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ABSTRACT

Vector representations offer scalability, editability, and storage efficiency, making
them indispensable for a wide range of digital applications. Yet, generative models
for vector drawings remain under-explored, in particular for modeling complex
vector drawings. This is in part due to the primarily sequential and auto-regressive
nature of existing approaches failing to scale beyond simple drawings. In this
paper, we introduce a generative model for complex vector drawings, representing
them as “stroke clouds” – sets of arbitrary cardinality comprised of n-dimensional
Bézier curves. Stroke dimensionality is a design choice that allows the model to
adapt to different levels of sketch complexity. We learn to encode this set of strokes
into compact latent codes by a probabilistic reconstruction procedure based on De-
Finetti’s Theorem of Exchangeability. A generative model is then defined over the
latent vectors of the encoded stroke clouds. Thus, the resulting “Latent stroke
cloud generator (LSG)” captures the distribution of complex vector drawings in
an implicit set space. We demonstrate the efficacy of our model in the generation
of complex Anime line-art drawings.

1 INTRODUCTION

Reconstruction Generation

Figure 1: Our model allows us to perform both probabilistic reconstruction of existing samples and
generation of new samples matching a training data distribution. Reconstruction: We encode a
vector drawing (left) as a set of Bézier curves and then probabilistically decode it with an MLP-
based diffusion model to recreate the drawing (right). Generation: Through the use of a latent
diffusion model we generate latent codes, and then decode them into vector drawings.

The rise of Diffusion Probabilistic Models (DPMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020a)
and their spectacular performance on conditional image generation (Rombach et al., 2022; Saharia
et al., 2022) has prompted the emergence of the subfield of creative visual intelligence. However,
diffusion-based generation targets raster images and leaves drawings, sketches, and other forms of
“chirographic data”1 underrepresented. Vector representations are scalable, editable, and storage ef-
ficient – properties that are beneficial in digital use cases. Such vector representations, however, due
to their variable size nature, are mostly (with notable exceptions, e.g. Jain et al. (2023)) incompati-
ble with the current image generation pipelines. It is to be noted that modeling chirographic vector
modalities have been attempted before (Ha & Eck, 2018; Carlier et al., 2020; Aksan et al., 2020;

1The term coined by Das et al. (2022; 2023)
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Ribeiro et al., 2020; Lopes et al., 2019), but at a smaller scale and complexity. In this paper, we
attempt to design a generative model directly on vector drawings, specifically some complex ones as
depicted in Fig. 1.

Prior attempts at modeling vector drawings were limited to sequential representations (Ha & Eck,
2018; Aksan et al., 2020; Ribeiro et al., 2020). The sequence elements used were discretized 2D
points (Ha & Eck, 2018; Ribeiro et al., 2020), SVG command tokens (Carlier et al., 2020; Lopes
et al., 2019) and individual strokes (Aksan et al., 2020; Das et al., 2020b; Chowdhury et al., 2022).
Generative models based on sequential representations were demonstrated only for drawings and
sketches significantly simpler in complexity than the ones we target in this work. This can be
attributed to the inability of sequential models (i.e. RNNs as in Graves (2013), causal Transformers
Ribeiro et al. (2020); Aksan et al. (2020)) to handle long sequences. A challenge of modeling long-
range dependencies is a well-known drawback (Pascanu et al., 2013), of such models, even beyond
chirographic data, in tasks such as scene synthesis (Paschalidou et al., 2021; Para et al., 2023).

In this paper, we target a generative model for vector drawings, specifically focusing on complex
drawings. To this end, we abandon the sequential approaches. We propose to model highly complex
drawings as a set of its constituent strokes – denoting this data structure as “Stroke Cloud”. Each
stroke can be theoretically represented by any available vector format, such as simple 2D polylines
(Ha & Eck (2018)), Bézier curves, or differential geometric embeddings (e.g. Aksan et al. (2020)).
We here chose Bézier curves for their ubiquitous use in vector art. We then define our genera-
tive model on the space of stroke clouds embeddings (sets embeddings), mitigating the long-range
dependency issues of sequential representations.

