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A COLLECTED PROOFS OF THEORETICAL RESULTS

In this appendix, we collect proofs of the theoretical results that were not given in Section 3. Most of
the claims are well-known, and we include them mainly to keep the article self-contained.

We begin by proving a small claim we will use implicitly throughout.
Lemma 7. The lifted representations ρi on Hom(Xi, Xi+1), ρ on L and ρ⊗2 on L⊗2 are unitary
with respect to the canonical inner products.

Proof. Let us begin by quickly establishing that the ρi are representations:

ρi(g)ρi(h)Ai = ρi+1(g)ρi+1(h)Aiρi(h)
−1ρi(g)

−1 = ρi+1(gh)Aiρi(gh)
−1 = ρ(gh)Ai (28)

Now let us move on to the unitarity. We have

⟨ρi(g)Ai, ρi(g)Bi⟩ = tr((ρi+1(g)Aiρi(g)
−1)∗ρi+1(g)Biρi(g)

−1) (29)

= tr(ρi(g)A
∗
i ρi+1(g)

−1ρi+1(g)Biρi(g)
−1)

= tr(A∗
iBiρi(g)

−1ρi(g)) = tr(A∗
iBi) = ⟨Ai, Bi⟩

which immediately implies

⟨ρ(g)A, ρ(g)B⟩ =
∑
i∈[L]

⟨ρi(g)Ai, ρi(g)Bi⟩ =
∑
i∈[L]

⟨Ai, Bi⟩ = ⟨A,B⟩ (30)

proving the unitarity of ρi and then ρ. Unitary of ρ⊗2 then follows from the fundamental properties
of the tensor product:

⟨ρ⊗2(g)(A⊗B), ρ⊗2(g)(C ⊗D)⟩ = ⟨(ρ(g)A⊗ ρ(g)B), (ρ(g)C ⊗ ρ(g)D)⟩ (31)
= ⟨ρ(g)A, ρ(g)C⟩⟨ρ(g)B, ρ(g)D⟩ = ⟨A,C⟩⟨B,D⟩
= ⟨(A⊗B), (C ⊗D)⟩ .

Next, we prove the lemmas concerning the lifted representation ρ.

Proof of Lemma 1. The statement follows immediately from the fact the a tuple of layers A ∈ L is in
E if and only if ρi+1(g)Ai = Aiρi(g), which is equivalent to Ai = ρi+1(g)Aiρi(g)

−1 = (ρ(g)A)i
for all i ∈ [L] and g ∈ G.

Proof of Lemma 2. Let P be the operator on L defined by

PA =

∫
G

ρ(g)A dµ(g). (32)

To show that P = ΠE , we first need to show that if PA ∈ E for any A ∈ L. To do this, it suffices by
Lemma 1 to prove that ρ(g)PA = PA for any g ∈ G. Using the fact that ρ is an representation of G,
and the invariance of the Haar measure, we obtain

ρ(g)PA =

∫
G

ρ(g)ρ(h)Adµ(h) =

∫
G

ρ(gh)Adµ(h) =

∫
G

ρ(h′)A dµ(h′) = PA. (33)

Next, we need to show that PA = A for any A ∈ E . But since ρ(g)A = A for such A, we
immediately obtain

PA =

∫
G

ρ(g)Adµ(g) =

∫
G

A dµ(g) = A. (34)

Consequently, P : L → E is a projection. Finally, to establish that P is also orthogonal, we need to
show that ⟨A− PA,B⟩ = 0 for all A ∈ L, B ∈ E . This is a simple consequence of the unitarity of
ρ and Lemma 1,

⟨PA,B⟩ =
∫
G

⟨ρ(g)A,B⟩dµ(g) =
∫
G

⟨ρ(g)A, ρ(g)B⟩dµ(g) =
∫
G

⟨A,B⟩dµ(g) = ⟨A,B⟩ ,

(35)

which completes the proof that P = ΠE .
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Proof of Lemma 5. Replacing L with L ⊗ L, E with E⊗2 and ρ with ρ⊗2, the proof is identical to
that of Lemma 2.

