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Abstract

We investigate safe multi-agent reinforcement learning, where agents seek to col-
lectively maximize an aggregate sum of local objectives while satisfying their own
safety constraints. The objective and constraints are described by general utilities,
i.e., nonlinear functions of the long-term state-action occupancy measure, which
encompass broader decision-making goals such as risk, exploration, or imitations.
The exponential growth of the state-action space size with the number of agents
presents challenges for global observability, further exacerbated by the global
coupling arising from agents’ safety constraints. To tackle this issue, we propose a
primal-dual method utilizing shadow reward and κ-hop neighbor truncation under
a form of correlation decay property, where κ is the communication radius. In the
exact setting, our algorithm converges to a first-order stationary point (FOSP) at
the rate of O(T −2/3). In the sample-based setting, we demonstrate that, with high
probability, our algorithm requires Õ (ϵ−3.5) samples to achieve an ϵ-FOSP with
an approximation error of O(ϕ2κ0 ), where ϕ0 ∈ (0,1). Finally, we demonstrate the
effectiveness of our model through extensive numerical experiments.

1 Introduction

Cooperative multi-agent reinforcement learning (MARL) involves agents operating within a shared
environment, where each agent’s decisions influence not only their objectives, but also those of
others and the state trajectories [1]. In seeking to bring conceptually sound MARL techniques
out of simulation [2, 3] and into real-world environments [4, 5], some key issues emerge: safety
and communications overhead implied by a training mechanism. Although experimentally, the
centralized training decentralized execution (CTDE) framework has gained traction recently [6, 7],
its requirement for centralized data collection can pose issues for large-scale [8] or privacy-sensitive
applications [9]. Therefore, we prioritize decentralized training, where to date most MARL techniques
impose global state observability for performance certification [1]. In this work, we extend recent
efforts to alleviate this bottleneck [10] especially in the case of safety critical settings, in a flexible
manner that allows agents to incorporate risk, exploration, or prior information.

More specifically, we hypothesize that the multi-agent system consists of a network of agents that
interact with each other locally according to an underlying dependence graph [10]. Second, to model
safety constraints in reinforcement learning (RL), we adopt a standard approach based on constrained
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Markov Decision Processes (CMDPs) [11], where one maximizes the expected total reward subject to
a safety-related constraint on the expected total utility. Third, since many decision-making problems
take a form beyond the classic cumulative reward, such as apprenticeship learning [12], diverse
skill discovery [13], pure exploration [14], and state marginal matching [15], we focus on utility
functions defined as nonlinear functions of the induced state-action occupancy measure, which can
be abstracted as RL with general utilities [16, 17].

Towards formalizing the approach, we consider an MARL model consisting of n agents, each with
its own local state si and action ai, where the multi-agent system is associated with an underlying
dependence graph G. Each agent is privately associated with two local general utilities fi(⋅) and
gi(⋅), where fi(⋅) and gi(⋅) are functions of the local occupancy measure. The objective is to find
a safe policy for each agent that maximizes the average of the local objective utilities, namely,
1/n ⋅ ∑

n
i=1 fi(⋅), and satisfies each agent’s individual safety constraint described by its local utility

gi(⋅). This setting captures a wide range of safety-critical applications, for example, resource
allocation for the control of networked epidemic models [18], influence maximization in social
networks [19], portfolio optimization in interbank network structures [20], intersection management
for connected vehicles [21], and energy constraints of wireless communication networks [22].

Despite the significance of safe MARL with general utilities, prior works have either ignored the
necessity of safety [23] or the computational bottleneck associated with global information exchange
regarding the state and action per step [24]. In fact, the interaction of these two aspects requires
addressing the fact that each agent’s own safety constraint requires information from all others.
In particular, the existing works in safe MARL allow full access to the global state or unlimited
communications among all agents for policy implementation, value estimation, and constraint
satisfaction [25, 26, 27]. However, this assumption is impractical due to the “curse of dimensionality”
[28], as well as the limited information exchanges and communications among agents [29].