More formally, we define a generative model over a set X of arbitrary cardinality. Note that gen-
erative models are typically defined on the Euclidean vector space RN and do not naturally extend
to set spaces, which have element invariance properties. However, the foundation for our set-based
generative model has been laid by the recent work of Zaheer et al. (2017), and our solution is sup-
ported by De-Finetti’s Theorem. It follows that we can represent a set as a product of independent
conditional distributions over the elements, given a latent embedding z = E(X ) of the entire set (Lee
et al., 2019; Zaheer et al., 2017). We can then proceed to build a generative model pθ(z) over the
set embeddings. We show that such models efficiently scale up to complex drawings and generate
plausibly-looking samples.

Our main contributions can be summarized as follows: (i) We introduce the first generative model for
complex vector drawings. Yet, our approach can be used for simpler drawings and any other form
of “chirographic data”, as we demonstrate in the Appendix. (ii) We define our generative model
over complex drawings with a novel “stroke cloud” representation, which is a set of its constituent
strokes. To this end, we learn set embeddings for each set (stroke cloud) to facilitate the downstream
generative model.

The code and the data are available at https://github.com/Co-do/Stroke-Cloud.

2 RELATED WORKS

Sketch Generation First, we focus on the most related recent works for sketch representation and
generation. Generating freehand-like sketches from reference images or textual captions remains a
challenging task. When generating sketches from images, methods often do not take the abstraction
of concepts or objects present in freehand sketches into account, and the produced sketches are some
forms of edgemaps (Xie & Tu, 2015; Li et al., 2019; Chan et al., 2022). Alternatively, there is a wide
range of sketch generation work based on authentic sketches ranging from creative sketch generation
(Ge et al., 2020), shading sketch generation (Li et al., 2020), image-to-sketch translation (Liu et al.,
2020) and face sketch synthesis (Wang et al., 2020; Gao et al., 2023). Most of the models are based
on a raster sketch representation, which does not reflect the stroke-based nature of authentic drawing
that vector sketches do.

To model sketches as a sequence of strokes, sequential and auto-regressive approaches have been
used (Ha & Eck, 2018; Zhang et al., 2017). Further, methods for generating vector sketches in-
clude SketchHealer (Su et al., 2020), which is a graph-to-sequence approach, SketchPix2Seq (Chen
et al., 2017) a CNN-based approach for vector sketches, SketchODE (Das et al., 2022) a neural
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ODE based approach and a Bézier curve based approach (Das et al., 2020b). More recently a
denoising probabilistic-based method, SketchKnitter (Wang et al., 2022), has demonstrated state-of-
the-art performance in generating simple vector sketches. Despite the impressive performance the
requirement to represent all training data with a fixed number of points can prove limiting to wider
applications of their method. A recent work (Carlier et al., 2020) attempted to forcefully impose
permutation invariance on stroke-sequences via Hungarian matching (Kuhn, 1955) – a cubic time
algorithm (i.e. O(n3)) that is hard to scale beyond low cardinality samples. CLIPascene (Vinker
et al., 2022) generates vector sketches from reference images, relying on a per-image optimization
approach.

Point clouds In this work, rather than representing sketches as a sequence of strokes, we represent
a sketch as a set of (unordered) strokes. This problem bears similarity with point clouds generation
and representation. Early point cloud works (Achlioptas et al., 2018; Gadelha et al., 2018) repre-
sented point clouds as fixed-sized matrices which enabled existing generative models to be easily
applied to the problem. AtlasNet (Groueix et al., 2018) and FoldingNet (Yang et al., 2018) learned
a mapping from patches in two-dimensional space to three-dimensional space which was able to
deform the two-dimensional patches into point cloud shapes. These methods allowed for the gen-
eration of point clouds of variable size while also ensuring permutation invariance. An alternative
approach is to consider a point cloud as a distribution over three-dimensional points. A range of
different approaches utilize likelihood-based methods for generating point clouds of variable size.
Thus, PointFlow (Yang et al., 2019) and DFP-Net (Klokov et al., 2020) utilize normalizing flows
to model the distribution of points, while PointGrow (Sun et al., 2020) employs an auto-regressive
model. More recently, (Luo & Hu, 2021) presented a probabilistic diffusion model-based approach,
where they condition a diffusion model on a latent representation of the point cloud and proba-
bilistically reconstruct point clouds. Colored point cloud generation (Wu et al., 2023) builds on
the possible use cases for point clouds as it expands the complexity of the information the point
cloud can represent. Our stroke-cloud approach seeks to leverage the flexibility provided by recent
point cloud works but focuses on how to model more complex elements than 2D/3D point elements.
Namely, we focus on how to model vector sketches consisting of a large number of strokes of diverse
shapes.

