Under review as a conference paper at ICLR 2025

A THEORETICAL ANALYSIS OF SHARP

A.1 PROOF OF THEOREM 1

Theorem. Assume that the prior density py is non-degenerate over R™ and let R* be the MMSE
restoration operator (4) corresponding to the restoration problems (3). Then, we have that

Vh(@) = 5 (Borc, (s-Ha) by [HTH(@ = R* (s, H))))

where h is the ShaRP regularizer in (6).

Proof. The ShaRP regularizer h(x) is defined as
M) = s, (s—Ha) Hepy [—logp(s/H)]

- / p(H) { / G (s — Ha)logp(s|H) ds| dH, (10)

where G, is the Gaussian probability density with variance o2 and p(s|H) is the likelihood function
for the degraded observation given the operator H. The expectation over p(H) accounts for the
randomness of the restoration operator H.

We start by relating the MMSE restoration operator to the score of the degraded observation
1
Vp(s|H) = — / (Hz — s) G5 (s — Ha)pg (x) de,
(o
where p;, is the prior. By using the definition of the MMSE estimator, we obtain the relationship

L (HR"(s,H) — 5). (11)

o2

Viogp(s|H) =

Consider the function inside the parenthesis in the expression for the ShaRP regularizer (10)

p(z) = (G, * Iogps‘H)(z) = /Go(z — s) logp(s|H) ds,
where z has the same dimensions as s and * denotes convolution. The gradient of p is given by
Vp(z) = (VGo * logpsn)(2) = (G * Viogpsu)(2)
1 *
- /G,,(z ~ ) [HR" (s, H) — s ds

_ 1 (H/R*(S,H)Gg(z—s)ds—z>

o2

where we used (11). By using z = Hax, we write the gradient with respect to «
1

Vep(Hx) = —QHTH (/ R*(s,H)G,(s — Hx)ds — :c)
g

By using this expression in (10), we obtain the desired result

Vh(z) = Up(H) /Ga(s ~ Haz) (HTH(R*(s,H) — z)) dsdH]
= 5 Eun. (s Hay i [HTH(z — R (s, H))]

A.2 PROOF OF THEOREM 2

Theorem. Run ShaRP fort > 1 iterations using the step-size 0 < v < 1/L under Assumptions 1-3.
Then, the sequence x* generated by ShaRP satisfies

E

t
i IIVf(w“)IE] < T(@) = )+ AL+
k=1
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Proof. First note that from the definition of the bias in eq. (9), we have that

E [ﬁf(a:k-l) |2" 7t = V(@) + b=t ), (12)
where the expectation is with respect to s ~ G, (s — Hz*~!) and H ~ py. In order to simplify the
notation, we will drop these subscripts from the expectations in the analysis below.
Consider the iteration k£ > 1 of ShaRP with inexact MMSE operator

f(:I}k) < f(mkfl) +vf(wk71)T(mk 7:1314371) + £

A

[

_ I N /o S S
= f@* ) = V)TV + =V
where in the first line we used the Lipschitz continuity of V f. By taking the expectation with respect

to s ~ G,(s — Hz"~!) and H ~ pg on both sides of this expression, we get

E[f (@) ] < f(2") ~ 1V F )TV A ) + bt ) + DB [V 3]

< @) = IV IE + S lbE )3

2 Vi o~
- B (2197 i) - (2O e o))
< @) - IV IE+ 5+ L

In the second row, we completed the square, applied eq. (12), and used the assumption thaty < 1/L.
In the third row, we used the variance and bias bounds in Assumptions 2 and 3. By rearranging the
expression, we get the following bound

VS IE < 2 (F@h) < Bl 1)) + L? +

By taking the total expectation, averaging over ¢ iterations, and using the lower bound f*, we get
the desired result

E

t
5 IVf(w’“‘l)IS] < 20— 1)+ D + &2
k=1
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B EXPERIMENT DETAILS

B.1 IMPLEMENTATION DETAILS OF CS-MRI TASKS

Subsampling pattern for CS-MRI. In this paper, we explored two types of subsampling patterns
for MRI reconstruction tasks. All undersampling masks were generated by first including a set
number of auto-calibration signal (ACS) lines, ensuring a fully-sampled central k-space region.