Therefore, to our knowledge, there is no methodology to both guarantee safety and incur manageable
communications overhead for each agent. Compounding these issues is the fact that standard RL
training schemes based on the policy gradient theorem [30] are not applicable in the context of
general utilities. This deviation from the cumulative rewards adds to the difficulty of estimating the
gradient, since there does not exist a policy-independent reward function. We refer the reader to
Appendix A for an extended discussion of related works.

To address these challenges, we focus on the setting of distributed training without global observ-
ability and aim to develop a scalable algorithm with theoretical guarantees. Our main contributions
are summarized below:

• Compared with existing theoretical works on safe MARL [25, 26, 31], we present the first safe
MARL formulation that extends beyond cumulative forms in both the objective and constraints.
We develop a truncated policy gradient estimator utilizing shadow reward and κ-hop policies
under a form of correlation decay property, where κ represents the communication radius. The
approximation errors arising from both policy implementation and value estimation are quantified.

• Despite of the global coupling of agents’ local utility functions, we propose a scalable Primal-Dual
Actor-Critic method, which allows each agent to update its policy based only on the states and
actions of its close neighbors and under limited communications. The effectiveness of the proposed
algorithm is verified through numerical experiments.

• From the perspective of optimization, we devise new tools to analyze the convergence of the
algorithm. In the exact setting, we establish an O(T −2/3) convergence rate for finding an FOSP,
matching the standard convergence rate for solving nonconcave-convex saddle point problems. In
the sample-based setting, we prove that, with high probability, the algorithm requires Õ (ϵ−3.5)
samples to obtain an ϵ-FOSP with an approximation error of O(ϕ2κ0 ), where ϕ0 ∈ (0,1).

2 Problem formulation

Consider a Constrained Markov Decision Process (CMDP) over a finite state space S and a finite
action space A with a discount factor γ ∈ [0,1). A policy π is a function that specifies the decision
rule of the agent, i.e., the agent takes action a ∈ A with probability π(a∣s) in state s ∈ S. When
action a is taken, the transition to the next state s′ from state s follows the probability distribution
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s′ ∼ P(⋅∣s, a). Let ρ be the initial distribution. For each policy π and state-action pair (s, a) ∈ S ×A,
the discounted state-action occupancy measure is defined as

λπ(s, a) =
∞
∑
k=0

γkP (sk = s, ak = a∣π, s0 ∼ ρ) . (1)

The goal of the agent is to find a policy π that maximizes a general objective described by a (possibly)
nonlinear function f(⋅) of λπ, known as the general utility, subject to a constraint in the form of
another general utility g(⋅), namely

max
π

f(λπ) s.t. g(λπ) ≥ 0. (2)

When f(⋅) = ⟨r, ⋅⟩ and g(⋅) = ⟨u, ⋅⟩ are linear functions, (2) recovers the standard CMDP problem:

max
π

V π(r)=E [
∞
∑
k=0

γkr (sk, ak) ∣π, s0 ∼ ρ] , s.t. V π(u)=E [
∞
∑
k=0

γku (sk, ak) ∣π, s0 ∼ ρ] ≥ 0, (3)

where V π(⋅) is usually referred to as the value function. In contrast, it has been shown that for some
MDPs, there is no standard value function that can be equivalent to the general utility [16, Lemma 1].
In Appendix C, we provide more examples of formulation (2) beyond standard value functions.

In this work, we study the decentralized version of problem (2). Consider the system is composed
of a network of agents associated with a graph G = (N ,EG) (not densely connected in general),
where the vertex set N = {1,2, . . . , n} denotes the set of n agents and the edge set EG prescribes
the communication links among the agents. Let d(i, j) be the length of the shortest path between
agents i and j on G. For κ ≥ 0, let N κ

i = {j ∈ N ∣d(i, j) ≤ κ} denote the set of agents in the κ-hop
neighborhood of agent i, with the shorthand notation N κ

−i ∶= N/N
κ
i and −i ∶= N/{i}. The details of

the decentralized nature of the system are summarized below:

Space decomposition The global state and action spaces are the product of local spaces, i.e.,
S = S1 ×S2 ×⋯×Sn, A = A1 ×A2 ×⋯×An, meaning that for every s ∈ S and a ∈ A, we can write
s = (s1, s2, . . . , sn) and a = (a1, a2, . . . , an). For each subset N ′ ⊂ N , we use (sN ′ , aN ′) to denote
the state-action pair for the agents in N ′.

