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A Variational bound on the informativeness loss

Here we prove the variational bound on the informativeness loss term (second term in Eq. (4)) that
is used in Section 3.3.2 to derive the VQ-VIB learning objective. Recall that the speaker’s belief
states, mx, are defined as probability distributions over a feature space U representing the domain
X . A decoder maps a communication signal c ∈ C to a reconstruction m̂c of the speaker’s belief.
As shown in [1, SI Section 1.2], for any given speaker S(c|x), the optimal decoder that minimizes
ES [DKL[mx∥m̂c]] over all possible reconstructions m̂c is Bayesian; that is, its reconstruction is given
by m̂c(u) =

∑
x S(x|c)mx(u), where S(x|c) is the posterior distribution with respect to S(c|x) and

p(x). Recall that m̂c(u) is exactly the listener’s decoder in the IB framework (see Section 3.1.1).
Therefore, any other decoder would lend an upper bound on the informativeness loss term. Here,
we derive a particularly useful bound under the assumptions that X ⊆ Rn,2 U = Rn, and that the
speaker’s uncertainty can be modeled with Gaussian noise, N (0,Σ). For simplicity, we assume that
the noise covariance, Σ, does not depend on the input, however this assumption is not required for
our general claim and could be easily relaxed. In this case, the speaker’s belief states are given by
mx ≡ N (x,Σ). Let Dψ : C → Rd be a function parameterized by ψ, then it holds that

min
m̂′

c

ES [DKL[mx∥m̂′
c]] = ES [DKL[N (x,Σ)∥m̂c]] (A.1)

≤ min
µ̂(c),Σ̂(c)

ES [DKL[N (x,Σ)∥N (µ̂(c), Σ̂(c))]] (A.2)

≤ min
ψ,Σ̂(c)

ES [DKL[N (x,Σ)∥N (Dψ(c), Σ̂(c))]] . (A.3)

While Eq. (A.1) follows from [1] and the inequality in Eq. (A.2) is straightforward, it has an interesting
cognitive interpretation. Notice that under our assumptions, m̂c is a Gaussian mixture, whereas
the speaker’s beliefs are simply Gaussian. Eq. (A.2) is equivalent to assuming that the listener’s
reconstructions are restricted to Gaussian distributions, similar to the speaker. Therefore, while this
might not give a tight bound on the optimal IB solution, it may actually be more cognitively plausible.
In addition, the optimal µ̂(c) for Eq. (A.2) are given by the posterior centroids, i.e,

µ̂∗(c) = ES [x|c] =
∑
x∈X

S(x|c)x , (A.4)

which means that the optimal D∗
ψ for Eq. (A.3) will approximate these centroids. Eq. (A.3) has a

convenient form as minimizing the KL divergence between two Gaussians,

min
ψ,Σ̂(c)

1

2
ES

[(
tr(Σ̂(c)Σ−1) + (x−Dψ(c))

⊤Σ̂(c)−1(x−Dψ(c))− n+ ln
|Σ̂(c)|
|Σ|

)]
, (A.5)

∗The main paper is available at https://openreview.net/pdf?id=O5arhQvBdH.
2While X may be a continuous space, in our settings it is either a finite dataset or it is approximated by a

finite sample during training. Therefore, we treat it here as a discrete set.
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which in principle, could be used in our framework with a proper parameterization of Σ̂(c). However,
for simplicity, we take Σ̂(c) = Id, which, in combination with Eqs. (A.1)-(A.3), yields the following
bound:

ES [DKL[mx|m̂c]] ≤ min
ψ

ES [DKL[N (x,Σ)∥N (Dψ(c), Id]] (A.6)

≤ 1

2
ES
[
∥x−Dψ(c)∥2

]
+ a , (A.7)

where a = tr(Σ−1)− n− ln |Σ| is a constant that does not affect the optimization.

