinary latent flows, we observe that during training, the additional
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Supplementary Table S2: Hyper-parameters of DiT network.

CelebA 256 ImageNet
Model DiT-L/2 (Peebles & Xie, 2023) DiT-L/2 (Peebles & Xie, 2023)
lr 2e-4 1e-4
AdamW optimizer (β1 & β2) 0.9, 0.999 0.9, 0.999
Batch size 32 240
# of epochs 500 900
# of GPUs 2 16

computational overhead introduced by the K-amplitude flow is minimal. From Algorithm 1, it is
evident that the only additional computational step is the discrete inverse K-amplitude transform
performed at each training iteration, while the remaining steps maintain the same complexity as the
ordinary flow matching algorithm. For instance, when considering the Fourier transform, its com-
putational complexity is O(N logN), where N denotes the length of the flattened image vector in
the latent space.

For inference, from Algorithm 3, compared to ordinary latent flow, the only additional step to per-
form the K amplitude flow is an inverse K amplitude transform to set up the initial noise for gen-
eration, and the remaining inference remains the same complexity. Thus, we expect a similar or
slightly higher complexity than the ordinary latent flow during generation. Empirically, we test the
averaged number of function evaluations (NFE) required for the adaptive solver to reach its prespec-
ified numerical tolerance on the CelebA 256 dataset. In fact, our NFE is better than baseline latent
flow (LFM):

Supplementary Table S3: CelebA-HQ 256.

Model NFE ↓
LFM, ADM 85
LFM, DiT L/2 89
FM 128
K-Flow, DiT L/2 (Ours) 78

It is worth mentioning that when testing the FID, we apply the fixed-step ODE solver (“Euler”) with
50 steps. Thus, we also provide the average inference time of generating one CelebA sample on one
H20 GPU:

Supplementary Table S4: CelebA-HQ 256.

Model Time (s)
LFM, DiT L/2 0.583
K-Flow, DiT L/2 (Ours) 0.589
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E ALGORITHMS

In this section, we list three key algorithms.

Algorithm 1 Training of K-Flow.

Require: Scaling parameter k with maximum kmax, K-Flow transform F , inverse transform F−1,
noise distribution p, target distribution q
Normalize k to be in [0, 1]: k ← k/kmax

Initialize parameters θ of vk
while not converged do

Sample scaling parameter k ∼ U(0, 1)
Sample training example ϕ ∼ q, sample noise ϵ ∼ p
Calculate current flow position Ψk according to K-Flow transform F , F−1 and Equation (10)
Calculate the conditional vector field Ψ̇k according to F , F−1 and Equation (11)
Calculate the objective ℓ(θ) = ∥vk(Ψk; θ)− Ψ̇k∥2g , following Equation (12)
θ = optimizer step(ℓ(θ))

end while

Algorithm 2 Scaling-controllable Generation of K-Flow.

Require: Scaling parameter k, K-amplitude transform F , inverse transform F−1, noise distribu-
tion p in the K-amplitude space, target distribution q
Initialize pre-trained vk(θ)
Sample one high-scaling noise ϵhigh ∼ p, sample two independent low-scaling noise ϵlow ∼ p,
ϵ̃low ∼ p
Ψ0 = F−1{ϵlow, ϵhigh}
Ψ̃0 = F−1{ϵ̃low, ϵhigh}
for k ∈ [0, 1] do
Ψk ← ODEstep(vk(·, θ),Ψ0)

Ψ̃k ← ODEstep(vk(·, θ), Ψ̃0)
end for

return Ψ1, Ψ̃1

Algorithm 3 Class-conditional Generation of K-Flow with dropping.

Require: Pre-trained vk(θ), conditioning class c, dropping time τ , noise distribution p, guidance
parameter ω

1: Ψ0 ∼ p
2: for k ∈ [0, τ ] do
3: ṽk(·)← (1− ω)vθk(·, θ) + ωuk(·, c, θ) {guided velocity}
4: Ψτ ← ODEstep(ṽk(·),Ψ0)
5: end for
6: for k ∈ [τ, 1] do
7: Ψ1 ← ODEstep(vk(·, θ),Ψτ )
8: end for
9:

10: return Ψ1
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F MORE RESULTS

F.1 MORE RESULTS ON UNCONDITIONAL GENERATION

We provide more results on the class-conditional generation using K-Flow in Figure S4.

Supplementary Figure S4: Non-curated samples of our reversing scaling variant on ImageNet (cfg = 1.5).
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F.2 UNCONDITIONAL GENERATION ON LSUN CHURCH

We conducted unconditional generation experiments on LSUN Church Yu et al. (2015), with the
resolution of 256× 256. The results are presented in Table S5. We test our K-amplitude flow with
two and three scaling components using the db6 wavelet Karam (2012) K-amplitude transform, and
we find that the three scaling components version achieves the best quantitative results in terms of
FID and Recall.