3 METHOD

Our generative method consists of two modules: (i) the Stroke cloud Representation Module (SRM),
comprised of a Set Transformer Lee et al. (2019) as an encoder and a conditional MLP-based dif-
fusion model as the decoder, and (ii) the Latent Stroke cloud Generator (LSG). The SRM module
serves as an encoder-decoder, and combined with the LSG module it allows us to generate new
drawings representative of the training dataset. The latent code generated by the LSG is decoded
by the SRM into N individual strokes, where N is a hyperparameter. We are therefore able to
probabilistically reconstruct complex drawings with a variable number of strokes.

3.1 DRAWING REPRESENTATION

We represent a drawing in our dataset D as a set of strokes S = {s(1), s(2), s(3), · · · , s(N)} ∈ D.
Note that the cardinality, N , of a set S (the number of strokes in a line drawing) varies across
drawings in the training data.

We represent each stroke in the drawing as a Bézier curve. Unless specified otherwise, we use
quadratic Bézier curves, represented as follows: s(1) = (x1, y1, x2, y2, x3, y3), where each pair of
(xi, yi) are the coordinates of the i-th control point. While these relatively simple strokes lack the
complexity of authentic hand-drawn strokes they can be used to represent complex drawings. For
more information on stroke design and usage of Bézier curves of higher degrees please refer to the
Appendix E.

3.2 SET REPRESENTATION MODULE

We model our Set Representation Module (SRM) as a generative conditional model. As a generative
model, we use a Denoising Diffusion Probabilistic Model (DDPM) (Ho et al., 2020a). The training
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objective can be formulated as follows:

max{Ψ}
∑

S∈D log p{Ψ}(S), (1)

where Ψ are trainable parameters.

Stroke cloud joint probability distribution It is challenging to define a generative model directly
on the set space S due to the varying number of strokes in each line drawing. A solution that we
explore here is to first learn to transform a set S into a latent representation. Our solution is inspired
by the work by Zaheer et al. (2017) and De-Finetti’s Theorem of Exchangeability2 stating that a set
(exchangeable sequences of random variables) can be modeled as a probability distribution over its
constituent elements given some latent representation of the set.

Therefore, we decompose a drawing S into conditionally independent parametric density functions
of the individual strokes s ∈ S, conditioned on a latent embedding z of a drawing S:

p{θ,ϕ}(S) =
∏

s∈S pθ(s|z = Eϕ(S)), (2)

where Eϕ(S) is the drawing encoder into a latent space with learnable parameters ϕ.

Now, we can consider strokes as I.I.D., and can rewrite the training objective in Eq. (1) as follows:

max{θ,ϕ}
∑

S∈D log p{θ,ϕ}(S) = max{θ,ϕ}
∑

S∈D
∑

s∈S log pθ(s|z = Eϕ(S)). (3)

Training As an approximation to the true log-likelihood in Eq. (3), we optimize a noise-estimator
model trained on noisy versions of strokes st at diffusion timestep (noise level) t:

min
{θ,ϕ}

ES∈D

[
Es∈S, ϵ∼N (0,I), t∼U(1,T )

[
||ϵθ (st, t | z = Eϕ(S))− ϵ||22

]]
(4)

where ϵθ(·) is the conditional noise-estimator. A noisy stroke, st, is obtained as follows: st =√
αts +

√
1− αtϵ for all timesteps t ∈ [1, T ], where αt ∈ [0, 1] is a monotonically decreasing

diffusion schedule and ϵ ∈ R6×1. The noise is added to each control point of a stroke. For more
detail on the standard Diffusion Model formulation, please refer to appendix F.

The stroke cloud encoder Eϕ The stroke cloud encoder is an important element of the SRM, as it
enables the representation of strokes as independent random variables. Due to its theoretically guar-
anteed permutation-invariant nature, we use a Set Transformer with Pooling by Multihead Attention
(PMA) (with one seed vector) proposed by Lee et al. (2019) in order to encode a given set S into a
compact latent code z.

Reconstructing the stroke cloud Given a trained noise estimator with the parameters θ∗ and a
trained stroke cloud encoder such that z = Eϕ∗(S), we can decode the set by running any diffusion
sampler:

Ŝ =
{
ŝ(j) := SAMPLER(ϵθ∗ , z)

∣∣ j ∈ [1, N ]
}

(5)

where SAMPLER(·) is any sampling procedure compatible with DDPM training (Ho et al., 2020a).
We discuss the choice of the sampler in more detail in Sec. 4.