Figure 5 illustrates the k-space trajectories for both random and uniform (equidistant) subsampling
at acceleration factors of 4, 6, and 8. Notably, different patterns were used for training and testing.
During training, our restoration prior was only trained on a uniform mask with a subsampling rate
of 6. However, for inference, we employed both uniform and random masks at subsampling rates of
4 and 6, creating a mismatch between the pre-trained restoration prior and the test configurations.

(a) Restoration prior training setting {H} (b) Target problem inference setting A
@ sampled pixel  non-sampled pixel
(Sesssesesss-)
' (4ssssebesss..)
< (Sesesesesse.)
8 X Uniform masks set : 4x Umform mask 4 X Random mask 6 X Uniform mask 6 X Random mask

Figure 5: Illustration of the undersampling masks used for CS-MRI in this work. (a) The eight dif-
ferent 8 uniform masks used for training the restoration prior. (b) The inference setting for ShaRP,
demonstrating how the prior trained on the masks in (a) can be applied to solve other problems
without retraining.

Algorithm 2 Supervised Training of CS-MRI Restoration Network

Require: dataset: p(x), sampling operator set: { M7, My, --- , M}, Restoration model: Ry (-, c)
repeat:
x ~p(x), M ~{My, My, -, Mg}, e ~ N(0,0°I), a ~ U([0,1])
y=Mz+e

ming |Ry (1 — &)z + aMTy; ) — a:Hz
until converge

B.1.1 IMPLEMENTATION OF SUPERVISED PRIOR FOR CS-MRI

Models training for supervised case. We use the same U-Net architecture as employed in the
official implementation of DDS? for R(-; ). For the supervised learning case, we select 1,000
different « values to train the model, following the o schedule outlined by I?SB (Liu et al., 2023).
The model is trained with Adam optimizer with a learning rate of 5x10~5. As shown in Algorithm 2,
we train our supervised learning model using eight different masks for 8 x uniform sampling CS-
MRI reconstruction. In the pseudocode, { My, My, --- , Mg} represent the eight different MRI
degradation operators, each defined by a unique sampling pattern, as shown in Figure 5 (a). This
results in a total of 8,000 possible combinations of o values and sampling masks, effectively creating
an ensemble of restoration priors during training.

Inference with a Subset of the Ensemble (Supervised Case). During inference, to simplify com-
putation and focus on the most effective priors, we use only a subset of the supervised trained en-
semble. Specifically, we fix the « value to a particular choice (e.g., « = 0.5) and use the 8 different
sampling masks { My, My, - -- , Mg}, resulting in 8 restoration priors.

Step size and regularization parameter. To ensure fairness, for each problem setting, each
method—both proposed and baseline—is fine-tuned for optimal PSNR using 10 slices from a vali-
dation set separate from the test set. The same step size - and regularization parameter 7 are then
applied consistently across the entire test set.

https://github.com/HJ-harry/DDS
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Baseline details. We compare ShaRP with several variants of denoiser- and diffusion model-based
methods. For denoiser-based approaches, we include PnP-FISTA (Kamilov et al., 2023), PnP-
ADMM (Chan et al., 2017). PnP-FISTA and PnP-ADMM correspond to the FISTA and ADMM
variants of PnP, both utilizing AWGN denoisers built on DRUNet (Zhang et al., 2022). For diffusion
model-based methods, we compare with DPS (Chung et al., 2023) and DDS (Chung et al., 2024),
which use pre-trained diffusion models as priors and apply different posterior sampling strategies
to address general inverse problems. We use the same pre-trained diffusion model configuration as
outlined in the DDS paper. For all baseline methods, we fine-tuned their parameters to maximize
the PSNR value. Notably, both the DRUNet denoiser and the diffusion model were trained using
the same dataset employed for training our restoration prior. For a fair comparison, the diffusion
model pre-trained for DDS and DPS use the same network architecture as our restoration network
. All models are trained from scratch on the fastMRI training set, following the architecture set-
tings provided in DDS3. We also compared with method that also use the deep restoration prior to
solve general inverse problem: DRP (Hu et al., 2024c). For DRP, we utilize the same pre-trained
restoration network as in ShaRP. However, instead of employing a set of degradation priors, DRP
uses a single fixed prior. For a fair comparison, we selected the optimal fixed prior—defined by a
fixed a and subsampling mask—based on PSNR performance on the validation set, and applied it
accordingly.

