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A Demand for biological RNNs with long time-scale dependencies

Biological organisms adapt to changes in their environment in order to survive. Two forms of this
ability to adapt that are of particular interest to neuroscience, and that will likely shape future advances
in deep learning, is how the brain supports (i) appropriate, sample efficient behavioral changes in
response to changes in environmental contingencies (e.g. changing stimuli, reward schedule, or task
rules), and (ii) rapid development of solutions to new problems with known and sometimes even
unknown (but inferable) structure. Conventional cognitive neuroscience tasks involve computing
functions of variables that are observable or inferable from information presented to the subject
within the last 2-3 seconds, i.e. within an individual trial. In contrast, tasks involving rapid adaptation
or learning often require computing, efficiently updating and tracking task variables across several
trials (minutes or even hours), i.e. over arbitrarily longer time-scales than timescale of a single trial.

For example, value-based decision making tasks akin to bandit problems are often used to study the
neural basis of economic choices. The values of the choices in these tasks can vary over time (slowly
or abruptly depending on the task design) and efficient, adaptive responses to these changes requires
tracking the value of the options and making decisions contingent upon the current value estimates
[1, 2]. Sometimes, the volatility in the value of the options changes over time and must be tracked in
order to adapt appropriately [3]. Strategic or social decision making tasks may invoke game-theoretic
strategies wherein subjects must assess their opponents’ play to maximize their own payoff [4, 5].

Rule-based tasks form another important class that requires adaptive behavior. In these tasks, the
outcome of a subject’s response on a trial depends on a hidden rule. The rule changes across blocks
of consecutive trials in an uncued manner, but the set of possible rules is small, fixed and known to
the subject. Well-trained subjects detect rule switches and infer the new rule rapidly by efficiently
integrating outcomes over a few exploratory trials [6–9]. An extension to this is the study of rule-
based behavior in situations where a rule does not come from a known set and must be discovered.
Poor approximations of the true rule governing the task structure may make it difficult to learn,
place unnecessary demands on cognitive resources and adversely affecting performance. Yet, human
subjects quickly discover complex task structures with little instruction by via effective learning
strategies [10–12]. Moreover, well-learned structures promote generalization thereby speeding up
subsequent learning [13].

In all these cases, subjects must draw rapid, accurate inferences based on the feedback they receive in
order to adapt to environmental changes, thereby maximizing positive outcomes (total reward, payoff,
etc.). One theory holds that this may be achieved via neural dynamics, wherein neural populations
track changing environmental contingencies and appropriately alter their computations and decision
representations to alter behavior [14, 15]. But exactly how a neural population may achieve this is
not known, thus revealing an exciting frontier for the study of the neural basis of adaptive behavior.
Yet, the absence of effective methods to train biological RNNs to compute over long timescales
(i.e. spanning several trials) poses a fundamental challenge. This challenge extends to tasks that
do not require integrating information across trials, but involve long trials instead. This includes
spatial navigation, evidence accumulation and decision making tasks wherein the subject must move
through a physical space to solve a problem, thus increasing the trial duration and, in some cases, the
computational demand of the task.
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B Biological plausibility of gating mechanisms

Gating-based architectures such as long short-term memory (LSTM) and gated recurrent unit (GRU)
were introduced to overcome challenges pertaining to training vanilla RNNs with gradient descent.
They endow individual network units with adaptive multiplicative gating applied to their inputs,
memory computation and outputs (only for LSTMs). This has two important computational benefits.
First, the multiplicative gating, particularly in the context of memory computations, strongly curtails
gradient stability challenges [16]. Second, they inherently support adaptive memory timescales and
computation at the single unit level. These enhancements make them substantially more computa-
tionally powerful than vanilla RNNs, thus inviting their adoption in cognitive models [17, 18] and in
phenomenological models of neural computation [19]. However, key biological constraints preclude
them from being considered biologically plausible.

• Gating. Gating of the inputs and outputs of neurons is thought to be mediated by distinct inhibitory
interneuron types via their nonlinear interactions at the dendrites and soma, respectively, of
excitatory pyramidal neurons [14]. While it is certainly believed that gating may enhance adaptive
properties of neural computation, available evidence and existing models do not support the
hypothesis that this gating is multiplicative.

• Training. A major motivation for LSTM and GRU architectures is that they are easier to train
than vanilla RNNs due to their improved gradient stability. In contrast, RNNs endowed with
interneurons and biologically plausible gating functions are more difficult to train than vanilla
RNNs [20].