Note that since we assume the strokes to be independent and identically distributed random vari-
ables, the model is not aware of the set’s cardinality N , which is the number of strokes in a sketch.
However, due to the presence of the expectation Es∈S in Eq. (3), the model does implicitly encode
the relative importance of each stroke. We treat the cardinality N of the reconstructed set Ŝ as a hy-
perparameter, and discuss it in more detail in Sec. 4. In Sec. 4, we show that both the hyperparameter
N and the exact sampling procedure influence the visual quality of the reconstructed drawing.

3.3 LATENT STROKE CLOUD GENERATOR

To enable unconditional generation, we leverage a latent generative model that we term “Latent
Stroke cloud Generator” (LSG). To train the LSG model, we extract embeddings of the drawings in
our dataset D:

D̄ =
{
z := Eϕ∗(S)

∣∣ S ∈ D
}

(6)

2We provide more detail on De-Finetti’s Theorem of Exchangeability in the Appendix G.
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Figure 2: An illustration of the reverse diffusion process for a set of 1000 strokes with a DDIM
sampling method. The original drawing was comprised of 350 strokes. Repeated strokes are ‘re-
drawn’ on top of one another.

LSG is then a simple generative model defined over the latent vectors z: pψ(z) with trainable pa-
rameters ψ. Just like in Sec. 3.2, we realize pψ(z) using a diffusion model. Specifically, we train a
parametric noise estimator ϵψ on the noisy latents zt =

√
αtz+

√
1− αtϵ . This estimator estimates

the noise component ϵ:

min
ψ

Ez∈D̄, ϵ∼N (0,I), t∼U(1,T )

[
||ϵψ (zt, t)− ϵ||22

]
. (7)

4 EXPERIMENTS & RESULTS

4.1 DATASET PREPARATION

A key challenge in generative modeling for complex vector drawings is acquiring a sufficiently
large dataset. Due to the unavailability of such datasets, much of chirographic modeling (Ha &
Eck, 2018; Aksan et al., 2020; Das et al., 2023; Wang et al., 2022; Das et al., 2022) has focused on
the QuickDraw dataset, which contains a vast number of very simple drawings. For reference, the
average number of strokes in sketches from QuickDraw is 5.

To demonstrate the effectiveness of our stroke cloud-based sketch generation framework in generat-
ing complex vector sketches, we synthetically generate a new dataset that we name Anime-Vec10k,
derived from the Danbooru2019 dataset (Branwen et al., 2019) of anime raster images. We then use
this dataset to train our model.

The Danbooru2019 image database comprises 3.69 million anime-style artworks in raster format,
along with over 106 million annotations. To create our dataset, we randomly select 10,000 samples
from a subset of Danbooru 2019 Portraits, which are portraits cropped from the original Danbooru
dataset. We then transform these samples into line drawings using a style-transfer Generative Ad-
versarial Network (GAN) as described in Chan et al. (2022). Finally, we utilize a line art vectorizer
by Mo et al. (2021) to convert these synthetic line drawings into complex vector sketches, consisting
of quadratic B’ezier curves. This process is illustrated in Fig. 3. For more details, please refer to
Appendix B. On average, the sketches in our dataset consist of 305 strokes.

Original Sketch Vector Stroke-Cloud

Figure 3: To generate the Anime-Vec10k dataset we take an original image from the Danbooru 2019
Portrait dataset and use a style GAN to convert it to ‘sketch style’. We then apply a vectorizer to
generate a set of quadratic Bezier curves.
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Sampler and stroke number
DDIM 100 DDIM 500 DDIM 1000 DDIM 5000 DDPM 1000

FID 191 34 9.8 11.3 58

Table 1: Quantitative comparison of drawings generated under different sampling conditions. DDIM
sampling was done with 30 steps while the DDPM sampling was done with 1000 steps.

4.2 STROKES REPRESENTATION AND EMBEDDING

As we introduced in Sec. 3.1, in our framework, each stroke in a drawing is represented as s(i) =
(x1, y1, x2, y2, x3, y3), where each pair of xi, yi denotes the control points of a quadratic Bézier
curve. Using a Set Transformer (Lee et al., 2019), we encode each drawing as a set of variable
cardinality, with each stroke as an element in the set. The resulting latent code conditions an MLP-
based diffusion model, which learns to generate elements of the set.