Supplementary Table S5: LSUN Church 256 × 256.

Model FID ↓ Recall ↑
LFM (ADM) 7.7 0.39
LFM (DiT L/2) 5.54 0.48
FM 10.54 -
LDM 4.02 0.52
WaveDiff 5.06 0.40
DDPM 7.89 -
ImageBART 7.32 -

K-Flow, two scales (Ours) 5.37 0.47
K-Flow, three scales (Ours) 5.19 0.49

Results Table S5 summarizes the results on LSUN Church. We test our K-Flow with two and
three scaling components using the db6 wavelet K-amplitude transform, and we find that the three
scaling components version achieves the best quantitative results in terms of FID and Recall.

F.3 CLASS-AWARE FID METRIC

We propose using the class-aware FID metric, defined as follows:

FIDclass-conditional = Ec∼p(c) [FID(c)] (25)

where for each class c, the FID is calculated by:

FID(c) := FID(Xc
r , X

c
g) = ∥µc

r − µc
g∥2 + Tr(Σc

r +Σc
g − 2(Σc

rΣ
c
g)

1/2). (26)

Here, Xc
r and Xc

g denote the real and generated data subsets for class c, respectively. Based on
FID(c), the Class-Dropping-Ratio (CDR) is defined by

CDR := Ec∼p(c)

[
FIDbef(c)

FIDaft(c)

]
,

where FIDbef denotes the FID calculated for the flow model carried with the class condition for
the whole process, and FIDaft denotes the FID calculated for the flow model carried with the class
condition for only a subprocess (we keep the initial 30% of the inference time for the experiment).
In practice, instead of computing the expectation over the entire class distribution p(c), we randomly
select 5 classes out of the total 1000 classes for evaluation.
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F.4 ABLATION STUDIES ON CONTROLLABLE CLASS-CONDITIONAL GENERATION

In Section 4, we provide brief results on the controllable class-conditional generation over ImageNet.
Here, we would like to give a more qualitative comparison between our model K-Flow and LFM.

Supplementary Figure S5: Classifier-free guidance sampling of our Fourier-based K-Flow with a hyperpa-
rameter setting of cfg = 3. In the right columns, the class condition is omitted for the last 50% of the scaling
steps during inference, using the same initial noise. It can be observed that as the cfg value increases and the
duration of omitting the class condition decreases, the generated results appear nearly identical.

Supplementary Figure S6: Classifier-free guidance sampling of our wavelet-based K-Flow with a hyperpa-
rameter setting of cfg = 2. In the right columns, the class condition is drooped for the last 70% of the scaling
steps during inference, using the same initial noise. It can be observed that after dropping, K-Flow still pre-
serves the high-scaling contents.

F.5 ABLATION STUDY ON WAVELET BASE

From Table S6, we tested two additional wavelet base, the discrete Haar basis (Haar, 1911) and the
discrete Myer basis (Meyer, 1990) as a supplement of the Daubechies wavelet (db6, Karam (2012))
used in the main text. All three wavelets demonstrated comparable performance in terms of both the
FID and Recall metrics.

Supplementary Table S6: CelebA-HQ 256.

Model FID↓ Recall↑
CelebA-HQ 256

K-Flow, Meyer-DiT L/2 5.01 0.47
K-Flow, Haar-DiT L/2 5.01 0.46
K-Flow, Db-DiT L/2 (three scales) 5.77 0.42

Supplementary Table S7: Conditional ImageNet
256.

Model FID↓ KSR↓ Recall↑
K-Flow, Wave (reverse) 23.06 - 0.58
+ cfg=1.5 5.1 - 0.46
K-Flow, Wave-DiT L/2 (Ours) 17.8 - 0.56
+ cfg=1.5 4.49 - 0.44
LFM (DiT L/2) 14.0 - 0.56
+ cfg=1.5 2.78 - 0.45
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Supplementary Figure S7: Daubechies waveletK-amplitude with more components trained on CelebA-256.

Supplementary Figure S8: Pipeline of scaling-controllable generation (high scaling).

F.6 ABLATION STUDY ON SCALING PARTITIONS

Although the quality of face generation appears similar to the naked eye, the model with three K-
amplitude bands (the last row of Table S6) performed worse in terms of FID and Recall metrics. We
provide the generated samples for qualitative evaluation in Figure S7.

Reversing the K-amplitude Scaling. In Table S7, we also tested a counterintuitive scaling order:
from high to low. This means generating high-frequency details first and then filling in the low-
frequency components during the generation process. We find that the model can still produce
images normally (Figure S4), with a better diversity (Recall) but lower quality (FID) compared to
the low-to-high scaling approach.