• Dynamics. A constraint for biologically-plausible RNN models is that they should produce
continuous-time dynamics. LSTM and GRU architectures are discrete-time systems by construction.
Continuous-time variants of these architectures have been proposed in the neuroscience literature
to address precisely this issue [21]. Moreover, LSTM units typically respond with abrupt activity
transitions between consecutive time steps [17]. In contrast, neurons exhibit smooth temporal
responses.

• Memory. LSTM and GRU memory mechanisms seem too powerful relative to known brain
mechanisms of short-term memory function. The forget (update) gate of LSTMs (GRUs) endow
individual units with arbitrarily small and large memory timescales. In contrast, the neuron
membrane time constants are typically quite small and of limited range. While a variety of
Glutamatergic signaling mechanisms are believed to enhance neural integration timescales [22],
they are still limited. Moreover, receptor expression levels vary drastically by brain region [23],
obviating a general-purpose mechanism to support arbitrary timescales at the single neuron level.
Continuous-time neural population dynamics offer a complementary mechanisms for arbitrary (and
adaptive) timescales in the brain [24]. There is little evidence for LSTM/GRU like single-unit
timescales in the brain.

C Review of RNN parameter values in literature

Model parameters of RNNs in literature (Figure S1A) are sometimes restricted to undesirable values
due to competing constraints from the perspective of biological-plausibility, numerical accuracy and
gradient stability. We review the values of some of these parameters from previously-published
models. In particular, only continuous-time RNNs trained by backpropagation through time are
considered [25–29, 21, 30–47, 20, 48–52] (more details in Table S1). The value of the neuronal or
leak time constant is often set to 100 ms, which reflects the slow dynamics of NMDA receptors
in the brain; although values below that are also plausible depending on the proportion of NMDA
receptors in the brain area being modeled (Figure S1C). For high numerical accuracy, the value of the
discretization time step should be small relative to this time constant. The most common values of the
ratio between the time step size and the time constant are 0.1 and 0.2 (Figure S1D). However, these
values are still quite large and can produce inaccurate approximations of the underlying system. On
the other hand, decreasing the step size increases the model’s memory footprint and can potentially
introduce vanishing or exploding gradients when training an RNN with backpropagation through
time. Indeed, despite the differences in their function, the models we have surveyed seldom use a
large number of time steps (Figure S1B). Taken together, we see that the technical challenges of
training RNNs with backpropagation through time constrain the duration of the task a network can be
trained on or hinder the model’s numerical accuracy.
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Figure S1: Biologically plausible RNNs in literature. A. Overview of how RNN models are used in
neuroscience. B. Number of time steps used in the respective tasks that the RNNs were trained to
perform. C. Neuron time constant values in the RNNs. D. Step sizes as a fraction of their respective
time constants.

D Task structures and descriptions

The 16 tasks can be categorized according to their task structures (A, B or C).

Task structure A. 7 tasks share this task structure, which consists of 3 task epochs:

Task epoch 1 Fixation T1 ∼ U [Tshort − Tjitter, Tshort + Tjitter]
Task epoch 2 Stimulus T2 ∼ U [Tshort − Tjitter, Tshort + Tjitter]
Task epoch 3 Response T3 = Ttest

• Go (go): The fixation cue is set to 1 during the first two epochs. During the stimulus epoch, a
stimulus is presented in a randomly chosen modality at a randomly chosen direction. The response,
made in task epoch 3, should match the direction of the stimulus.

• Anti-response (anti): This is the same as go, but the response should be in the opposite direction
of (i.e. π radians from) the stimulus.

• Reaction time go (rtgo): The fixation cue is set to 1 throughout the trial. During epoch 3, a
stimulus is presented in a randomly chosen modality at a randomly chosen direction. The response,
made in the same epoch, should match the direction of the stimulus.

• Reaction time anti-response (rtanti): Same as rtgo, but the response should be in the opposite
direction of (i.e. π radians from) the stimulus.

• Decision making (dm): The fixation cue is set to 1 during the first two epochs. Two stimuli are
simultaneously presented in a single modality during task epoch 2. One stimulus is randomly
generated with a random magnitude and direction. The other stimulus is also generated with a
random magnitude, but its direction is drawn uniformly at random between π

2 radians to 3π
2 radians

away from the first stimulus. The response, made in task epoch 3, should match the direction of the
stimulus with the greater magnitude.