Observation and communication Each agent i only has direct access to its own state si and
action ai, while being allowed to communicate with its κ-hop neighborhood N κ

i for information
exchanges. The communication radius κ is a given but tunable parameter.

Transition decomposition Given the current global state s and action a, the local states in the next
period are independently generated, i.e., P(s′∣s, a) = ∏i∈N Pi(s′i∣s, a), ∀s′ ∈ S, where we use Pi to
denote the local transition probability for agent i.

Policy factorization The global policy can be expressed as the product of local policies, such
that π(a∣s) = ∏i∈N π

i (ai∣s) ,∀(s, a), i.e., given the global state s, each agent i acts independently
based on its local policy πi. We assume that each local policy πi is parameterized by a parameter
θi within a convex set Θi. Thus, we can write π(a∣s) = πθ(a∣s) = ∏i∈N π

i
θi
(ai∣s), where θ ∈ Θ =

Θ1 ×Θ2 ×⋯ ×Θn is the concatenation of local parameters.

Localized objective and constraint For each agent i and its local state-action pair (si, ai), the
local state-action occupancy measure under policy π is defined as

λπi (si, ai) =
∞
∑
k=0

γkP (ski = si, a
k
i = ai∣π, s

0
∼ ρ) , (4)

which can be viewed as the marginalization of the global occupancy measure, i.e., λπi (si, ai) =
∑s−i,a−i λ

π(s, a). Each agent i is privately associated with two local (general) utilities fi(⋅) and
gi(⋅), which are functions of the local occupancy measure λπi . Agents cooperate with each other
aiming at maximizing the global objective f(⋅), defined as the average of local utilities {fi(⋅)}i∈N ,
while each agent i needs to satisfy its own safety constraint described by the local utility gi(⋅). Then,
under the parameterization πθ, (2) can be rewritten as

max
θ∈Θ

F (θ) ∶=
1

n
∑
i∈N

fi(λ
πθ

i ), s.t. Gi(θ) ∶= gi(λπθ

i ) ≥ 0, ∀i ∈ N . (5)

Note that problem (5) is not separable among agents due to the coupling of occupancy measures.
Compared to the formulation where the constraint is modeled as the average of local constraints, e.g.,
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[27], (5) is stricter and more interpretable. We emphasize that the method proposed in this paper does
not require the relaxation of local constraints in (5) to a joint constraint and it directly generalizes to
the case of multiple constraints per agent.

Consider the Lagrangian function associated with (5):

L(θ, µ) ∶= F (θ) +
1

n
∑
i∈N

µiGi(θ) =
1

n
∑
i∈N
[fi(λ

πθ

i ) + µigi(λ
πθ

i )] , (6)

where µ ∈ Rn+ is the Lagrangian multiplier. The Lagrangian formulation [32] of (5) can be written as
max
θ∈Θ

min
µ≥0
L(θ, µ). (7)

Since the general utilities fi(λπθ

i ) and gi(λπθ

i ) may not be non-concave w.r.t. θ even in the form of
cumulative rewards, finding the global optimum to (5) is NP-hard in general [33]. Our goal in this
work is to develop a scalable and provably efficient gradient-based primal-dual algorithm that can
find the first-order stationary points of (5).