B Symmetry breaking regularization

As shown in [2], for every complexity level there is a set of IB-optimal systems with varying effective
lexicon sizes, k = |{c ∈ C :

∑
x p(x)Sθ(c|x) > 0}|. All the systems with the same k form an

equivalence class and the canonical system within each class is the one with minimal k. These
canonical systems are the natural one to prefer, because they can attain the optimum for a given
complexity with a minimal codebook. We therefore aim to bias our agents toward these systems.
One way of achieving that is by regularizing the entropy of the speaker’s communication vectors.
However, this is problematic in our settings given the non-differentiablity of the argmin operation
used in the VQ-VIB discretization layer. Instead, we use the entropy of an approximated categorical
distribution based on the euclidean distance to each quantized vector, i.e., pcat(ζi|z) ∝ e−(z−ζi)2

Because this entropy term is only used to break the symmetry between equally optimal systems, we
use a small regularizing weight (0.05 in our experiments). We denote the weighted regularization
term by ε(θ, C), as it depends both on the encoder qθ(z|x) and on the embedding space C.

C VQ-VIB After

We proposed an additional architecture, VQ-VIB After, that is closely related to our main VQ-
VIB method. In VQ-VIB After, an encoder to generates a discrete representation ζ, whereupon a
communication vector c is sampled from a Gaussian in the continuous space centered around ζ . This
“sample-after” method is depicted in Figure 8, and corresponds to an intuitive notion of choosing a
word (a discrete embedding) deterministically but then being uncertain about the form (by sampling
in the continuous space around it).

This architecture fits into the standard Information Bottleneck framework, as complexity can be
penalized via standard variational methods. However, it is distinct from discrete communication
methods because communication vectors are ultimately sampled from a continuous space. Thus, this
work does not fit naturally into the main focus of this work, but we believe it could have applications
in other settings, such as speech processing (wherein discrete words are pronounced in a continuous
auditory space).

Figure C.1: In the VQ-VIB After architecture, the speaker deterministically maps x to the nearest
quantized encoding, ζ, and then c is sampled from a Gaussian centered at ζ.
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D Implementation Details

Here, we include implementation details that we omitted from the main paper that can be used to
reproduce our experiments.

D.1 Multi-Agent Reinforcement Learning Experiments

We trained agents in the 9 points and Uniform environments with Multi-Agent Deep Deterministic
Policy Gradient (MADDPG), a standard method for multi-agent reinforcement learning [3].

Agent architectures were identical in both environments. Regardless of the speaker architecture
used, all teams used common decoder and listener agents (except for variations due to different
communication dimensions, explained later). The decoder used 2 fully-connected ReLU layers with
hidden dimension 64; the listener used 3 fully-connected ReLU layers with hidden dimension 64.

Because of the common architecture for the decoder and listener agents across teams, variation
arose due to differences among the speaker agents. A speaker agent consisted of 2, 64-neuron fully-
connected layers with ReLU activations, followed by a speaker “head.” We dub the output of these
first two layers the “encoder representation.” Speaker heads implemented the specific communication
method (e.g., continuous, VQ-VIB, etc.) by taking the 64-dimensional encoder representation and
going through one of 5 possible architectures to produce a vector in the communication space, Rd.
(As discussed later, d varied by environment and architecture slightly.)

• Continuous: The continuous communication head consisted of two fully connected layers
branching off the encoder representation to generate a µ and logvar (the log of the variance)
from which the communication vector was sampled using the reparametrization trick. Here,
as in other speaker architectures, we assumed a diagonal covariance matrix. Complexity was
measured as the KL divergence between the parameters µ and logvar and a unit Gaussian.

• one-hot: The one-hot communication head consisted of one fully connected layer from
the encoder representation to Rd. One-hot vectors were generated using gumbel softmax
sampling, with temperature 1. Complexity was measured as the KL divergence between the
softmax distribution from which the one-hot vector was sampled and a uniform categori-
cal distribution. Thus, complexity corresponds to the difference between the conditional
and unconditional entropies of messages, unlike non-IB frameworks that often penalize
unconditional entropy. We used greater communication dimensionality for one-hot agents
and therefore rescaled the first layer of the decoder and listener agents to accept such
communication.

• VQ-VIB: The VQ-VIB communication head first passed the encoder representation through
two fully connected layers, branching off the encoding, to generate a µ and logvar, as in the
continuous communication case. A communication vector was sampled from the distribution,
whereupon it was discretized to the nearest quantized vector, ζ , in the communication space
(as done in a standard VQ-VAE, without the sampling). Complexity was measured as the
KL divergence between the parameters µ and logvar and a unit Gaussian.