Proof of Lemma 6. For A ∈ E we have ρ(g)A = A for any g ∈ G according to Lemma 1. Conse-
quently,

(ΠE⊗2M) [A,A] =

∫
G

ρ⊗2(g)M [A,A]dµ(g) =

∫
G

M [ρ(g)A, ρ(g)A]dµ(g) (36)

=

∫
G

M [A,A]dµ(g) = M [A,A] . (37)

which proves the first statement. To prove the second, we use that for B ∈ E⊥, ΠEB = 0 by
definition. A similar calculation as above now yields

(ΠE⊗2M) [A,B] =

∫
G

ρ⊗2(g)M [A,B]dµ(g) =

∫
G

M [ρ(g)A, ρ(g)B]dµ(g) (38)

=

∫
G

M [A, ρ(g)B]dµ(g) = M [A,ΠEB] = 0 , (39)

where we have used the bilinearity of M repeatedly to complete the proof.

B EXAMPLES OF REPRESENTATIONS

In addition to the examples provided in the main part of the paper, the following representations will
feature in the experimental design described below.
Example 3. The canonical action of the permutation group SN on RN is defined through
(ρperm(π)v)i = vπ−1(i), i ∈ [n], i.e., an element acts via permuting the elements of a vec-
tor. This action induces an action on the tensor space (RN )⊗k = RN ⊗ RN ⊗ · · · ⊗ RN :
(ρperm(π)T )i0,...,ik−1

= Tπ−1(i0),...,π−1(ik−1) which is important for graphs. For instance, when
applied to RN ⊗RN , it encodes the effect a re-ordering of the nodes of a graph has on the adjacency
matrix on the graph.
Example 4. C4

∼= Z4 acts on images x ∈ RN,N through rotations by multiples of 90◦. That is,
ρrot(k) = ρrot(1)k, k = 0, 1, 2, 3 where (ρrot(1)x)i,j = x−j,i.

C THE CONVERSE OF PROPOSITION 3 DOES NOT HOLD

To construct a counterexample, it is clearly enough to construct U ∈ L⊗L such that U is not positive
definite but ΠE⊗2U , and V ∈ E⊗2 such that V is not positive definite but Π⊗2

E V is.

We choose L = RN and G = SN with the canonical representation ρ = ρperm as in Example 3.
With ei, i = 1, . . . , N , the standard ONB of L we can construct the equivariant subspaces of L and
L ⊗ L using

1 =

N∑
i=1

ei ∈ L , id =

N∑
i=1

ei ⊗ ei ∈ L⊗2 (40)

as E = Span{1} and E⊗2 = Span{id,1⊗ 1} Maron et al. (2019a). Furthermore, ONBs of the two
spaces are given by

B1
E = 1√

N
1 and B1

E⊗2 = 1√
N
id, B2

E⊗2 = 1√
N(N−1)

(1⊗ 1− id) ,

respectively.

Now consider the matrix U = (N + 1)e1 ⊗ e1 − e2 ⊗ e2 ∈ L⊗2. It is not positive definite, since
U [e2, e2] = −1. However, as a direct calculation reveals, its projection to E⊗2, ΠE⊗2U = id, clearly
is.

Second, we can construct a matrix V = −id + 2
N (1⊗ 1) ∈ E⊗2 which is not positive definite, since

its restriction to E⊥ is −id. However, the projection Π⊗2
E V = 1

N 1 ⊗ 1 is positive definite when
restricted to E .
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D EXPERIMENTAL DETAILS

Here, we provide a more detailed description of the experiments in Section 5 in the main paper.
Each experiment used a single NVIDIA Tesla T4 GPU with 16GB RAM, but many of them were
performed in parallell on a cluster. The experiments presented here took in total about 75 GPU hours.

The code is provided in the supplementary material.