F.7 IMAGE SCALING-CONTROLLABLE GENERATION

Preserving Low Scaling, Modifying High Scaling. We need to highlight that in K-Flow, when
modeling the flow from lower to higher scales, the noise at higher scales is used to predict the
velocity at the lower scale. This is determined by the nature of ODE flow. To this end, we conduct
a study by reversing the scaling direction in the Daubechies wavelet K-Flow, and the pipeline is
illustrated in Figure S8. In such a reversed setup, we keep the low-scaling part the same noise while
gradually denoising the high-scaling part.

The results are listed in Figure S9. According to the six pairs of results, we can observe that the
low-scaling part stays the same, like the background of the image and the gender and color of the
people, while the high-resolution details of facial expressions and outlook vary within each pair.

Remarks. Although the overall results are generally optimistic, some unexpected changes have
been observed in the high-scaling parts. This may be attributed to two factors:

1. The compressed latent space may mix high and low content present in the original pixel
space.

2. The loss Equation (12) may not be perfectly optimized, meaning that K-Flow localized
vector field might not be perfectly confined to the low-scaling part. The second factor might
be mitigated by training on larger datasets. Furthermore, by training a reversed K-Flow
flow (from high to low), we observe that fixing the low-scaling noise enables unsupervised
editing of detailed high-scaling content.
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Supplementary Figure S9: Results of scaling-controllable generation. We display six pairs of images, where
each pair of images preserves the low scaling and differs in the high scaling.

Supplementary Figure S10: LFM editing by Algorithm 2.

In Figure S9, we’ve tested the wavelet-based K-Flow and observed similar results with the Fourier-
based K-Flow.

This insight further supports our model’s capacity to decompose the generative process into distinct
frequency bands, where specific frequency bands can be independently controlled. This separation
aids in achieving more detailed and deliberate modifications to generated data, adding a layer of
precision and flexibility to the generative framework.

F.8 IMAGE RESTORATION

Supplementary Table S8: Performance comparison on image
restoration. In this experiment, we pre-trained K flow with the
same U-net architecture implemented (Martin et al., 2024).

Super-res. Box inpaint. Deblurring.

PSNR SSIM PSNR SSIM PSNR SSIM

Degraded 10.17 0.182 22.12 0.742 27.67 0.740
PnP-Diff (Zhu et al., 2023) 31.20 0.893 N/A N/A 32.49 0.911
PnP-GS (Hurault et al., 2021) 30.69 0.889 N/A N/A 33.65 0.924
OT-ODE Pokle et al. (2023) 31.05 0.902 28.84 0.914 32.63 0.915
D-Flow (Ben-Hamu et al., 2024) 29.17 0.833 25.30 0.805 31.07 0.877
Flow-Priors Zhang et al. (2024) 28.35 0.717 29.40 0.858 31.40 0.856
PnP-Flow (Martin et al., 2024) 31.49 0.907 30.59 0.943 34.51 0.940
K-Flow (ours) 32.51 0.934 30.49 0.943 35.89 1.034

In this section, we evaluate the per-
formance of theK-amplitude flow on
several image restoration tasks, in-
cluding super-resolution and inpaint-
ing. These tasks typically involve re-
constructing the high-frequency com-
ponents of an image conditioned
on the known low-frequency com-
ponents. Unlike unsupervised edit-
ing based on different scales, the per-
formance of this experiment can be
quantitatively measured using reconstruction metrics such as Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity (SSIM).

Datasets and Baselines Our method is benchmarked against standard diffusion and flow matching
based restoration methods (see (Martin et al., 2024) for a detailed introduction). We evaluate all
methods on CelebA dataset, with images resized to 128× 128.

Algorithm. Our training-free restoration method basically follows the efficient algorithm proposed
in Martin et al. (2024) with two key changes adapted to K-amplitude:

1. The naive linear interpolation step is replaced by our scaling interpolation formula Equa-
tion (10).
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Supplementary Figure S11: Visualization for image restoration using K-Flow.

2. Instead of starting restoration from pure noise, we start at t = 0.5, since our flow pri-
marily denoises high-frequency components during the later period of time. From the K-
amplitude perspective, this strategic initialization point provides a more informed starting
state compared to conventional flow approaches, significantly reducing the inference com-
putational overhead while maintaining restoration quality. point of view than the ordinary
flow.

We provide the algorithm details in Algorithm 4.