3 Scalable primal-dual actor-critic method

For a standard value function with the reward r ∈ R∣S∣×∣A∣, denoted as V πθ(r) = ⟨r, λπθ ⟩, the policy
gradient theorem (see Lemma D.1) yields that

∇θV
πθ(r) = r⊺ ⋅ ∇θλ

πθ =
1

1 − γ
Es∼dπθ ,a∼πθ(⋅∣s)[∇θ logπθ(a∣s) ⋅Q

πθ(r; s, a)],

where dπθ(s) ∶= (1 − γ)∑a∈A λ
πθ(s, a) is the discounted state occupancy measure, ∇θ logπθ(⋅∣⋅) is

the score function, and Qπθ(r; ⋅, ⋅) is the Q-function with the reward r, defined as

Qπθ(r; s, a) = E [
∞
∑
k=0

γkr (sk, ak) ∣πθ, s
0
= s, a0 = a] . (8)

Although this elegant result no longer holds for general utilities, we can apply the chain rule:

∇θf(λ
πθ) = [∇λf(λ

πθ)]
⊺
⋅ ∇θλ

πθ = ∇θV
πθ(∇λf(λ

πθ)), (9)

i.e., the gradient∇θf(λπθ) is equal to the policy gradient of a standard value function with the reward
∇λf(λ

πθ). We introduce the following definitions [23] for the distributed problem (5).
Definition 3.1 (Shadow reward and shadow Q-function). For each agent i, define rπθ

fi
∶= ∇λifi(λ

πθ

i ) ∈

R∣Si∣×∣Ai∣ as the (local) shadow reward for the utility fi(⋅) under policy πθ. Define Qπθ

fi
(s, a) ∶=

Qπθ(rπθ

fi
; s, a) as the associated (local) shadow Q-function for fi(⋅). Similarly, let rπθ

gi andQπθ
gi (s, a)

be the shadow reward and the Q function for gi(⋅).

Combining Definition 3.1 with (9), we can write the local gradient for agent i, i.e., ∇θiL(θ, µ), as

∇θiL(θ, µ) =
1

1 − γ
Es∼dπθ ,a∼πθ(⋅∣s)[∇θi logπ

i
θi(ai∣s) ⋅

1

n
∑
j∈N
(Qπθ

fj
(s, a) + µjQ

πθ
gj (s, a)) ], (10)

where we apply the policy factorization to arrive at∇θi logπθ(a∣s) = ∇θi logπ
i
θi
(ai∣s). By (10), each

agent needs to know the shadow Q functions of all agents, as well as the global state, to evaluate its
own gradient. However, especially in large networks, this is both inefficient, due to the communication
cost, and impractical because of the limited communication radius. In the remainder of this section,
we aim to design a scalable estimator for ∇θiL(θ, µ) that requires only local communications.

3.1 Spatial correlation decay and κ-hop policies

Inspired by [34], we assume that the transition probability satisfies a form of the spatial correlation
decay property [35, 36].
Assumption 3.2. For a matrix M ∈ Rn×n whose (i, j)-th entry is defined as

Mij = sup
sj ,aj ,s′j ,a

′
j ,s−j ,a−j

∥Pi (⋅∣sj , s−j , aj , a−j) − Pi (⋅∣s′j , s−j , a
′
j , a−j)∥1 , (11)

assume that there exists ω > 0 such that maxi∈N ∑j∈N e
ωd(i,j)Mij ≤ χ with χ < 2/γ, where γ is the

discount factor.
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The value of Mij reflects the extent to which agent j’s state and action influence the local transition
probability of agent i. Thus, Assumption 3.2 amounts to requiring this influence to decrease exponen-
tially with the distance between any two agents. Such a decay is often observed in many large-scale
real-world systems, e.g., the strength of signals decreases exponentially with distance [37].

Furthermore, as mentioned earlier, the implementation of the local policy πiθi(⋅∣s) is still impractical,
since it requires access to the global state s, while the allowable communication radius is limited to κ.
To alleviate this issue, we focus on a specific class of policies in which the local policy of agent i
only depends on the states of these agents in its κ-hop neighborhood N κ

i . This class of policies is
also referred to as κ-hop policies in the concurrent work [38].