B.1.2 IMPLEMENTATION OF SELF-SUPERVISED PRIOR FOR CS-MRI

Algorithm 3 Self-Supervised Training of CS-MRI Restoration Network

Require: dataset: p(y;, M;, y;, M), Restoration model: Rg(-)
repeat:
Yi, Mia Yj, Mj ~ p(yzv Mi> Yj, MjQ): € ~ N(07 021)
ming | MRy (M (yi +€)) — |3
until converge

Models training for (Self-Supervised Case). For self-supervised training, the ground truth ref-
erence x is not available as a label. Instead, as shown in Algorithm 3, we work with pairs of
subsampled measurements, y; and y;, along with their corresponding sampling operators, M; and
M. These paired measurements exhibit significant overlap within the shared auto-calibration sig-
nal (ACS) region, which increases the weighting of these overlapping k-space regions. Following
the approach proposed by SSDEQ (Gan et al., 2023b), we introduce a diagonal weighting matrix
W to account for the oversampled regions in the loss function. By incorporating this weighted loss,
we are able to train our MMSE restoration operator using incomplete measurements alone. Further-
more, unlike the supervised case where we use the combination of « values to form an ensemble,
in the self-supervised setting, we construct the ensemble using only eight different sampling masks
across the entire dataset.

Inference Using All Restoration Priors (Self-Supervised Case). During inference in the self-
supervised setting, we utilize all 8 restoration priors corresponding to the different sampling masks.
By incorporating the entire ensemble, we fully leverage its capacity to remove the artifacts and
enhance reconstruction performance.

Step size and regularization parameter. To ensure fairness, for each problem setting, each
method—both proposed and baseline—is fine-tuned for optimal PSNR using 10 slices from a vali-
dation set separate from the test set. The same step size -y and regularization parameter 7 are then
applied consistently across the entire test set.

Baseline details. In the self-supervised setting, we compared ShaRP with two widely used tradi-
tional methods: TV (Block et al., 2007) and GRAPPA (Griswold et al., 2002), both of which ad-
dress the restoration problem without requiring fully-sampled references. Additionally, we included
SPICER (Hu et al., 2024d), a recent state-of-the-art self-supervised deep unrolling method designed
for MRI reconstruction using only pairs of undersampled measurements. To ensure consistency, we
trained the SPICER model on the same amount of paired data used for training our restoration prior
in the 8 x uniform CS-MRI setting and applied it to other CS-MRI configurations.

3https://github.com/HJ-harry/DDS
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B.2 IMPLEMENTATION DETAILS OF SISR TASKS

Algorithm 4 Gaussian Deblurring Restoration network training

Require: dataset:p(x,y), Gaussian blur operator: K, Ry(-, )
repeat:
x ~ p(z), e ~ N(0,0%I), a ~ U([0,1])
ming |Rg (1 — @)z + aKz;a) — |3
until converge

Restoration Model training. We use the same U-Net architecture as the Gaussian deblurring model
provided by I?SB*. Utilizing the pre-trained checkpoints from their repository, we fine-tune our
model accordingly. Specifically, we align with their codebase and configure the model type to OT-
ODE to satisfy our MMSE restoration operator assumption.

To create an ensemble of restoration priors, we consider a family of degradation operators that are
convex combinations of the identity mapping I and the Gaussian blur operator K. The blurring
operator K corresponds to convolution with a Gaussian blur kernel of size 31 x 31 and standard
deviation 3. Specifically, we define the degradation operator as H, = (1 — o)l + aK, where
« € [0, 1] controls the degradation level. By varying «, we generate multiple degradation operators,
allowing us to train the restoration network R to handle all these operators, expressed as R(s, H,,) =
E [x|s,H,], where s is the degraded image and « is the original image.

We select 1,000 different « values from the interval [0, 1], following the « schedule outlined by
I?SB (Liu et al., 2023). This results in 1,000 different degradation operators H, effectively creating
an ensemble of restoration priors during training. The model is trained using the Adam optimizer
with a learning rate of 5 x 107°.

Inference with a Subset of the Ensemble. During inference, to simplify computation and focus on
the most effective priors, we use only a subset of the supervised trained ensemble. Specifically, we
select 6 « values, resulting in 6 restoration priors.

Step size and regularization parameter. To ensure fairness, for each problem setting, each
method—both proposed and baseline—is fine-tuned for optimal PSNR using 5 images from a val-
idation set separate from the test set. The same step size y and regularization parameter 7 are then
applied consistently across the entire test set.