To address spectral bias in the MLP (Tancik et al., 2020), we employ a sinusoidal embedding for
each control point coordinate. Increasing the dimensionality of the sinusoidal embedding helps to
mitigate the spectral bias, as can be seen in Fig. 4.

0 4 8 16 32 64

Figure 4: Varying the dimensionality of the sinusoidal positional embedding can have a significant
impact on the drawing quality. While the general position of each stroke in the low-dimensional
embedding drawings is correct they lack the fine-grained accuracy of the drawings with the higher-
dimensional embedding.

4.3 STROKES SAMPLING

The variability in the number of strokes within drawings poses challenges in vector drawing gener-
ation. While existing methods often employ autoregressive techniques or fix the number of strokes
or polyline points, our approach utilizes a more flexible probabilistic reconstruction process. This
approach allows us to learn compact latent representations while effectively reconstructing these
latent codes as observable strokes.

After training, we can condition the SRM with a given latent code to generate samples and attempt to
reconstruct the encoded drawing. However, the complexity of the drawing is generally unknown, in-
troducing the challenges of both over-sampling and under-sampling. For more detailed information
on probabilistic reconstruction, please refer to Appendix D.

Over-sampling: When we generate a significantly larger number of samples than the original num-
ber of strokes in the drawing, over-sampling can occur. This is illustrated in the leftmost drawing
of Fig. 5. The generative process may result in particular strokes being sampled more frequently,
leading to slight variations and noise in some sections of the drawing. Overall, the drawing quality
remains largely unchanged, with most strokes being ‘redrawn’ on top of one another.

Under-sampling: On the other hand, under-sampling involves generating too few strokes, result-
ing in a sparsely populated canvas, as seen in the right-hand drawings of Fig. 5. Under-sampling
significantly impacts the quality of the drawing. Table 1 shows the effect of varying the number
of generated strokes on the visual quality of the drawing as measured by the FID. These results
confirm that the effect of under-sampling on the visual quality is significantly more severe than
over-sampling.

Sampler: The choice of sampling method can also influence the quality and style of the drawing.
Fig. 6 demonstrates the effects of varying the sampling method. Our reconstructive method may
re-sample some strokes multiple times, affecting the variance in each sample and, consequently, the
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Figure 5: The number of generated samples has a significant impact on the generated drawing. With
only 100 samples (right) the drawing is sparsely populated by strokes and key features are missing.
However, with 1000 samples (left) a more accurate reconstruction is achieved

0

DDIM DDPM 0 DDPM 1 DDPM 2 DDPM 3

Figure 6: The stochasticity of the sampling method has a significant impact on the quality of the
drawings. We utilize a DDIM sampler (left) which is the most resilient to the re-sampling problem.
We increase the stochasticity of the sampling process by using a DDPM sampler and multiplying
the variance by a scale factor (Das et al., 2023). The scale factor is displayed beneath each drawing.

drawing’s appearance. Using a deterministic DDIM sampler produces drawings with clean edges
and minimally noticeable re-sampling. The small variance in re-sampled strokes is concealed by
the line’s thickness. However, using a stochastic sampling method creates a shading effect similar
to an artist sketching a composition. To control this effect, we adjust the variance in the de-noising
step using a scale factor (Das et al., 2023), increasing or decreasing the stochasticity of the process.
Fig. 6 illustrates the impact of this scale factor on the drawing’s style.

4.4 GENERATION

To generate a drawing we must first generate a latent code with the LSG, this is done using a DDIM
sampler and 30 time steps. We decode the resultant latent vector with the SRM, with a DDIM
sampler and 30 time steps, into a drawing comprised of 1000 strokes. Drawings generated by our
model are shown in Fig. 7. To generate sketches in this figure, we generate the number of strokes
much larger than the average number of strokes in the training dataset. While selecting the correct
number of samples is an important choice in generating complete and highly complex drawings, if a
drawing is incomplete we do have the option of appending more generated samples using the same
latent code.
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Figure 7: Drawings of 1000 strokes created by decoding latent vectors generated by the LSG with
the SRM

4.5 INTERPOLATION

The SRM plays a crucial role in reconstructing drawings based on a given latent condition. There-
fore, it is essential to assess the model’s robustness to different conditions. On the other hand, the
LSG’s primary function is to generate a latent code that the SRM can decode successfully.