• Decision making with distractors (dmd): This is the same as dm, except 2 stimuli are presented
in each modality. All 4 stimuli have different magnitudes, but the directions of the two stimuli in
modality A are the same as the directions of the two stimuli in modality B. The RNN must ignore
modality A and respond in the direction corresponding to the stronger stimulus in modality B.

• Multi-sensory decision making (msdm): This is the same as dmd, except the RNN must respond
in the direction in which the combined stimulus strength from both modalities is stronger. That is,
given stimuli in both modalities at angles p and q, if the sum of the magnitudes of the stimuli in
both modalities at angle p is larger than the sum of the magnitudes of the stimuli in both modalities
at angle q, the target response is angle p. Otherwise, it is angle q.
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Task structure B. These tasks are similar to tasks with structure A, except they include a delay period
between stimulus presentation and response. 2 tasks share this task structure, which consist of 4 task
epochs:

Task epoch 1 Fixation T1 ∼ U [Tshort − Tjitter, Tshort + Tjitter]
Task epoch 2 Stimulus T2 ∼ U [Tshort − Tjitter, Tshort + Tjitter]
Task epoch 3 Delay T3 ∼ U [Tlong − Tjitter, Tlong + Tjitter]
Task epoch 4 Response T4 = Ttest

• Delayed go (dgo): The fixation cue is set to 1 during the first three epochs. A stimulus is presented
in a randomly chosen modality with a random direction during task epoch 2. The response made
during task epoch 4, i.e. after a delay period, should match the direction of the stimulus.

• Delayed anti-response (danti): This is the same as dgo, but the response should be in the opposite
direction of (i.e. π radians from) the stimulus.

Task structure C. These tasks are similar to tasks with structure B, except they include an additional
stimulus which is presented after the delay period. The target response is based on the relationship
between the two stimuli that are presented before and after the delay period. 7 tasks share this task
structure, which consists of 5 task epochs:

Task epoch 1 Fixation T1 ∼ U [Tshort − Tjitter, Tshort + Tjitter]
Task epoch 2 Stimulus 1 T2 ∼ U [Tshort − Tjitter, Tshort + Tjitter]
Task epoch 3 Delay T3 ∼ U [Tlong − Tjitter, Tlong + Tjitter]
Task epoch 4 Stimulus 2 T4 ∼ U [Tshort − Tjitter, Tshort + Tjitter]
Task epoch 5 Response T5 = Ttest

• Delayed decision making (ddm): The fixation cue is set to 1 during the first four epochs. A
stimulus is presented during task epoch 2 in a randomly chosen modality with a random magnitude
and direction. After the delay period (task epoch 3), a second stimulus is generated during task
epoch 4 in the same modality as task epoch 1 and with a random magnitude, but in a direction that
is drawn uniformly at random between π

2 radians to 3π
2 radians away from the first stimulus. The

response, made during task epoch 5, should match the direction of the stimulus with the greater
magnitude.

• Delayed decision making with distractors (ddmd): This is the same as ddm, except 2 stimuli are
presented in each modality. All 4 stimuli have different magnitudes, but the directions of the two
stimuli in modality A are the same as the directions of the two stimuli in modality B. The RNN
must ignore modality A and respond in the direction corresponding to the stronger stimulus in
modality B.

• Multi-sensory delayed decision making (msddm): This is the same as ddmd, except the RNN
must respond in the direction in which the combined stimulus strength from both modalities is
stronger.

• Delayed match-to-sample (dms): The fixation cue is set to 1 during the first four epochs. During
task epoch 2, a stimulus is presented in a randomly chosen modality with a fixed magnitude and a
random direction. After a delay period (task epoch 3), a second stimulus is presented in a randomly
chosen modality during task epoch 4 with the same fixed magnitude. In half the trials, the direction
of this second stimulus is within ± π

18 radians of the first stimulus. This corresponds to a match.
In the other half of the trials, the direction of the second stimulus is drawn uniformly between π

2

radians to 3π
2 radians away from the first stimulus. This corresponds to a non-match. On match

trials, the RNN must respond during task epoch 5 in the direction of the second stimulus. On
non-math trials, it must continue maintaining fixation during task epoch 5.

• Delayed non-match-to-sample (dnms): This is the same as dms, except the RNN must maintain
fixation during task epoch 5 on match trials, and respond in the direction of the second stimulus on
non-match trials.