Assumption 3.3 (κ-hop policies). For each agent i ∈ N and θ ∈ Θ, the local policy πiθi(⋅∣s) depends
only on the neighbor states sNκ

i
, i.e.,

πiθi(⋅∣sNκ
i
, sNκ

−i
) = πiθi(⋅∣sNκ

i
, s′Nκ

−i
), ∀s ∈ S and ∀s′Nκ

−i
∈ SNκ

−i
. (12)

For simplicity, we use the notation πiθi(⋅∣s) = π
i
θi
(⋅∣sNκ

i
) for κ-hop policies when it is clear from

context. We note that, for any original policy function πθ(⋅∣s), an induced κ-hop policy π̂θ(⋅∣sNκ
i
)

can be defined by fixing the states sNκ
−i

to some arbitrary values and focusing only on the states
of agents in N κ

i . When considering only κ-hop policies, it is essential to understand how much
information is lost compared to the case where agents have access to the global states. The following
proposition quantifies the maximum information loss in terms of the occupancy measure under the
assumption that the original policy function also satisfies a spatial correlation decay property.

Proposition 3.4. Suppose that there exist c ≥ 0 and ϕ ∈ [0,1) such that for every θ ∈ Θ, agent
i ∈ N , and states s, s′ ∈ S such that sNκ

i
= s′Nκ

i
, we have ∥πiθi(⋅∣s) − π

i
θi
(⋅∣s′)∥

1
≤ cϕκ. Let π̂θ be an

induced κ-hop policy of πθ. Then, it holds that

∥λπ̂θ

i − λ
πθ

i ∥1
≤

ncϕk

(1 − γ)2
,∀i ∈ N . (13)

The condition on the local policy in Proposition 3.4 encodes that every πiθi is exponentially less
sensitive to the states of agents outside N κ

i , which is a common assumption in MARL to alleviate
computationally burdensome and practically intractable communication requirements imposed by the
global observability [34, 39, 38]. By Proposition 3.4, the difference in occupancy measures under πθ
and π̂θ is controlled by ∥πiθi − π̂

i
θi
∥1. Therefore, if fi(λπ) and gi(λπ) are Lipschitz continuous w.r.t.

λπ, Proposition 3.4 implies an O(ϕκ) approximation of the Lagrangian function (6) using κ-hop
policies. The faster the spatial decay of policy is, the more accurate the approximation of the κ-hop
policy is. This justifies our focus on learning a κ-hop policy.

3.2 Truncated policy gradient estimator

In the absence of global observability, it is critical to find a scalable estimator for the local gradient
∇θiL(θ, µ) in (10), so that each agent can update its local policy with limited communications.

By leveraging the similar idea in the definition of κ-hop policies, we define the κ-hop truncated
(shadow) Q-function, denoted as Q̂πθ

♢i ∶ SNκ
i
×ANκ

i
→ R, to be

Q̂πθ
♢i (sNκ

i
, aNκ

i
) ∶= Qπθ

♢i (sNκ
i
, s̄Nκ

−i
, aNκ

i
, āNκ

−i
), ∀(sNκ

i
, aNκ

i
) ∈ SNκ

i
×ANκ

i
,♢ ∈ {f, g}, (14)

where (s̄Nκ
−i
, āNκ

−i
) is any fixed state-action pair for the agents in N κ

−i. Now, we introduce the
following truncated policy gradient estimator for agent i:

∇̂θiL(θ, µ)=
1

1 − γ
Es∼dπθ ,

a∼πθ(⋅∣s)
[∇θi logπ

i
θi(ai∣sNκ

i
)⋅
1

n
∑
j∈Nκ

i

(Q̂πθ

fj
(sNκ

j
, aNκ

j
)+µjQ̂

πθ
gj (sNκ

j
, aNκ

j
))]. (15)

In comparison to the true policy gradient (10), ∇̂θiL(θ, µ) replaces the shadow Q-functions with
their truncated versions and only considers the agents in the κ-hop neighborhood N κ

i . Surprisingly,
the following lemma shows that the approximation error of ∇̂θiL(θ, µ) decreases exponentially with
κ when the shadow rewards and the score functions are bounded.