D.1 THE PERM EXPERIMENT

In the PERM experiment, we train a model to detect whether a graph is connected or not. The model
takes adjacency matrices M ∈ RN ⊗ RN of the graph as input. The training task is obviously
invariant to permutations of the adjacency matrix (where the action of SN on the matrix space was
defined in Example 3 in the main paper), since such a permutation does not change the underlying
graph. The invariance of the network is conveniently expressed by letting SN acting trivially on the
output space Y = R.

Data We consider graphs of size N = 10 drawn according to a stochastic block model: We divide
the nodes into two randomly drawn clusters I, J , I ∩ J = ∅, I ∪ J = {0, . . . , 10}. Within each
cluster, a bidirected edge is added between each pair of nodes with a probability of 0.5, and in
between the clusters with a probability of 0.05. The graphs are subsequently checked for connectivity
by checking that all entries of

∑N
i=0 A

i are strictly positive, which clearly is sufficient. In this manner,
we generate a 1000 graphs and labels.

Model The model set up is as follows: Before the first layer, the inputs are ’normalized’ by
subtracting .5 from each entry. Then, the first layer is chosen to map from the input space RN ⊗ RN

into another space of adjacency matrices matrices (RN ⊗ RN )32, (on which SN is acting according
to ρperm, defined in Example 3, on each component). Then, a group pooling layer is used, that is, a
map into R64 on which SN is acting trivially. This is followed by a layer normalization layer, and
then two layers R64 → R32 and R32 → R. The group acts trivially on each of the final spaces. In
other words, all models are equipped a fully connected head. All but the last non-linearities are
chosen as leaky ReLUs, whereas the last one is a sigmoid function. Note that the non-linearities are
applied pointwise in the early layers, so that they are trivially equivariant to the group action. We use
a binary loss. A graphical depiction of the architecture is given in Figure 2.

Figure 2: The setup for the models of PERM.

Projection operators To project the layers onto E , we use the results of Maron et al. (2019a). In
said paper, bases for the space invariant under the (lifted) representation ρperm on (RN )⊗k are given.
In this context, the first layer consists of a (32×1) array of elements in (RN ⊗RN )⊗ (RN ⊗RN ) =
(RN )⊗4, the second is an (32× 32) array of elements in R⊗ (RN ⊗ RN ) = (RN )⊗2, and the final
ones are simply arrays of real numbers (and in particular, E is the entire space).

D.2 THE TRANS EXPERIMENT

In the TRANS experiment, we train a model for classification on MNIST. The input space here is
X0 = RN,N , where N is the width/height of the image. On X0, we let the translation group Z2

N
act as in Example 2. The classification task is invariant to this action, whence we again let Z2

N act
trivially on the output space R10 of probability distribution on the ten classes.

Data We use the public dataset MNIST Lecun et al. (1998) in our experiments, but modify it in
two ways to keep the experiments light. First, we train our models only on the 10000 test examples
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(instead of the 60000 training samples). Secondly, we subsample the 28× 28 images to images of
size 14× 14 (and hence set N = 14) using opencv’s Bradski (2000) built-in RESIZE function. This
simply to reduce the size of the networks. Note that the size of the early (non-equivariant) layers of
the model are proportional to the (image width)4.

Model We again begin by ’normalizing’ the output by subtracting .5 from each pixels. The actual
architecture then begins with two initial layers mapping between spaces on which Z2

N acts according
to ρtr (in each component) : Layer 1 maps from RN,N → (RN,N )32 and layer 2 from (RN,N )32 to
(RN,N )32. We then again apply a group pooling layer followed by a ’fully connected head’: The
third layer maps into R32, on which Z2

N is acting trivially, and the final one between R32 and R10.
After the pooling layer, we add a layer normalization layer. The non-linearities are again chosen as
leaky ReLU:s, except for the last one, which is a SoftMax. The equivariance of the non-linearities are
again lifted from them acting elementwise on the first three spaces. We use a cross-entropy loss. A
graphical depiction of the setup is given in 3.

Figure 3: The setup for the models of TRANS.