SRM: The SRM does not operate unconditionally; instead, it relies on being conditioned by a latent
stroke cloud to perform the reconstruction. Consequently, it needs to be resilient to variations in
codes generated by the LSG. As illustrated in Fig. 8, when we interpolate between two encoded
stroke clouds, the SRM retains semantic features from each stroke cloud, even for conditions it has
not encountered previously.

LSG: The LSG serves as the core generative component of our model, providing the essential latent
code for the SRM to work with. Fig. 9 demonstrates that it is possible to interpolate between two
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Reconstructed sketch 1 Reconstructed sketch 2
Sketches from the interpolated latents

Figure 8: Interpolating between encoded drawings leads to a gradual morphing between drawings.
While noisy in the middle of the transition, clear features are still distinguishable.

Sketch from randomly 
sampled latent 1

Sketch from randomly 
sampled latent 2Sketches from the interpolated latents

Figure 9: Two random vectors were generated and interpolated between. Each vector was used as
the initial vector in the LSG denoising process.

randomly selected noisy vectors, resulting in distinct, drawings. Furthermore, we show in Fig. 10
the impact of gradually adding noise to the originally selected random vector. The sketches obtained
from the noised latent vectors are also distinct and plausible.

Sketch from randomly 
sampled latent

Noise added to the 
latent: once

Noise added to the 
latent: twice

Noise added to the 
latent: 3 times

Noise added to the 
latent: 4 times

Noise added to the 
latent: 5 times

Figure 10: A random latent vector was sampled, and then Gaussian noise was added gradually to
obtain a new latent. The amount of noise added increases from left to right.

5 DISCUSSION

In this paper, we propose modeling complex vector drawings as sets of structurally complex ele-
ments. We learn to embed these drawings into compact latent codes. These latent codes then con-
dition an MLP-based diffusion model that enables the efficient generation of highly complex vector
drawings through a latent diffusion process, supported by De-Finetti’s Theorem of Exchangeability.
One limitation of our approach is the unknown a priori number of strokes to sample. However, we
have shown that oversampling produces visually pleasing sketches in which some strokes overlap.
Such strokes can be potentially removed in post-processing by analyzing the areas of overlaps. Lim-
ited by the lack of datasets of complex vector drawings, we trained on synthetic data. However, the
strokes produced by the automatic vectorizer are shorter than those of hand-drawn sketches. In the
supplementary, we provide additional results, showing how our method can support more complex
strokes by increasing the number of control points in our stroke representation. Moreover, we also
show in the supplementary how additional attributes such as stroke width can be supported by our
framework. In summary, we proposed the first approach to model complex vector drawing in a
generative context. Our code and the data are available at https://github.com/Co-do/Stroke-Cloud.
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A IMPLEMENTATION DETAILS

Network. The SRM network contains a Set Transformer Lee et al. (2019) as an encoder and an
MLP-based diffusion model as a decoder. The network architecture can be seen in Fig. 11. Our
network was trained end-to-end before the LSG was trained on the resulting latent codes.

Anime-Vec10k. A 10k subset of the Anime-Vec10k data set was used for training. The model was
trained for 72 hours on a single RTX 4090 with a batch size of 128 and an initial learning rate of
1e-4 that was decayed to 5e-5. After the initial training period, we applied KL annealing for another
24 hours, increasing the KL scale factor from 0 to 1e-8. We trained our model with a linear noise
schedule of βmin = 1e− 4, βmax = 1e− 5 and 200 time steps.

LSG. Each LSG was trained on the latent data obtained by passing the training data through the
trained encoder. The LSG was then trained for 12 hours with a batch size of 2048 and an initial
learning rate of 1e-4 that was decayed to 5e-5. The LSG was trained on a non-conditional version
of our MLP. We used a scaled-linear noise schedule of βmin = 2e − 2, βmax = 1e − 4 and 4000
time steps.
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Figure 11: Network diagram of the SRM and LSG for training.

B DATASET

Danbooru2019 (Branwen et al., 2019) is a scraping based dataset from the image board Danbooru.
Images are scraped and then filtered according to user-generated tags and then subsets of this data are
made. The Danbooru2019 dataset has permission from host of the Danbooru website, copyrighted
material may have been uploaded by users. Furthermore, the user-generated tags used to filter
the images may not be entirely accurate resulting in unwanted images in the final dataset. For our
Anime-Vec10k dataset, we manually reviewed all images and removed erroneous content to help
address this issue. The examples of training data are shown in Fig. 12.