• VQ-VIB After: The VQ-VIB After communication head first passed the encoder repre-
sentation through two fully connected layers to generate an encoding, z, and logvar. The
encoding, z, was discretized to the nearest quantized vector, ζ. Lastly, a communication
vector, c, was sampled from a normal distribution centered at ζ with variance specified via
logvar. Complexity was measured as the KL divergence between the parameters ζ and
logvar and a unit Gaussian.

• Proto: The Proto head mapped the encoder representation through a single fully-connected
layer to a categorical distribution over k neurons, for k representing the number of prototypes.
A k-dimensional one-hot vector was sampled using gumbel softmax; a prototype, p was se-
lected by multiplying the prototype matrix by the one-hot vector. A different fully-connected
layer mapped from the encoder representation to logvar. Lastly, a communication vector,
c, was sampled from a Gaussian centered at p with variance via logvar. Complexity was
measured as the KL divergence between the parameters p and logvar and a unit Gaussian.
This closely resembles the VQ-VIB After architecture, but with a different discretization
mechanism.
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All agents were trained with an Adam optimizer with learning rate 0.01 and batch size 1024.

D.1.1 9 points Environment

For all agent architectures except for one-hot, the communication dimension was 2; one-hot used
communication dimension 9 so that the number of discrete representations allowed by the architecture
was not the limiting factor for complexity. Similarly, the VQ-VIB and Proto agents used 9 discrete
embeddings.

In our results with annealed complexity weight (presented in Figure E.3), agents were trained for
10,000 episodes, with each episode lasting 100 timesteps. The listener agent was always spawned at
the origin, equidistant from each landmark. The informativeness loss weight, λI , was constant at 1.0.
For the continuous and VQ-VIB communication methods, the complexity loss weight, λC increased
by 8 ∗ 10−6 per episode. The one-hot and Proto methods suffered from communication collapse at
that rate, so results λC increased half as quickly: at 4 ∗ 10−6 per episode.

Training a team in the 9 points environment for 10,000 episodes took approximately 15 minutes on a
desktop computer with 16 Intel i9 cores for all architectures, except for one-hot, which took roughly
20 minutes. This difference in time is attributable to the larger communication dimension needed for
one-hot.

D.1.2 Uniform Environment

In the Uniform environment, we used identical parameters as in the 9 points environment, except for
the changes noted below.

For all agent architectures except for one-hot, the communication dimension was 3; for one-hot,
we experimented with communication dimensions of 9 and 100. Similarly, we tested VQ-VIB and
Proto agents when using 9 or 100 discrete embeddings. The listener agent was spawned at a starting
location sampled uniformly at random from the map (bounded between -200 and 200 for both x and
y). Otherwise, we used the same number of training episodes, episode duration, and complexity
annealing rates as in 9 points.

Training a team in the Uniform environment for 10,000 episodes took approximately 15 minutes,
except for one-hot, which took roughly 30 minutes for 100-dimensional communication.

D.2 Color Reference Game Experiments

Here, we include the implementation details used in our color reference game experiments.

Figure D.1: Target and distractor colors were drawn uniformly without replacement from the set of
330 colors in CIELAB space (left). A speaker, S, observed the target and (in the Common Ground
setting) distractor, corrupted by Gaussian noise. The listener, L, had to identify which of the shuffled
colors it saw was the target color, given the speaker’s communication, c.

Agents were trained in the overall architecture depicted in Figure D.1. The speaker agent was
parametrized with 3 fully connected layers with ReLU activations and hidden dimension 64, followed
by a communication head. The communication heads used the same architectures as specified in the
particle world experiments: gumbel softmax was used for generating one-hot vectors, and a straight-
through estimator was used for discretization in VQ-VIB architectures [4, 5]. In all experiments, the
communication dimension was set to 32 for all agents except one-hot, for which the communication
dimension was set to 330 (to match the expressive power of other discrete agents, that each had
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330 discrete tokens in the 32 dimensional space). The decoder and listener agents used the same
feed-forward architecture as in the particle world experiments.