Projection operators It is well-known that a linear operator on RN,N is equivariant if and only if it
is a convolutional operator. Hence, for the first two layers, the projection is carried out via projecting
each component onto the space spanned by

Ckℓ =
∑

i,j∈[N ]

(ei ⊗ ej)⊗ (ei+k ⊗ ei+ℓ), k, ℓ ∈ [N ]2. (41)

The third layers consist of arrays of functionals on RN,N . The only linear invariant such is (up
to scale and interpreted as a member of RN,N ) the constant matrix. Hence, the projection in this
space simply consists of averaging the layer. After that, just as above, E is the entire space, and the
projection is trivial.

The convolution operators are furthermore well-known to be characterized as diagonal operators in the
Fourier domain. We may therefore implement the projection onto E efficiently by first transforming
into Fourier domain, extract the diagonal, and then transforming back. For completeness, let us
quickly prove that this really yields the orthogonal projection.

Proposition 4. For N ∈ N, let the translation group G = Z2
N act on the space CN,N ∼ C[N ]2 .

If we let F : CN,N → CN,N denote the orthogonal two-dimensional Fourier transform, and
diag : CN,N → CN,N the operator that kills all off-diagonal values, the orthogonal projection onto
HomG(CN,N ,CN,N ) is given by

ΠE(A) = F−1diag(FAF−1)F . (42)

Proof. Let us begin by showing that P = F−1diag(FAF−1)F defines an orthogonal projection.
As for the ’projection’ part, note that for any A, the matrix D = diag(FAF−1) will of course be
diagonal, so that diag(D) = D. Consequently,

P 2(A) = P (F−1DF) = F−1diag(D)F = F−1DF = P (A). (43)
The orthogonality can now be shown via arguing that P is self-adjoint. This is furthermore not hard:
Due to the orthogonality of F , A 7→ FAF−1 and A 7→ F−1AF are self-adjoint, as is obviously
diag (with respect to the standard scalar product on CN,N ).

It is now only left to show that the range of P is equal to the space HomG(CN,N ,CN,N ), which is
the space of translations equivariant operators CN,N → CN,N . It is however well-known that those
exactly correspond to convolutional operators Cϕ(v) = ϕ ∗ v. The convolution theorem now states

F(Cϕv) = F(ϕ ∗ v) = F(ϕ) · F(v) = D(F(ϕ))Fv, (44)
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Figure 4: Two examples of generated images for ROT.

where D : CN 7→ CN,N is the operator that inserts a vector into the diagonal of a matrix. In other
words, Cϕ = F−1D(F(ϕ))F , which makes it obvious that ranP ⊆ E . Furthermore, by setting
A = F−1D(F(ϕ))F , we see that we can write every convolution operator as an image under P . In
conclusion, P = ΠE .

D.3 THE ROT EXPERIMENT

In the final experiment, we consider a simple, rotation invariant, segmentation task for synthetically
generated data. The input space consist of images in RN,N , and the output space (RN,N )2 of pairs of
segmentation masks. This task is hence ’truly’ equivariant.

Data We generate 3000 synthetic images as follows: With equal probability, we generate a regular
pentagon or an equilateral triangle (with vertices on the unit circle), scale it using a uniformly
randomly chosen factor in [0.7, 0.8], and place it randomly on a canvas. The resulting image, along
with two segmentation masks, each indicating where each shape is present in the image (and in
particular zero everywhere if the particular object is not present at all) are converted to 14 × 14
pixels images. Importantly, all triangles, and pentagons, have the same orientation, so that the
image distribution is not invariant under discrete rotations of 90◦. Examples of generated images are
showcased in Figure 4.