C SAMPLES

In this section, we show more samples from the unconditional generation of the LSG for the Anime-
Vec10k model shown in Fig. 14.

Additional interpolation results from the SRM are shown in Fig. 13. In this case, we linearly inter-
polated between encoded drawings and then used these latent vectors to condition the SRM. Despite
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Figure 12: Examples of the training data.

training the SRM with regularization the model is unable to handle conditions that differ greatly
from the training data. We consider this to be a limitation of the limited-size dataset.

Figure 13: Interpolating between encoded drawings leads to a gradual morphing between drawings.
While noisy in the middle of the transition clear features are still distinguishable.

D RECONSTRUCTION

This section extends Sec. 4.3 of the main paper. With the probabilistic reconstruction of the drawing,
it is unlikely to guess in advance on the exact number of strokes required to accurately model it.
Instead, it is much more likely that there will be either too many or too few strokes. Fig. 5 showed
that selecting too few elements is worse than too many, in addition, Fig. 15 shows that in simpler
sketches if too few strokes are generated the incompleteness can be more pronounced. When an
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Figure 14: Additional samples generated by our model trained on the Anime-Vec10k dataset.

element is sampled several times there is some variation in that element as was shown in Fig. 6.
However, the thickness of each line in the drawing can mask this to make it look like there is no
variation present at all. We show more clearly in Fig. 16 that even with a DDIM sampler there is
some variation in repeated elements even if they are very similar.

E STROKE DESIGN

While our method can generate large sets of variable cardinality the visual quality of the results
also depends on the complexity and quality of each element in the set: the stroke. We consider
two primary limitations in the stroke quality, the availability of training data and the complexity of
the stroke the SRM can generate. The line art vectorizer (Mo et al., 2021) formed the backbone of
our dataset preparation pipeline. As it produces short line segments in the form of quadratic Bézier
curves, we chose quadratic Bézier curves for our experiments in the main document.

However, the general form of each element of the set could be written as follows: s(1) =
(x1, y1, x2, y2, ....xn, yn︸ ︷︷ ︸

Control points

,m1...mn︸ ︷︷ ︸
Meta

), where the control points specify the structural complexity of
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Figure 15: 10 Stroke drawings of QuickDraw cats. The incompleteness of the drawing is quite
obvious in simpler sketches.

Figure 16: 1000 stroke drawings sampled with DDIM. With thinner rendered lines it is easier to see
the variation in stroke placement. Repeatedly sampled strokes are not sampled directly on top of
one another but close enough that with thicker lines it is much harder to see.

each stroke, and the Meta-data can include rendering information. Two examples of different stroke
designs to what was used in the majority of the experiments can be seen in Figs. 17 and 18.

First, we trained a model on a subset the Anime10k data set but using variable line thickness. The
line thickness is provided by the vectorizer we used to generate the dataset (Mo et al., 2021). Each
stroke in the set is a 7-dimensional vector s = (x1, y1, x2, y2, x3, y3, l), where l is the line thick-
ness. This serves as an example of how additional metadata can be included in our vector-sketch
generative framework. We show the representative, generated by our model, sketches with varying
thickness strokes in Fig. 17.

Then, we experiment with a dataset of hand-drawn sketches – the QuickDraw dataset. The strokes
in this dataset are stored as polylines, consisting of multiple points. We represent cats from the
QuickDraw with 15 control point Bezier curves (Das et al., 2020a) and then represent each drawing
as a set of these strokes. We then trained our model as we did for the Anime10k dataset, with the
only difference that now we use 15 control point Bezier curves rather than quadratic Bezier curves.
In Fig. 18, we show samples generated with our method.
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Both cases show that, while we used a simple stroke design (a quadratic Bézier curve with contract
stroke width) for the majority of the experiments, our framework allows us to support more complex
strokes and additional stroke attributes.

Figure 17: 1000 stroke samples generated with a variable line thickness

Figure 18: For each sketch example, 50 stroke samples were generated with our method, after
training the model on the QuickDraw dataset cats category. Each stroke was represented by a 15
control point Bézier curve.

