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A ADDITIONAL MATERIAL FOR SECTION 3

A.1 PROOF OF PROPOSITION 3.1

We start by proving first that given any ⇡⇤ that satisfies (3), it must also satisfy

⇡⇤ 2 argmin
⇡

E(t,s)⇠� [Q
⇡⇤

t (s,⇡t(s))] , (5)

where � captures the distribution of (t̃, st̃) used in (3). We do so by contradiction. Let’s assume that
there exists a ⇡̄ such that

E(t,s)⇠� [Q
⇡⇤

t (s, ⇡̄t(s))] < E(t,s)⇠� [Q
⇡⇤

t (s,⇡⇤
t (s))] .

Then, one can design the following policy:

⇡̄⇤
t (s) :=

⇢
⇡̄t(s) if Q⇡⇤

t (s, ⇡̄t(s)) < Q⇡⇤

t (s,⇡⇤
t (s))

⇡⇤
t (s) otherwise.

Using a recursive argument, one can show that Q⇡̄⇤

t (st, at)  Q⇡⇤

t (st, at) for all t and (st, at) pair.
In this recursion, we start with:

Q⇡̄⇤

T (sT , aT ) = �rT (sT , aT , sT ) = Q⇡⇤

T (sT , aT ) .

Moreover, for all t < T , and (st, at) pairs, we have that:

Q⇡̄⇤

t (st, at) = ⇢̄(�rt(st, at, st+1) +Q⇡̄⇤

t+1(st+1, ⇡̄
⇤(st+1))|st)

 ⇢̄(�rt(st, at, st+1) +Q⇡⇤

t+1(st+1, ⇡̄
⇤(st+1))|st)

 ⇢̄(�rt(st, at, st+1) +Q⇡⇤

t+1(st+1,⇡
⇤(st+1))|st) = Q⇡⇤

t (st, at),

where we first used Q⇡̄⇤

t+1(st, at)  Q⇡⇤

t+1(st, at), then exploited the definition of ⇡̄⇤
t . With this

result in hand we can obtain that for all t and st

Q⇡̄⇤

t (st, ⇡̄
⇤
t (st))  Q⇡⇤

t (st, ⇡̄
⇤
t (st))  Q⇡⇤

t (st, ⇡̄t(st)),

where we again used the definition of ⇡̄⇤. Finally, we must therefore have that:

E(t,s)⇠� [Q
⇡̄⇤

t (s, ⇡̄⇤
t (s))]  E(t,s)⇠� [Q

⇡⇤

t (s, ⇡̄t(s))] < E(t,s)⇠� [Q
⇡⇤

t (s,⇡⇤
t (s))]

which leads to a contradiction, hence (5) must hold.

Next, applying the interchangeability property (see Shapiro (2017)) to equation (5) and using the
fact that the � distribution puts positive probability on all time periods and all sub-regions of S⇥A,
we know that the following necessarily hold:

⇡⇤
t (s) 2 argmin

a
Q⇡⇤

t (s, a), 8s 2 S, 8t 2 {0, . . . , T} .

Our last step involves using recursion to show that ⇡⇤ 2 argmin⇡ Q⇡
t (st,⇡t(st)) for all t and all st.

We start once more at t = T where for all sT :

Q⇡⇤

T (sT ,⇡
⇤
T (s)) = min

aT

Q⇡⇤

T (sT , aT ) = min
aT

�rT (sT , aT , sT )  Q⇡
T (sT ,⇡T (sT )), 8⇡.

And then recursively for all t < T and all st,

Q⇡⇤

t (st,⇡
⇤
t (st)) = min

at

Q⇡⇤

t (st, at)

= min
at

⇢̄(�rt(st, at, st+1) +Q⇡⇤

t+1(st+1,⇡
⇤
t+1(st+1))|st)

 min
at

⇢̄(�rt(st, at, st+1) +Q⇡
t+1(st+1,⇡t+1(st+1))|st) 8⇡

 ⇢̄(�rt(st,⇡t(st), st+1) +Q⇡
t+1(st+1,⇡t+1(st+1))|st) 8⇡

 min
⇡

Q⇡
t (st,⇡t(st)).

11



Under review as a conference paper at ICLR 2022

A.2 ADAPTING DDPG TO HANDLE DYNAMIC EXPECTILE RISK MEASURES

We include below the extension of deep deterministic policy gradient (DDPG) algorithm to a risk
averse MDP that employs a dynamic expectile risk measure. In bold we highlight the modification
to DDPG that is due to the use of a dynamic expectile risk measure. Note that after assuming
that the information about t is included in the state, we drop the subscript t notation to increase
similarity with Lillicrap et al. (2015). For completeness, we make precise that the original DDPG
uses @`(y) := 2y while this risk averse DDPG, with risk level ⌧ , uses @`(y) := 2(⌧ max(0, y) �
(1� ⌧)max(0,�y)).