Baseline details. We compare ShaRP against several denoiser- and diffusion model-based meth-
ods. For denoiser-based approaches, we evaluate DPIR (Zhang et al., 2022), which relies on half-
quadratic splitting (HQS) iterations with DRUNet denoisers. For diffusion model-based methods,
we compare with DPS (Chung et al., 2023), DDNM (Wang et al., 2023), and DiffPIR (Zhu et al.,
2023). These methods all use the same pre-trained diffusion models as priors, but each employs
a distinct posterior sampling strategy to solve general inverse problems. We specifically use the
pre-trained diffusion model from DiffPIR. We also compared with method that also use the deep
restoration prior to solve general inverse problem: DRP (Hu et al., 2024c). For DRP, we utilize the
same pre-trained deblurring network as in ShaRP. However, instead of employing a set of degra-
dation priors, DRP uses a single fixed prior. For a fair comparison, we selected the optimal fixed
prior—defined by a fixed o based on PSNR performance on the validation set, and applied it accord-
ingly. For all baselines, we fine-tuned their parameters to maximize PSNR performance. Notably,
the diffusion model backbone for all diffusion-based baselines was trained on the same dataset used
to train our restoration prior.

*https://github.com/NVlabs/I2SB
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C ADDITIONAL RESULTS FOR CS-MRI

C.1 PERFORMANCE OF SHARP FOR RANDOM SUBSAMPLING SETTING

Due to space constraints, we present only the quantitative performance for the uniform subsampling
setting in the main paper. In this section, we further evaluate ShaRP’s performance on random
subsampling setting, with two sub-sampling rates (4x and 6x), and three noise levels (¢ = 0.005,
0.01, and 0.015).

Table 4 provides a quantitative comparison of reconstruction performance across different accel-
eration factors and noise levels using a uniform sub-sampling mask. In all configurations, ShaRP
consistently outperforms the baseline methods. The use of a set of restoration operators clearly
enhances ShaRP’s performance, highlighting the effectiveness of employing multiple operators to
maximize the regularization information provided by the restoration model. Figure 6 presents visual
reconstructions for two test scenarios, where ShaRP accurately recovers fine brain details, partic-
ularly in the zoomed-in regions, while baseline methods tend to oversmooth or introduce artifacts.
These results highlight ShaRP’s superior ability to manage structured artifacts and preserve fine
details, outperforming both denoiser-based and diffusion model-based methods.

PnP-ADMM DPS DDS ShaRP Groundtruth

N N L

Figure 6: Visual comparison of ShaRP with baseline methods on CS-MRI for 6 x random sampling
mask with noise o = 0.015. PSNR and SSIM values are in the top-left corner of each image. Error
maps and zoomed-in areas highlight differences. Notably, ShaRP with stochastic priors outperforms
state-of-the-art methods using denoiser and diffusion model priors.
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4x Random 6x Random

Noise level o =0.005 o =0.010 0 =0.015 o =0.005 o =0.010 o=0.015
Metrics PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Zero-filled 25.83 0.815 25.81 0.812 25.76 0.807 22.68 0.724 22.67 0.722 22.67 0.719
TV 28.14 0.866 28.06 0.863 27.96 0.859 24.55 0.782 24.33 0.750 24.28 0.736
PnP-FISTA 29.31 0.863 28.40 0.817 27.49 0.799 26.01 0.797 25.63 0.756 24.94 0.717
PnP-ADMM 28.83 0.842 28.39 0.816 27.70 0.786 25.59 0.776 25.19 0.740 24.93 0.728
DRP 29.97 0.880 29.37 0.839 28.31 0.794 26.98 0.866 26.78 0.853 26.49 0.821
DPS 31.72 0.874 30.45 0.857 29.50 0.843 30.32 0.856 29.36 0.824 27.99 0.810
DDS 32.41 0.910 32.37 0.906 32.25 0.901 30.59 0.876 30.35 0.874 30.31 0.879

ShaRP  34.66 0.949 33.57 0.920 33.18 0.931 31.53 0.924 31.46 0.918 31.45 0.914

Table 4: Quantitative comparison of ShaRP with several baselines for CS-MRI using random masks
at undersampling rates of 4 and 6 on fastMRI dataset. The best and second best results are high-
lighted. Notably, ShaRP outperforms SOTA methods based on denoisers and diffusion models.
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C.2 PERFORMANCE OF ADDITIONAL BASELINE METHODS ON MATCHED AND MISMATCHED
SETTINGS