F DIFFUSION MODELS BACKGROUND

To learn the probability distribution over data x. Diffusion models corrupt training data by slowly
injecting noise and then learn to reverse the corruption, such that the obtained models can gradually
transform random noise into samples for data generation.

Forward Process

For each training sample x0 ∼ qdata(x0), a discrete Markov chain x0, x1, ..., xT is formed by the
forward process (also known as diffusion process). This process is defined as a Markov chain which
slowly adds Gaussian noise to the data according to a variance schedule β1, ..., βT :

q(x1:T |x0) =
T∏
t=1

q(xt|xt−1) (8)
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q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (9)

If we know q(xt−1|xt), we could sample data from the data distribution q(x0) by first sampling xT
from q(xT ) (isotropic Gaussian) and then sampling from q(xt−1|xt) until we get x0. However, it is
difficult to estimate q(xt−1|xt) since it needs the entire dataset to do so. Therefore, pθ is proposed
to approximate the conditional probabilities q(xt−1|xt) during the reverse process.

Reverse Process In the reverse process, diffusion models have to denoise the perturbed data (starting
at random noise p(xT ) = N (xT ; 0, I)) back to the origin data x0. Mathematically, diffusion models
are defined as

pθ(x0) =

∫
pθ(x0:T )dx1:T (10)

for which the joint probability distribution pθ(x0:T ) defines the reverse process as:

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt) (11)

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (12)

The training object is then to optimize the variational bound on the negative log-likelihood as:

− log pθ(x0) ≤ − log pθ(x0) +DKL(q(x1:T |x0)∥pθ(x1:T |x0))

= − log pθ(x0) + Ex1:T∼q(x1:T |x0)

[
log

q(x1:T |x0)

pθ(x0:T )/pθ(x0)

]
= − log pθ(x0) + Eq

[
log

q(x1:T |x0)

pθ(x0:T )
+ log pθ(x0)

]
= Eq

[
log

q(x1:T |x0)

pθ(x0:T )

]
Let LVLB = Eq(x0:T )

[
log

q(x1:T |x0)

pθ(x0:T )

]
≥ −Eq(x0) log pθ(x0)

(13)

This is the equivalent of:
LVLB = LT + LT−1 + · · ·+ L0

where LTa = DKL(q(xT |x0) ∥ pθ(xT ))
Lt = DKL(q(xt|xt+1,x0) ∥ pθ(xt|xt+1)) for1 ≤ t ≤ T − 1

L0 = − log pθ(x0|x1)

(14)

The training objective for Eq 12 is to get µθ(xt, t), while not involving
∑
θ(xt, t), as it is set to

time-dependent constants σ2
t=1. Furthermore, instead of predicting µθ(xt, t) by a neural network,

Ho et al. (2020b) proposed to utilize an approximator ϵθ(xt, t) to predict noise ϵ from xt, which is
proven to be more effective than optimizing µθ(xt, t) . The simplified training objective is:

Lsimple(θ) = Et∼[1,T ],x0∼q(x0),ϵ∼N (0,1)[||ϵ− ϵθ(xt, t)||2] (15)

Sampling Once trained, the network estimates noise ϵ from the sample xt at timestep t (ϵθ(xt, t)).
µθ(xt, t) can then be derived from ϵθ(xt, t) by the following:

µθ(xt, t) =
1

√
αt

(xt −
1− αt
1− αt

ϵθ(xt, t)) (16)

where αt = 1− βt and α =
∏
s=1 αs. We can then sample data from pθ(xt−1|xt) according to Eq

12 until we reach s0
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G DE FINETTI’S THEOREM

Exchangeability

For a given set {Xi}ni=1 of objects let µX1...,Xn
denote the joint probability. This set is exchangeable

if µX1...,Xn
= µXπ(1)...,Xπ(n)

, i.e. if for every permutation π : {1, ..., n} → {1, ..., n}.

De Finetti General Representation Theorem

If X1, X2, ..., Xn is an exchangeable sequence of variable length with probability measure P , then
there exists a distribution function Q on F , the set of all distribution functions on R, such that the
joint distribution of (X1, X2, ..., Xn) has the form:

p(X1, X2, ..., Xn) =

∫
F

n∏
i=1

F (Xi)dQ(F ) (17)

where F is an unobservable distribution function.

Q(F ) = lim
n→∞

Pn(F̂n) (18)

is the probability measure on the space of functions F , defined as a limiting measure n→ ∞ on the
empirical distribution function F̂n
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