Model In contrast to the previous examples, the action on the output space is not trivial. Therefore,
the model set up is less convoluted : We use hidden spaces (RN,N )32,(RN,N )32 and (RN,N )16 on
which the rotation group acts according to ρrot (on each component). Before the final non-linearity,
we use a batch norm layer. All non-linearities are leaky ReLUs, except for the last one, which is a
sigmoid non-linearity. A visualization is given in Figure 5. The loss function is

ℓ((ypent, ytri), y
′
pent, y

′
tri) =

1

N2

∑
k∈[N ]2

BCL((ypent(k), y
′
pent(k))) (45)

+
1

N2

∑
k∈[N ]2

BCL(ytri(k), y
′
tri(k)))

where BCL is the binary cross-entropy loss, and ypent, ytri are the pentagon and triangle segmentation
masks, respectively. Note that the pixel-wise nature of the loss implies that it is invariant under
rotations of the masks.

Projection operators Since the group in this case only consists of four elements, and the Haar
measure is the uniform one, we can calculate the projection of the layers by explicitly carrying out
the integration

ΠEA = 1
4

∑
k∈Z4

ρ(k)A. (46)
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Figure 5: The setup for the models of Experiment 3

E THE RELATION BETWEEN dim(E) AND THE ’EMPIRICAL STABILITY’ OF E .

In the main text, we sketched a heuristic argument relating the relative dimension of the space E in
the space L with how close the AUG model stayed to E . In this section, we first want to carry out
these computations. To further investigate the link, we also provide an additional experiment. A
quick glance of the calculations are given in Tables 1 and 2

E.1 THE EXPERIMENTS IN SECTION 5

PERM As mentioned before, the spaces of equivariant linear maps was described in Maron et al.
(2019a). Therein, it was shown that the dimension of (under the permutation group) equivariant linear
maps from RN ⊗ RN to itself is equal to 15, and from RN ⊗ RN to itself is 2 (as long as N ≥ 2, as
was pointed out in Finzi et al. (2021)). The dimensions of the corresponding whole spaces are N4

and N2, respectively. In the architecture we are proposing, we use 32 maps RN ⊗ RN in the first
layer, and 32 · 64 maps RN ⊗RN → R in the second layer. In the layers thereafter, all 64 · 32+32 · 1
maps are equivariant. Hence

dim E
dimL

=
15 · 32 + 5 · 32 · 64 + 64 · 32 + 32 · 1

N4 · 32 +N2 · 32 · 64 + 64 · 32 + 32 · 1
≈ 2.43 · 10−2. (47)

where we plugged in N = 10 in the final step.

TRANS Here, the space of equivariant linear maps RN,N → RN,N is the space of convolution
operators. On RN,N , there are N2 of those. There is up to scale only one equivariant map RN,N → R,
given by taking the mean of the matrix entries. The space of all linear maps in the two cases of course
have dimension N4 and N2, respectively. Since we use two initial layers of 32 and 32 · 32 maps
RN,N → RN,N , respectively, one layer of 32× 32 maps RN,N → R and 32 · 10 maps from R → R
(where again all maps are equivariant), we obtain

dim E
dimL

=
N2 · 32 +N2 · 32 · 32 + 1 · 32 · 32 + 32 · 10
N4 · 32 +N4 · 32 · 32 +N2 · 32 · 32 + 32 · 10

≈ 5.1 · 10−3. (48)

where we plugged in N = 14 in the final step.

ROT Here, a map from RN,N to RN,N is clearly equivariant if and only if its matrix representation,
as a function from ([N ]2)2 to R, is constant along all orbits

{(ι0, ι1), (r−1(ι0), r(ι1)), (r
−2(ι0), r

2(ι1)), (r
−3(ι0), r

3(ι1))}, (49)

Experiment U V dimHom(U, V ) dimHomG(U, V ) # in model
PERM RN ⊗ RN RN ⊗ RN N4 15 32

RN ⊗ RN R N2 2 32 · 64
R R 1 1 64 · 32 + 32 · 1

TRANS RN,N RN,N N4 N2 32 + 32 · 32
RN,N R N2 1 32 · 32
R R 1 1 32 · 10

ROT RN,N RN,N N4 1
4 ·N4 32 + 32 · 32+

32 · 16 + 16 · 2

Table 1: Dimension calculations for the experiments PERM , TRANS and ROT from the main paper.
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where ιi = [ιi(0), ιi(1)] ∈ [N ]2 and

r(ι) = (−ι(1), ι(0)) (50)

Since N = 14, i.e. even, each such orbit has 4 elements, and they are of course disjoint. Therefore,
the relative dimension between the space of equivariant maps RN,N → RN,N and the space of all
such maps is equal to 1/4. Since it is only such maps that appear in the model used in the experiment,

dim E
dimL

=
1

4
= 0.25 (51)

in this case.