In this section, we highlight an important observation: pre-trained restoration networks typi-
cally exhibit poor generalization to mismatched settings. We chose two commonly used methods
(SwinlR (Liang et al., 2021) and E2E-VarNet (Sriram et al., 2020)) for the specific setting of CS-
MRI. We trained them on the same 8 uniform subsampling setting as our restoration prior and
directly applied them to solve both matched and mismatched problems, as ShaRP did. As shown
in the Table 5, the baseline method’s performance drops significantly under mismatched condi-
tions, whereas ShaRP maintains stable performance and convergence guarantees. This demonstrates
ShaRP’s ability to adapt pre-trained restoration models as priors and use it to solve problems under
mismatched settings. As shown in the Figure 7, due to the mismatched settings, the two baseline
methods suffer from over-smoothing, lack important details, and exhibit artifacts, whereas ShaRP
still provides high-quality reconstruction performance. This indicates that ShaRP can balance data
fidelity and the artifact removal capabilities of the prior model, leading to an artifact-free reconstruc-
tion that preserves important details.

Settings 4% Uniform 4x Random 6x Uniform 6x Random 8x Uniform

Metrics PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
SwinlR 2478 0.849 25.09 0.841 29.55 0.907 27.98 0.819 29.37 0.898
E2E-VarNet 35.40 0.957 33.48 0.945 32.79 0.936 31.02 0.913 32.59 0.919

ShaRP  37.59 0.963 34.66 0.949 33.42 0.940 31.53 0.924 32.37 0.907

Table 5: Quantitative comparison of ShaRP with task-specific baselines trained on the 8 x uniform
mask. Baselines perform well in matched settings (highlighted in the table) but show a significant
drop under mismatched conditions. In contrast, ShaRP remains robust, handling both matched and
mismatched scenarios effectively.

SwinIR EZE VarNet SHARP Groundtruth

0.12
0.06
0.00

s L)
0.05
0.00 ”

Figure 7: Visual comparison of ShaRP with task-specific baseline methods on CS-MRI for 6x
random sampling mask with noise o = 0.015. PSNR and SSIM values are in the top-left corner of
each image. Error maps and zoomed-in areas highlight differences. Notably, ShaRP with stochastic
priors outperforms state-of-the-art methods using denoiser and diffusion model priors.
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D ADDITIONAL VISUAL RESULTS FOR SISR
In this section, we present additional visual results to numerical comparisons for the SISR task.

D.1 ADDITIONAL VISUAL RESULTS AGAINST BASELINES

As illustrated in Figure 8 and Figure 9, ShaRP outperforms all baseline approaches under both
blur kernel settings, achieving higher PSNR and SSIM values. Moreover, we maintain superior
data consistency with the measurements while achieving enhanced perceptual quality. The use of
an ensemble of deblurring priors enables our method to recover fine details at varying corruption
levels, contributing to the improved performance.

Bicubic DPIR DDNM DiffPIR ShaRP Groundtruth

Figure 8: Visual comparison of ShaRP with several well-known methods on 2x SISR with gaussian
blur kernel with o = 1.5. The quantities in the top-left corner of each image provide PSNR and
SSIM values for each method. The squares at the bottom of each image visualize the zoomed area
in the image.

Blcublc DPIR DDNM lefPIR ShaRP Groundtruth

Figure 9: Visual comparison of ShaRP with several well-known methods on 2x SISR with gaussian
blur kernel with 0 = 1.5. The quantities in the top-left corner of each image provide PSNR and
SSIM values for each method. The squares at the bottom of each image visualize the zoomed area
in the image.
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D.2 ADDITIONAL VISUAL RESULTS AGAINST DRP

To further emphasize the necessity and advantages of using an ensemble of deblurring priors, as
opposed to a fixed prior like in DRP (Hu et al., 2024c), we provide additional visual comparison
results. As shown in Figure 10, ShaRP consistently recovers finer details, resulting in improved
PSNR and SSIM scores, along with enhanced perceptual performance.

Bicubic DRP ShaRP Groundtruth

Figure 10: Visual comparison of ShaRP with DRP on 2x SISR with gaussian blur kernel with
o = 1.5. The quantities in the bottom-left corner of each image provide PSNR and SSIM values for
each method. The squares at the bottom of each image visualize the zoomed area in the image.
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