• Delayed match-to-category (dmc): The fixation cue is set to 1 during the first four epochs. During
task epoch 2, a stimulus is presented in a randomly chosen modality with a fixed magnitude. In
half the trials, the direction of the first stimulus is drawn uniformly between 0 to π

2 radians. In the
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other half of the trials, the direction is drawn uniformly between π radians to 3π
2 radians. After a

delay period (task epoch 3), a second stimulus is presented in a randomly chosen modality during
task epoch 4 with the same fixed magnitude. The direction of the second stimulus is either in the
same quadrant as the first stimulus, corresponding to a match, or in the opposite quadrant which
corresponds to a non-match. During task epoch 5 of match trials, the RNN must respond in the
direction of the second stimulus. Instead they must continue maintaining fixation during task epoch
5 of non-match trials.

• Delayed non-match-to-category (dnmc): This is the same as dmc, except the RNN must maintain
fixation during task epoch 5 on match trials, and respond in the direction of the second stimulus on
non-match trials.

Two-choice rule reversal task. The trial structure consists of 4 task epochs:

Task epoch 1 Stimulus T1 ∼ U [Tshort − Tjitter, Tshort + Tjitter]
Task epoch 2 Response T2 ∼ U [Tshort − Tjitter, Tshort + Tjitter]
Task epoch 3 Feedback T3 ∼ U [Tshort − Tjitter, Tshort + Tjitter]
Task epoch 4 Inter-trial Interval T4 ∼ U [Tshort − Tjitter, Tshort + Tjitter]

E Dynamical stability of proposed methods

We assume that the true dynamics of the network is stable. That is, the network is a stable system
when simulated using Euler’s method at base time discretization ∆t with neuron time constant α∆t.
In our simulations, α = 20. We observe empirically that when we increase the discretization step
size for CD, the network diverges further from its true dynamics and tends to go unstable in general.
Particularly, we note that for our networks, the threshold for instability is approximately within a
small range around the neuron time constant. To model this, we first consider a linear approximation
of the network dynamics:

T
drt
dt

= −rt + f (Wrt + b+ hext + η) (1)

≈ −W∗
θrt (2)

Here, we assume (from the above empirical explanation) that the dominant eigenvalue of W∗
θ is

dependent on θ, where θ∆t is the time discretization used to simulate the network. From this
framework, this eigenvalue will exceed 1 when θ reaches some threshold θthres. We also define W∗

1
for the case when θ = 1, which is a stable system by definition. Simulating this linearized network
for θ timesteps yields:

rbase
t+θ∆t ≈ e−θ 1

α∆tW
∗
1∆trt (3)

≈ rt −
θ

α
W∗

1rt (4)

Applying the same approximation to the update equation for CD, we find a similar expression:

rCD
t+θ∆t ≈ e−

1
α∆tW

∗
θθ∆trt (5)

≈ rt −
θ

α
W∗

θrt (6)

We seek to understand why SCTT and DASC are not subject to the same threshold when increasing the
temporal length of their skip connections. In fact, our simulations suggest that these skip connections
can extend considerably beyond the CD threshold, up to several multiples of the time constant. This
is a huge advantage for SCTT and DASC when it comes to facilitating gradient stability over a large
number of time steps. To gain an intuition on why this is the case, we apply the same approximation
to the update equation for DASC:

rDASC
t+θ∆t ← (1− β) rCD

t+θ∆t + β rbase
t+θ∆t (7)

≈ (1− β)

(
rt −

θ

α
W∗

θrt

)
+ β

(
rt −

θ

α
W∗

1rt

)
(8)

= rt −
θ

α
[(1− β)W∗

θ + βW∗
1] rt (9)
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If we define W∗
eff to be the effective linearized weight matrix:

W∗
eff = (1− β)W∗

θ + βW∗
1 (10)

so that

rDASC
t+θ∆t ≈ rt −

θ

α
W∗

effrt (11)

we find that it is of the same form as the linear solutions described in (3) and (5), implying that the
stability of DASC depends on the eigenvalues of W∗

eff. While W∗
θ could have eigenvalues that are

greater than 1, we know that W∗
1 gives rise to a stable system (eigenvalues less than 1). The suggests

that the overall weighted sum of the two weight matrices may not always lead to an unstable system.
From this analysis, we conclude that it is therefore possible to implement skip connections that span
longer than the limit faced by CD.