Algorithm 4 PnP K-Flow.
Input: Pre-trained network vϑ by K-Flow, time sequence (tn)n either finite with

tn = n/N , N ∈ N or infinite with limn→+∞ tn = 1 and t0 = 0.3, adaptive stepsizes (γn)n.
Initialize: x0 ∈ Rd.
for n = 0, 1, . . . , do

zn = xn − γn∇F (xn). ▷ Gradient step on the data-fidelity term
z̃n from zn and noise ϵ through K-amplitude interpolation 10.
xn+1 = Dtn(z̃n) ▷ PnP step with restoration denoiser in (Martin

et al., 2024)
return xn+1

Results. We report benchmark results (following Martin et al. (2024)) for all methods across three
restoration tasks, measuring average PSNR and SSIM on 100 test images, including super-resolution
(with down sample rate ×2), deblurring and Box inpainting problems. Results are averaged across
100 test images. From Table S8, we see that the K-amplitude flow achieves state-of-the-art (SOTA)
quantitative results in the super-resolution task, deblurring task, and comparable results in inpainting
tasks. In terms of time complexity, we only use 75 iterations in the super-resolution task, while PnP-
flow’s iteration number is set to 150. This superior performance without task-specific hyperparam-
eter tuning can be attributed to our model’s inherent frequency-aware design: both deblurring and
super-resolution tasks primarily involve recovering high-frequency information (higher values of the
scaling parameter k ), which naturally aligns with the later stages of K-Flow’s scaling-progressive
generation process. From Figure S11, we can clearly see how K-Flow restores the high scaling
components of a blurred picture.

F.9 MOLECULAR ASSEMBLY

We consider another scientific task: molecular assembly. The goal is to learn the trajectory on
moving clusters of weakly-correlated molecular structures to the strongly-correlated structures.
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Supplementary Table S9: K-Flow against seven generative models on COD-Cluster17 with 5K, 10K, and all
samples. The best results are marked in bold.

COD-Cluster17-5K COD-Cluster17-10K COD-Cluster17-All
PM (atom) ↓ PM (center) ↓ PM (atom) ↓ PM (center) ↓ PM (atom) ↓ PM (center) ↓

GNN-MD 13.67 ± 0.06 13.80 ± 0.07 13.83 ± 0.06 13.90 ± 0.05 22.30 ± 12.04 14.51 ± 0.82
CrystalSDE-VE 15.52 ± 1.48 16.46 ± 0.99 17.25 ± 2.46 17.86 ± 1.11 17.28 ± 0.73 18.92 ± 0.03
CrystalSDE-VP 18.15 ± 3.02 19.15 ± 4.46 22.20 ± 3.29 21.39 ± 1.50 18.03 ± 4.56 20.02 ± 3.70
CrystalFlow-VE 14.87 ± 7.07 13.08 ± 4.51 16.41 ± 2.64 16.71 ± 2.35 12.80 ± 1.20 15.09 ± 0.34
CrystalFlow-VP 15.71 ± 2.69 17.10 ± 1.89 19.39 ± 4.37 16.01 ± 3.13 13.50 ± 0.44 13.28 ± 0.48
CrystalFlow-LERP 13.59 ± 0.09 13.26 ± 0.09 13.54 ± 0.03 13.20 ± 0.03 13.61 ± 0.00 13.28 ± 0.01
AssembleFlow 7.27 ± 0.04 6.13 ± 0.10 7.38 ± 0.03 6.21 ± 0.05 7.37 ± 0.01 6.21 ± 0.01

K-Flow (ours) 7.21 ± 0.12 6.11 ± 0.11 7.26 ± 0.06 6.12 ± 0.07 7.23 ± 0.01 6.07 ± 0.01

Dataset and evaluation metrics. We evaluate our method using the crystallization dataset
COD-Cluster17 (Liu et al., 2024b), a curated subset of the Crystallography Open Database
(COD)(Grazulis et al., 2009) containing 133K crystals. We consider three versions of COD-
Cluster17 with 5K, 10K, and the full dataset. To assess the quality of the generated molecular
assemblies, we employ Packing Matching (PM)(Chisholm & Motherwell, 2005), which quantifies
how well the generated structures align with reference crystals in terms of spatial arrangement and
packing density. Following (Liu et al., 2024b), we compute PM at both the atomic level (PM-atom)
and the mass-center level (PM-center) (Chisholm & Motherwell, 2005).

Baselines. We evaluate our approach against GNN-MD (Liu et al., 2024b), variations of Crys-
talSDE and CrystalFlow (Liu et al., 2024b), and the state-of-the-art AssembleFlow (Guo et al.,
2025). CrystalSDE-VE/VP model diffusion via stochastic differential equations, while CrystalFlow-
VE/VP use flow matching, with VP focusing on variance preservation. CrystalFlow-LERP employs
linear interpolation for efficiency. AssembleFlow (Guo et al., 2025) enhances rigidity modeling
using an inertial frame.

Main results. The main results in Table S9 show that K-Flow outperforms all baselines across three
datasets. Building on AssembleFlow’s rigidity modeling, K-Flow decomposes molecular pairwise
distances via spectral methods and projects geometric information from R3 and SO3 accordingly.
This approach achieves consistently superior packing matching performance.
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