Without annealing the complexity loss, 50 training epochs sufficed for agents to converge to a stable
solution. Thus, in our experiments with λC = 0, we only trained for 50 epochs. For later experiments,
wherein we annealed complexity, we first trained agents for 50 epochs before beginning to anneal
the complexity term for the next 40 epochs (for a total of 90 epochs). We note that, for VQ-VIB, we
set the complexity loss to 0 during this “burnin” period, but for one-hot communication, it appeared
necessary to set the loss to 0.05 to prevent numerical instability during the first epoch after the burnin
period. During complexity loss annealing, we increased λC by 0.01 during each epoch for VQ-VIB,
and by 0.1 for one-hot. These different rates were necessary to induce similar ranges in complexity
of learned communication.

In the Basic color reference game, the speaker observed a only the 3-dimensional, corrupted target
color. In the Common Ground setting, the speaker observed a 6-dimensional vector, generated by
concatenating noisy versions of the target and distractor colors. In both settings, the listener observed
the communication output by the speaker, as well as the target and distractor colors (ordered randomly,
without added noise). Results were analyzed using code partially-based on publicly-available code
released by Zaslavsky et al. [1].

We trained agents on a desktop computer with 16 Intel i9 CPUs and 1 NVIDIA GeForce RTX 2080.
Training for 90 epochs in both the Basic and Common Ground settings took approximately 3 minutes
for all agent architectures. Agents were trained with an Adam optimizer with default parameters,
with batch size 1024.

E Full Particle World Results

For brevity, we only included partial results from the particle-world experiments in the main paper.
Here, we include the full results.

First, we experimented with varying λI for different environments and neural architectures, without
annealing complexity. Training curves for both environments, using varying λI for each neural
architecture, are included in Figures E.1 and E.2. For each configuration (a particular speaker
architecture and λI ), we trained 5 teams from scratch for 5,000 episodes and plotted the median and
quartile rewards, smoothed over a 50 episode window.

A consistent trend emerged: higher λI led to faster convergence to a higher reward. Indeed, this
corroborates findings by Lin et al. [6], who used an autoencoder architecture for communication
in multiagent settings, but here we showed good convergence properties when mixing utility and
informativeness terms (whereas they reported worse results when adding utility losses). Overall,
these findings motivated training agents to convergence with high λI before beginning to penalize
complexity with λC .
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Figure E.1: In the 9 points environment, using a higher weight for informativeness (λI ) resulted in
faster convergence to higher rewards for each communication architecture. Medians and quartiles
plotted over 5 trials for each configuration.
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Figure E.2: In the Uniform environment, we observed similar trends as in 9 points: greater λI
improved convergence rates and rewards. Medians and quartiles plotted over 5 runs.
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(a) 9 points: Reward vs. Complexity
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Figure E.3: In the 9-points and Uniform environments, agent reward (utility) decreased with complex-
ity. Each point represents the mean complexity and reward for agent checkpoints at 1,000 episode
increments during training, over 5 random seeds. Curves are the best cubic fits to the data. VQ-VIB
architectures typically outperformed other discrete methods by achieving higher reward for the same
complexity, and over-parametrizing with additional embeddings (100 vs. 9) also helped.

Next, we include the results of annealing complexity in both the 9 points and Uniform environments,
as depicted in Figure E.3. In both environments, as we increased λC , complexity and utility decreased.
Comparing both VQ-VIB architectures to other discrete communication methods showed that VQ-
VIB agents tended to obtain a higher mean reward, for a given complexity, than other methods.
In the Uniform environment, we also compared different variants of VQ-VIB, Proto, and one-hot
agents based on the maximum number of discrete messages allowed by the neural architectures. We
tested agents parametrized with either 100 or 9 unique messages; we hypothesized that initializing
agents with many discrete messages and then gradually decreasing complexity would result in better
performance than training with few messages from the start. Indeed, we observed that was the case.
As seen in Figure E.3 b, VQ-VIB agents parametrized with 100 embeddings consistently achieved
higher reward for the same complexity than VQ-VIB agents parametrized with only 9 embeddings.
This trend held even when the complexity was lower than log2(9) bits.