F Full training results

The number of training steps taken by all methods across all hyperparameter configurations can be
found in Figure S2. For CD, the three bars represent training efficiencies at step counts of 1, 5 and 10
respectively (left to right). For SCTT and DASC, the exact hyperparameter configuration of each bar
(left to right) in the figure are given by:

1 θ = 10 step count = 1 β0 = 0.2
2 θ = 10 step count = 1 β0 = 0.5
3 θ = 10 step count = 1 β0 = 0.8
4 θ = 10 step count = 5 β0 = 0.2
5 θ = 10 step count = 5 β0 = 0.5
6 θ = 10 step count = 5 β0 = 0.8
7 θ = 10 step count = 10 β0 = 0.2
8 θ = 10 step count = 10 β0 = 0.5
9 θ = 10 step count = 10 β0 = 0.8
10 θ = 20 step count = 1 β0 = 0.2
11 θ = 20 step count = 1 β0 = 0.5
12 θ = 20 step count = 1 β0 = 0.8
13 θ = 20 step count = 5 β0 = 0.2
14 θ = 20 step count = 5 β0 = 0.5
15 θ = 20 step count = 5 β0 = 0.8
16 θ = 20 step count = 10 β0 = 0.2
17 θ = 20 step count = 10 β0 = 0.5
18 θ = 20 step count = 10 β0 = 0.8
19 θ = 40 step count = 1 β0 = 0.2
20 θ = 40 step count = 1 β0 = 0.5
21 θ = 40 step count = 1 β0 = 0.8
22 θ = 40 step count = 5 β0 = 0.2
23 θ = 40 step count = 5 β0 = 0.5
24 θ = 40 step count = 5 β0 = 0.8
25 θ = 40 step count = 10 β0 = 0.2
26 θ = 40 step count = 10 β0 = 0.5
27 θ = 40 step count = 10 β0 = 0.8

From these results, we identify the optimal set of hyperparameters for each method for further analysis
in the main text. They are:

CD10 Step count = 1
SCTT10 Step count = 10, β0 = 0.8
SCTT40 Step count = 10, β0 = 0.8
DASC10 Step count = 1, β0 = 0.5
DASC40 Step count = 1, β0 = 0.5

where the subscript represents the value of θ for each method (to be precise, it represents θ0 for CD).
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Figure S2: Training efficiencies of RNNs trained on all 16 standard tasks across all methods in
all hyperparameter configurations. The control model is shown on the left (black). Red, blue and
green bars indicate training efficiencies of CD, SCTT and DASC respectively. See section F for exact
configurations for each bar.
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Figure S3: Analysis of factors affecting training efficiency of each algorithm. A. Training steps
pooled over all 16 tasks against skip length used by SCTT (green) and DASC (blue). A skip length of
20 corresponds to a time interval of one time constant. Plots are differentiated between tasks that
require long-term dependencies and tasks that do not. B. Effects of the initial skip ratio (left) and step
count (right) on training efficiency of each respective method.

Wilcoxon signed-rank test confidence levels: ∗p < 5× 10−5, ∗∗p < 5× 10−10

G Hyperparameter exploration

We find that the optimal configuration for DASC strongly depends on the task specifics (Figure S3A).
For tasks that do not require maintenance of variables in neural activity-based memory (i.e. over
long durations), a short skip length supports modified dynamics that are faithful to the true dynamics,
while still providing the advantages of skip connections. Instead, longer skip connections alleviate
gradient stability problems that naturally arise in tasks that do require memory, thus improving
training efficiency on these tasks. In addition, we find that the training efficiency of models with
SCTT depends on the annealing schedule for β (Figure S3B). Models train better with SCTT when
their training starts at high values of β so that their modified dynamics better approximate the true
dynamics. They also train better with annealing schedules that change β more gradually to avoid
abrupt changes in network dynamics during training, thus increasing the number of steps to complete
training. This is not observed in CD and DASC, which are not as sensitive to their annealing schedules
or to the initial value of β (DASC).

H Additional training details

All models were trained on high-performance computing clusters consisting of NVIDIA A100 80GB
GPUs. Computing resources are summarized in Table S3, showing that we have trained over 90,000
models over more than 1,000 GPU hours. The code to training all models can be found at:

https://github.com/wmws2/temporalskip
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Table S1: Model parameters of biological RNNs in literature.