Algorithm 2: Risk averse deep deterministic policy gradient
Randomly initialize the main actor and critic networks’ parameters ✓⇡ and ✓Q;
Initialize the target actor, ✓⇡

0  ✓⇡ , and critic, ✓Q
0  ✓Q, networks;

Initialize replay buffers R;
for j = 1 : #Episodes do

Initialize a random process N for action exploration;
Receive initial observation state s0;
for t = 0 : T � 1 do

Select action at = ⇡t(st|✓⇡) +Nt;
Execute at and observe reward rt and new state st+1;
Store transition (st, at, rt, st+1) in R;
Sample a minibatch of N transitions {(sj , aj , rj , sj+1)}Nj=1 in R;
Set the realized losses yij := �rij +Q(sij+1,⇡(s

i
j+1|✓⇡

0
)|✓Q0

);
Update the main critic network:

✓Q ✓Q �↵
1

N

NXXX

i=1

@`(Q(sij, a
i
j|✓Q)� yi

j)r✓QQ(sij, a
i
j|✓Q)

where @`(y) := ⌧ max(0, y)� (1� ⌧)max(0,�y);
Update the main actor network:

✓⇡  ✓⇡ � ↵
1

N

NX

i=1

raQ(sij , a|✓Q)|a=⇡(sij |✓⇡)r✓⇡⇡(sij |✓⇡) ;

Update the target networks:

✓Q
0
 ↵✓Q + (1� ↵)✓Q

0
, ✓⇡

0
 ↵✓⇡ + (1� ↵)✓⇡

0
;

end
end

B ADDITIONAL MATERIAL FOR SECTION 4

Table 3: Stock data including the mean, standard deviation, and the correlation matrix

AAPL AMZN FB JPM GOOGL
S0 78.81 1877.94 221.77 137.25 1450.16
µ -0.0015 -0.0017 -0.0001 0.0006 -0.0004
� 0.0298 0.0243 0.0295 0.0345 0.0246
AAPL 1.0000 0.7133 0.7744 0.5383 0.7680
AMZN 0.7133 1.0000 0.6903 0.2685 0.6837
FB 0.7744 0.6903 1.0000 0.4807 0.8054
JPM 0.5383 0.2685 0.4807 1.0000 0.6060
GOOGL 0.7680 0.6837 0.8054 0.6060 1.0000
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B.1 ADDITIONAL MATERIAL FOR SECTION 4.2

(a) ACRL for DRM’s writer (b) ACRL for DRM’s buyer

(c) AORL for SRM’s writer (d) AORL for SRM’s buyer

Figure 2: Learning curves of the DRM and SRM for an at-the-money vanilla call option on AAPL
when a 90% expectile measure is used. The graphs show the validation scores for a range of static
expectile measures with risk level ranging from 90% to 99%.

(a) Writer (b) Buyer

Figure 3: Learning curves of the ACRL algorithm for the writer and buyer’s DRM for a basket at-
the-money call option over AAPL, AMZN, FB, JPM, and GOOGL at the risk level ⌧ = 90%. The
graphs show the validation scores for a range of static expectile measures with risk level ranging
from 90% to 99%.
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(a) With immediate rewards (b) With delayed rewards

Figure 4: Learning curves of the ACRL algorithm for the buyer’s DRM when using (a) the immedi-
ate rewards versus (b) delayed rewards in the hedging of a vanilla call at-the-money option.
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B.2 ADDITIONAL MATERIAL FOR SECTION 4.3

(a) Writer, ⌧ = 75% (b) Buyer, ⌧ = 75%

(c) Writer, ⌧ = 90% (d) Buyer, ⌧ = 90%

(e) Writer, ⌧ = 95% (f) Buyer, ⌧ = 95%

Figure 5: The out-of-sample dynamic risk imposed to the two sides of a vanilla at-the-money call
option over AAPL (with maturity ranging from 12 months to 0 months) under the DRM policy
trained for a 12 months maturity and at different risk levels ⌧ 2 {75%, 90%, 95%}.
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(a) Writer, ⌧ = 75% (b) Buyer, ⌧ = 75%

(c) Writer, ⌧ = 90% (d) Buyer, ⌧ = 90%

(e) Writer, ⌧ = 95% (f) Buyer, ⌧ = 95%

Figure 6: The out-of-sample static risk imposed to the two sides of a vanilla at-the-money call option
over AAPL (with maturity ranging from 12 months to 2 months) under the DRM and SRM policies
trained for a 12 months maturity and at different risk levels ⌧ 2 {75%, 90%, 95%}.
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(a) DRM’s writer (b) DRM’s buyer

(c) SRM’s writer (d) SRM’s buyer

(e) DP-DRM’s writer (f) DP-DRM’s buyer

Figure 7: Comparison of the optimal DRL policies obtained for DRM and SRM (with 90% expec-
tile measures) to the discretized DP solution (DP-DRM) for an at-the-money vanilla call option on
AAPL with a one year maturity. Each figure presents the sampled actions in our simulated trajecto-
ries as a function of the AAPL stock value. The strike price is marked at 78.81.

17



Under review as a conference paper at ICLR 2022

B.3 ADDITIONAL MATERIAL FOR SECTION 4.4

(a) Writer (b) Buyer

Figure 8: The out-of-sample dynamic risk imposed to the two sides of a basket at-the-money call
option over AAPL, AMZN, FB, JPM, and GOOGL at the risk level ⌧ = 90% (as maturity ranges
from 12 to 0 months) under a DRM policy trained for a 12 months maturity.

(a) Static risk, writer (b) Static risk, buyer

Figure 9: The out-of-sample static risk imposed to the two sides of a basket at-the-money call option
over AAPL, AMZN, FB, JPM, and GOOGL at the risk level ⌧ = 90% (as maturity ranges from 12
to 0 months) under the DRM and SRM policies trained for a 12 months maturity.
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