Ultimately, results from both particle world environments corroborate the findings from the color
reference games: encouraging informativeness improved convergence, VQ-VIB achieved greater
utility than one-hot, and decreasing complexity led to coarser discretizations (main paper, Figure 4).
The varied domains and training mechanisms (MARL vs. backpropagation for reference games)
leading to consistent results suggest broad generalizability of our framework and VQ-VIB.
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F Color Reference Game Full Results

We omitted some of the color reference game results from the main paper due to space constraints.
Here, we include our complete results.

F.1 Basic Color Reference Game

First, we include results from the Basic setting, in which we trained agent with different values of
λI without varying λC . These results are included in Figure F.1. Setting λI = 0 induced similar
conditions to those used by Chaabouni et al. [7]; any positive λI favored more informative (and
therefore more complex) communication. Given the monotonically increasing nature of the IB
bound, an optimal agent trained with any positive λI would maximize utility and informativeness by
maximizing complexity, up to a maximum of log2(330) bits. Instead, we found that agents appeared to
converge to lower complexity values, although increasing λI tended to somewhat increase complexity
and informativeness. For example, one-hot communication increased in complexity from roughly 2.3
bits for λI = 0.0 to 3.0 bits for λI = 1.0. This alone is a novel result compared to Chaabouni et al.
[7], who trained agents with no informativeness loss and observed lower-complexity communication.
Curiously, VQ-VIB agents automatically converged to informativeness around 3.5 bits regardless of
the λI value, although increasing λI did improve training stability. This difference between one-hot
and VQ-VIB indicates that the differing architectures themselves have different inductive biases.

Figure F.1: Training agents in the Basic color reference game for various λI but no complexity loss.
Without positive λI , one-hot learns low-informativeness communication, but increasing λI generated
more complex agents, especially for one-hot.

The results in Figure F.1 were generated for varying λI and low (but fixed) λC . We wished to train
agents with no penalty for complexity, but in practice we found that one-hot (but not VQ-VIB) agents
often failed to converge to any meaningful communication if λC = 0 throughout training. Therefore,
for both VQ-VIB and one-hot agents, we initially set λC = 0.05 for the first 30 epochs before setting
λC = 0 for the remaining of training. We encountered similar convergence issues when training
one-hot agents to maximize utility for Table 1 (to recreate the “VQ-VIB (max U )” column). One-hot
agents did not converge for a constant λC = 0 but did if trained for 30 epochs with λC = 0.05 before
being reset to 0. We leave exploration of these initialization weights as an area for future work.

We conducted further experiments to compare agents with the neural agents presented by Chaabouni
et al. [7], wherein one-hot agents were parametrized with a communication dimension of 1024. We
therefore tested VQ-VIB and one-hot agents with 1024 tokens, instead of the 330 used for the results
in our main paper. This hyperparameter change largely did not alter results, which is unsurprising
given that agents with 330 tokens did not use their full vocabulary. As shown in Figure F.2, both
VQ-VIB and one-hot achieved nearly optimal informativeness for a given complexity, and VQ-VIB
achieved higher utility than one-hot (results zoomed in to complexity values between 1 and 2 bits for
clearest plotting of these trends).

We performed additional experiments to investigate the effect of training with REINFORCE, instead
of the supervised learning framework used in our main experiments (e.g., backpropagating through
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(a) (b)

Figure F.2: Communicative informativeness (a) and utility (b) as a function of complexity for color
agents trained with 1024 tokens in the Basic game. These results largely reproduced results from
our main paper with 330 tokens, wherein VQ-VIB and one-hot were similarly efficient, but VQ-VIB
achieved higher utility than one-hot.

gumbel softmax) [8]. Chaabouni et al. [7] had found that training with REINFORCE typically
resulted in lower-complexity communication than when training with messages generated via a
gumbel softmax layer, and that training with REINFORCE was less stable. Results from our
REINFORCE experiments, using 330 tokens for one-hot and VQ-VIB, are included in Figure F.3.
We trained agents with λU = 1.0, λI = 50.0, and λC was annealed from 0 to 0.1, using code adapted
from Rita et al. [9].

(a) (b)

Figure F.3: Informativeness (a) and utility (b) versus complexity for agents trained with 330 tokens,
using REINFORCE, in the Basic reference game. These results closely tracked prior experiments:
both one-hot and VQ-VIB were efficient, and VQ-VIB achieved greater utility, for the same complex-
ity, than one-hot.