Ref. Author(s) (Year) Time steps Time constant Step size
(ms) (ms)

[51] Chaisangmongkon et al. (2017) 440 100 10
[39] Cueva and Wei (2018) 500 10 1
[36] Cueva et al. (2020) 700 100 10
[31] Driscoll et al. (2022) 2500 100 20
[34] Dubreuil et al. (2022) 125 100 20
[32] Echeveste et al. (2020) 2500 20 0.2
[41] Goudar et al. (2023) 2000 100 1
[52] Kalidindi et al. (2021) 150 50 10
[47] Keller et al. (2020) 500 10 2
[46] Kim et al. (2019) 200 35 5
[30] Kim and Sejnowski (2020) 500 125 5
[26] Kleinman et al. (2021) 150 50 10
[45] Liebe et al. (2022) 600 100 10
[25] Mante et al. (2013) 750 10 1
[33] Masse et al. (2019) 250 100 10
[35] Michaels et al. (2020) 300 100 10
[42] Murray (2019) 1600 10 1
[48] Orhan and Ma (2019) 150 100 10
[44] Rajakumar et al. (2021) 100 50 10
[38] Saxena et al. (2022) 2000 10 4
[20] Song et al. (2016) 400 50 10
[21] Song et al. (2017) 400 100 10
[29] Soo and Lengyel (2022) 2500 20 0.2
[40] Stroud et al. (2023) 2000 50 1
[27] Sussillo et al. (2015) 400 50 5
[49] Wang et al. (2017) 2000 10 1
[28] Yang et al. (2019) 100 100 20
[43] Zhang et al. (2022) 30 100 20
[50] Zhou et al. (2021) 250 100 10

*Note that if a given reference contains several models, then the parameters of the most relevant
model are reported here (if equally relevant, then one is chosen at random).
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Table S2: Model parameters.

Task structure

Variable Description Real time Time steps

Tshort Mean time interval of a short task epoch 500 ms 100
Tlong Mean time interval of a long task epoch 1000 ms 200
Tjitter Maximum deviation of mean time intervals 100 ms 20
Ttest Time interval for test epoch 500 ms 100
Twait Grace period before readout during test epoch 100 ms 20

Proposed methods (CD, SCTT, DASC)

Variable Description Real time Time steps

(θ∆t)max Maximum step size in CD 50 ms 10
(β∆t)min Minimum skip size in SCTT & DASC 50 ms 10
(β∆t)max Maximum skip size in SCTT & DASC 200 ms 40

RNNs (general)

Variable Description Initialization Optimized

dt Discretized time step 5 ms No
τ Neuron time constant 100 ms No
σ Standard deviation of input noise 0.1 No
τη Time constant of input noise 100 ms No
λW Weight regularization coefficient 10−5 No
λr Activity regularization coefficient 10−5 No
Winp Input weights N (wij ; 0, 1) Yes
Wout Output weights N (wij ; 0, 1) Yes
Wrec Recurrent weights N (wij ; 0, N

−1) Yes
b Bias in recurrent units N (bi; 0, 1) Yes

RNNs trained for standard tasks

Variable Description Initialization Optimized

N Number of recurrent units 50 No
Ninp Number of input units 65 No
Nout Number of output units 33 No
Nmax Maximum number of training steps 40,000 No

RNNs trained for rule reversal task

Variable Description Initialization Optimized

N Number of recurrent units 50 No
Ninp Number of input units 4 No
Nout Number of output units 2 No
Nmax Number of training steps 10,000 No

Adam optimizer

Variable Description Initialization Optimized

lr Learning rate 0.1N−1 No
beta_1 First moment exponential decay rate 0.9 No
beta_2 Second moment exponential decay rate 0.999 No
epsilon Second moment exponential decay rate 10−7 No
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Table S3: Computing resources.

A. Total number of models
Standard tasks

Method Tasks Configs. per task Models per config. Total models

Control 16 1 100 1,600
CD 16 3 100 4,800

SCTT 16 27 100 43,200
DASC 16 27 100 43,200

Rule reversal task

Method Tasks Configs. per task Models per config. Total models

Control 1 2 100 200
CD 1 2 100 200

SCTT 1 2 100 200
DASC 1 2 100 200

Total models 93,600

B. Total GPU hours
Standard tasks

Method Tasks Configs. per task Avg GPU hrs per config. Total GPU hours

Control 16 1 1.47 23.5
CD 16 3 1.07 51.4

SCTT 16 27 0.94 406
DASC 16 27 0.86 372

Rule reversal task

Method Tasks Configs. per task Avg GPU hrs per config. Total GPU hours*

Control 1 2 3.03 60.6
CD 1 2 3.50 70.0

SCTT 1 2 3.51 70.2
DASC 1 2 3.48 69.6

Total GPU hours approx. 1120

*Although there are 100 models per configuration for RNNs trained to perform the rule reversal task,
only 10 models could be run in parallel at a time due to memory constraints. As such, GPU hours
consumed were increased by a factor of 10 when converting to total GPU hours.
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