E.2 AN ADDITIONAL EXPERIMENT

In the main paper, not only G (and accordingly E) was varying in between the experiment, but also
the nominal model architectures and datasets, which makes it unclear if it is only G that plays a role
in the different speeds of drift of the augmented model from (or say ’empirical stability’ of) E . We
therefore perform an additional experiment in which all models use the same underlying architecture
and dataset, namely the one of the TRANS experiment, and only vary the underlying symmetry group
acting on RN,N . We use four groups and actions.

• TRANS Z2
N acting through translations, as in the TRANS experiment.

• ROT Z4 acting through rotations, as in the ROT experiment.

• ONEDTRANS ZN acting through translations in the x-direction, i.e.

(ρtr0(k)x)i,j = xi−k,j (52)

• TRANSROT The semi-direct product Z2
N ⋊ Z4 acting through

ρtrot(ι, k)x = ρrot(k)ρtr(ι)x, ι ∈ Z2
N , k ∈ Z4. (53)

This can, in the same way Z4 is a discretization of the full group SO(2) of rotations in the
plane, be thought of as a discretization of the group SE(2) of isometries in the plane.

The relative dimensions dim E/ dimL are in these cases (approximately) given by

TRANS : 5.1 · 10−3 ROT : 0.25
ONEDTRANS : 7.1 · 10−2 TRANSROT : 1.3 · 10−3 . (54)

These numbers are the results of similar calculations as above, with the data from Table (2) – the
(conceptually simple but technical) arguments for the validity of non-trivial entries are given in
Section E.2.1. According to it, we expect the relative drift of the augmented model compared to
the nominal one from E should be the largest for ROT, followed by ONEDTRANS, TRANS and
TRANSROT, in decreasing order.

Experiment U V dimHom(U, V ) dimHomG(U, V ) # in model
ROT RN,N RN,N N4 1

4N
4 32 + 32 · 32

RN,N R N2 1
4N

2 32 · 32
R R 1 1 32 · 10

ONEDTRANS RN,N RN,N N4 N3 32 + 32 · 32
RN,N R N2 N 32 · 32
R R 1 1 32 · 10

TRANSROT RN,N RN,N N4 1
4N

2 32 + 32 · 32
RN,N R N2 1 32 + 32 · 32
R R 1 1 32 · 10

Table 2: Dimension calculations for the experiments ROT , ONEDTRANS and TRANSROT in the
appendix.
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As mentioned, we repeat the exact same experiment as TRANS for the new groups2. We then plot
the results similarly as in the experiments in the main paper, in Figure 6. Note that the scales in the
figures are different, to assess the amount the augmented model drifts relative to the other ones. We
have chosen the limits for the axes as follows:

• The xleft-limit in both subplots is chosen as 1.5 times the maximal (with respect to the 50
training epochs) median (with respect to the 30 runs) value of ∥A−A0∥ for the EQUI model.

• The yleft-limit in the left subplot is chosen as 1.5 times the maximal (with respect to the 50
training epochs) median (with respect to the 30 runs) value of ∥ΠE⊥A∥ for the NOM model.

• The yright-limit in the left subplot is given by λ · yleft, where λ > 0 is a factor common for
all four groups. λ is chosen so that yright is equal to 1.5 times the maximal (with respect
to the 50 training epochs) median (with respect to the 30 runs) value of ∥ΠE⊥A∥ for the
AUG model for the TRANS experiment.