Our results from these experiments align with all prior findings: VQ-VIB and one-hot achieved high
communicative efficiency, and VQ-VIB produced greater utility than one-hot did. Beyond those cor-
roborating results, our experiments aligned with Chaabouni et al. [7]’s findings and further illustrated
the importance of informativeness losses and the VQ-VIB architecture. With zero informativeness
loss (i.e., λI = 0) one-hot agents often failed to converge to any useful communication (as indicated
in prior art), but by increasing λI , agents consistently converged to useful communication. Indeed,
with λI = 50 and λC = 0, one-hot agents learned to communication with complexity of up to 2.4
bits, greater than any complexity value found by Chaabouni et al. [7] using REINFORCE over 180
seeds (see Fig. 5 in that paper). Furthermore, we observed that VQ-VIB agents typically converged
to higher informativeness (and higher complexity) communication than one-hot when complexity
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was not penalized, indicating that further investigation of inductive biases is a promising direction for
future work. Overall, this experiment largely replicates our findings from the main paper.

Thus, findings from our REINFORCE experiments indicate that the main conclusions of our paper
hold true across several training mechanisms, and furthermore that our framework (including in
particular the informativeness loss) can address issues already noted in prior work.

F.2 Common Ground Color Reference Game

Here, we include the full results from our Common Ground color reference game experiments.
Crucially, these experiments tested agent behavior when utility and informativeness were not identical:
utility could be maximized by the speaker only communicating about the target color, whereas
informativeness was maximized by communicating about both target and distractor. Given the lack of
human-labeled data for such a setting, we were unable to compare agent communication with human
languages. However, by analyzing communication when varying the target for a fixed distractor, or
by varying the distractor for a fixed target, we established that agents conditioned communication
both on the target and distractor colors.

(a) Informativeness and Complexity for a
gray distractor

(b) Communication by the same agent conditioned on purple
or orange distractors differed, showing context-dependent
communication.

Figure F.4: In Common Ground experiments, both VQ-VIB and one-hot communication demonstrated
high informativeness for a fixed distractor (left), and varied communication according to distractor
(right).

We trained agents in the Common Ground setting by randomly sampling target and distractor colors,
as in the Basic setting, but here the speaker observed noisy versions of the distractor as well as
the target. Based on insights that training to increase informativeness produced more complex
communication, we trained agents for 30 episodes with λI = 1.0. For the next 70 episodes, we
annealed the complexity weight, λC , using the same rates as in the Basic setting; this produced
communication at different levels of complexity. As in the Basic setting, we found that VQ-VIB
achieved higher utility, for the same complexity, than one-hot (Figure F.5).

We further analyzed communication in two ways: using a fixed distractor with varying targets and
using a fixed target with varying distractors. First, for a fixed, gray distractor (#46 in the WCS
data), we measured the standard metrics of informativeness and complexity. That is, we set the
distractor color to gray, and we recorded, for each of the other 329 colors as the target, the speaker’s
communication. We then performed the same complexity and informativeness analysis as in the
Basic setting, and found that both VQ-VIB and one-hot communication remained near-optimally
efficient, as shown in Figure F.4a.

Second, we measured whether agents conditioned their communication on the distractor color. Unlike
the prior evaluation, in which we varied the target color for a fixed distractor, here, we evaluated
communication for different distractors. Plots of a VQ-VIB agent’s naming scheme, using either an
orange (color #212) or purple (color #325) distractor are shown in Figure F.4b.

As expected, the agent displayed different resolutions in regions of color depending upon the distractor.
Specifically, for an orange distractor, the speaker had finer resolution around shades of orange and
yellow; conversely, the speaker had finer resolution around shades of purples for a purple distractor.
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Figure F.5: In the Common Ground color reference game (as well as the Basic reference game,
presented in the main paper), VQ-VIB achieved greater utility, for the same complexity, than one-hot
communication.

This aligns with expectations that, when trying to differentiate between colors, one must use more
complex or accurate words to distinguish similar colors.

Jointly, our findings indicate that many of the themes identified in the Basic setting – nearly-optimal
communicative efficiency, the importance of annealing λC to generate varied complexity, and the
advantages of VQ-VIB over one-hot – held in the Common Ground setting as well.
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