In this way, we ensure that the coordinate systems are on the same scale relative to the NOM and
EQUI models. It is hence not surprising that the NOM curves look the same in all the plots – it is
very much that way by design. The same is however not true for the AUG curve, and that is telling us
something – in fact, this behaviour is in accordance with our hypothesis. This further strengthens
the argument that the dimension of the subspace E plays a crucial role in the amount of regularizing
effect augmentation has. Judging by the quite small difference between TRANS and TRANSROT ,
although the relative dimensions differ by a factor 4, further suggests that hypothesizing a simple
linear relationship is to naive – more work needs to be done here.

Figure 6: Results from the experiments of the appendix.

E.2.1 THE SPACES HomG(U, V ) AND PROJECTION OPERATORS

Here, we derive what HomG(U, V ) look like for the groups ZN and Z4 ⋊ZN , and the corresponding
projection operators. These derivations are all conceptually easy, but technical, and are only included
for completeness.

ZN and ONEDTRANS To describe the space HomZN
(RN,N ,RN,N ), let us begin by introducing

some notation. First, every element in RN,N can equivalently be described as a collection of rows.

2Resulting in about 60 more hours of GPU time, on Tesla A40 GPUs situated on a cluster

19



Under review as a conference paper at ICLR 2024

This can be written compactly as

X =
∑
k∈[N ]

ekx
∗
k (55)

where xk ∈ RN are the rows, and ek is the k:th canonical unit vector. Correspondingly, each operator
A : RN,N → RN,N decomposes into an array of N2 operators Aℓ,k : RN → RN :

A(x) =
∑

k,ℓ∈[N ]

eℓ(Aℓ,kxk)
∗. (56)

With this notation introduced, we can conveniently describe the space HomZN
(RN,N ,RN,N )

Proposition 5. Using the notation (56), HomZN
(RN,N ,RN,N ) is characterized as the set of oper-

ators for which each Aℓ,k is a convolutional operator. In particular, the dimension of the space is
N2 ·N = N3.

Proof. Somewhat abusing notation, let us denote the action of ZN on RN also as ρtr0 . We then have
ρtr0(n)(ekx

∗) = ekρ
tr0(n)(x)∗ (57)

Hence,

A(ρtr0(n)x) =
∑

k,ℓ∈[N ]

eℓ(Aℓ,kρ
tr0(n)xk)

∗ (58)

ρtr0(n)(Ax) =
∑

k,ℓ∈[N ]

eℓ(ρ
tr0(n)Aℓ,kxk)

∗ (59)

These two expression are equal for any x if and only if Aℓ,kρ
tr0(n)xk = ρtr0(n)Aℓ,kxk for any xk

and ℓ, k, i.e., when every Aℓ,k is translation equivariant, which is equivalent to each Aℓ,k being a
convolution operator.

Not surprisingly, we can again calculate the projection onto the space of equivariant operators with the
help of the Fourier transform. However, the Fourier transform should here only be applied partially.
Let us make this explicit. Let F : CN → CN be the one-dimensional orthogonal Fourier transform.
We then define the row-wise partial Fourier transformation F : CN,N → CN,N through

F

 ∑
k∈[N ]

ekx
∗
k

 =
∑
k∈N

ek(Fxk)
∗. (60)

We can now show that A ∈ HomZN (CN,N ,CN,N ) is related to FAF−1 being ’partially diagonal’, in
the following sense.
Lemma 8. Let F : CN → CN be the one-dimensional Fourier transform. Then, an operator A is in
HomZN (CN,N ,CN,N ) if and only if, in the notation 56, each FAℓ,kF−1 is diagonal.

Proof. It is not hard to show that
(FAF−1)ℓ,k = FAℓ,kF−1. (61)

Now, it is well known that Aℓ,k is convolutional if and only if FAℓ,kF−1 is diagonal. The claim
follows.

By applying exactly the same argument as in Proposition 4, we may now derive
Proposition 6. The orthogonal projection from Hom(CN,N ,CN,N ) onto HomZN (CN,N ,CN,N ) is
given by

F−1diag0(FAF−1)F, (62)
where diag0 is the operator that kills all off-diagonal elements in all operators Aℓ,k in the decompo-
sition 56.

As before, it is not hard to realize what the space HomZN (RN,N , 1) must be: Interpreted as a matrix
X =

∑
k∈[N ] ekx

∗
k, X is in HomZN (RN,N , 1) if and only if each xk is constant. Correspondingly,

the projection is given by taking means along the x-direction, and the dimension of the space in
particular is N .
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Z4 and ROT Here, we have in fact already described the space HomZ4
(RN,N ,RN,N ) and the

projection operator in Appendix D. Let us here just record that the exact same idea goes through for
the space HomZ4

(RN,N , 1) – the projection can again be calculated via explicit integration, and its
elements are again characterized by having constant values on orbits of length 4. Correspondingly,
dimHomZ4

(RN,N , 1) = 1
4N

2

TRANSROT and Z2
N ⋊ Z4 Here, the semi-direct product structure immediately implies a re-

lationship between the projection operators. First, let us notice that the lift ρtrot is given by
ρtrot(ι, k) = ρrot(k)ρtr(ι). This fact together with the explicit integration formula

ΠE =

∫
Z2
N⋊Z4

ρtrot(g)dµ(g) =
1

4N2

∑
k∈Z4,ι∈Z2

N

ρrot(k)ρtr(ι), (63)

where we explicitly used that the Haar measure is the uniform one, implies the following
Proposition 7. For G, let PG denote the projection operators onto HomG(RN,N , V ) where V is
either R or RN,N . Then,

PZ2
N⋊Z4 = PZ4

PZ2
N
. (64)

The above in particular means that the space E is the intersection between the space E for the
respective groups. Specifically, this means that the space HomZN⋊Z4

(RN,N ,RN,N ) is the space of
convolution operators whose convolutional filter is constant on orbits under Z4, and therefore (in the
even case) has dimension N2

4 . For HomZN⋊Z4
(RN,N ,R), the space is still one-dimensional – it is

given by the convolution with the constant filter (which in particular is constant on orbits)..¨

F INCLUDING BIAS TERMS IN THE FRAMEWORK

Let us here show how bias terms can be incorporated into our framework by applying the standard
trick of writing an affine map as a linear one on an extended space. Indeed, given an affine map
D : U → V, x 7→ Ax + b for some A ∈ Hom(U, V ) and b ∈ V , we may define a linear map
D◦ : U◦ → V ◦, where for a vector space X , we wrote X◦ = X ⊕ R, through

D◦(x, λ) = (Ax+ λ · b, λ). (65)

Note that D◦(x, 1) = (D(x), 1). Hence, D◦ restricted to U × {1} acts exactly as D. These maps
form a linear space that we call Hom◦(U◦, V ◦). We can further extend a representation ρ of G on U
to one on U◦ via ρ◦(g)(u, λ) = (ρ(g)u, λ). If ρ is unitary, ρ◦ also is.

It is not hard to show that the affine map D : Xi → Xi+1 is equivariant with respect to ρi, ρi+1 if and
only if the linear map D◦ is equivariant with respect to ρ◦i , ρ◦i+1. In particular, the lifted representation
ρ◦i maps Hom◦(Xi, Xi+1) onto itself, and D◦ is equivariant if and only if ρ(g)D◦ = D◦ for all g.
Finally, the non-linearities σi and loss ℓ can be extended to σ◦

i : X◦
i → X◦

i+1, (x, λ) → (σ(x), λ),
and ℓ : Y ◦ × Y ◦ → R, ℓ◦((x, λ), (y, κ)) = ℓ(x, y). Equivariance of σi and ℓ is equivalent to
equivariance of σ◦ and ℓ◦, respectively.

Hence, in short, by extending all hidden spaces Xi to X◦
i , the non-linearities, losses and represen-

tations accordingly, and restricting the Ai to live in Hom◦(X◦
i , X

◦
i+1), we obtain a framework that

for all intents and purposes works exactly like the one we study in this paper, but also allows for the
inclusion of bias terms. All arguments in the paper carry over verbatim in this extended framework.
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