5



Lemma 3.5. Suppose that Assumptions 3.2 and 3.3 hold and there exist Mr,Mπ > 0 such that
∥rπθ
♢i ∥∞ ≤ Mr and ∥∇θi logπ

i
θi
∥
2
≤ Mπ, for every ♢ ∈ {f, g}, θ ∈ Θ, i ∈ N . Then, for all θ ∈ Θ,

i ∈ N , we have that

∥∇̂θiL(θ, µ) − ∇θiL(θ, µ)∥2 ≤
(1 + ∥µ∥∞)Mπc0ϕ

κ
0

1 − γ
= O(ϕκ0), (16)

where c0 = 2γχMr/(2 − γχ) and ϕ0 = e−ω .

Recall that the shadow reward is defined as the gradient of fi(⋅) or gi(⋅) w.r.t. the local occupancy
measure. Since the set of all possible occupancy measures is compact (see (43)), the existence
of Mr > 0 in Lemma 3.5 is satisfied if fi(⋅) and gi(⋅) are continuously differentiable. The main
advantage of using the estimator ∇̂θiL(θ, µ) lies in that every agent i only needs to know the truncated
Q-functions of agents in its neighborhood N κ

i , which can significantly reduce the communication
burden and the storage requirement when graph G is not densely connected. The proof of Lemma 3.5
can be found in Appendix E.2.

3.3 Algorithm design

Using the results of the preceding section, we put together all the pieces and propose the Primal-Dual
Actor-Critic Method with Shadow Reward and κ-hop Policy, as outlined in Algorithm 1. It includes
three stages: policy evaluation by the critic, Lagrangian multiplier update, and policy update by the
actor. Below, we provide an overview of Algorithm 1, while referring the reader to Appendix D for a
flow diagram (Figure 2) of the algorithm, as well as a more detailed discussion.

Stage 1 (policy evaluation by the critic, lines 3-6) In each iteration t, the current policy πθt is
simulated to generate a batch of trajectories, while each agent i collects its neighborhood trajectories,
i.e., the state-action pairs of the agents in N κ

i , as batch Bti . Then, the batch is used to estimate
the local occupancy measures λπθt

i through (17), which are subsequently applied to compute the
empirical values for the constraint function gi(λ

πθt

i ) and shadow rewards rπθt

fi
and rπθt

gi , denoted as
g̃ti , r̃

t
fi

, and r̃tgi , respectively. It is worth mentioning that, when all utility functions reduce to the form
of cumulative rewards, the above operation is unnecessary, since all agents have policy-independent
local reward functions.

Next, the agents jointly conduct a distributed evaluation subroutine to estimate their truncated shadow
Q-functions {Q̂πθt

♢i }i∈N using empirical shadow rewards {r̃t♢i}i∈N , where ♢ ∈ {f, g}. During the
subroutine, each agent i communicates with its neighbor in N κ

i to exchange state-action information,
but only needs to access its own empirical shadow reward r̃t♢i . In principle, any existing approach that
satisfies the observation and communication requirements can be used for the truncated Q-function
estimation, such as [40, 41, 42]. As an example subroutine, we introduce the Temporal Difference
(TD) learning method [43], which is outlined as Algorithm 2 in Appendix D.

Stage 2 (Lagrangian multiplier update, line 7) Instead of employing the projected gradient
descent, we propose to update the dual variables by the following formula:

µt+1 = argmin
µ∈U

L(θt, µ) +
1

2ηµ
∥µ∥22 = PU (−ηµ∇µL(θ

t, µt)) , (22)

where weight ηµ can be viewed as the dual “step-size”. In practice, we replace the true dual gradient
∇µi
L(θt, µt) = gi(λ

πθt

i )/n with its empirical estimator ∇̃µi
L(θt, µt). The feasible region for the

dual variable is denoted by U ⊆ Rn+ and will be specified later.

Stage 3 (policy update by the actor, lines 8-9) To perform the policy update, each agent i first
shares its updated dual variable µt+1i and the values of its estimated truncated Q-functions along the
trajectories in batch Bti with the agents in its κ-hop neighborhood N κ

i . Then, the agent estimates its
truncated policy gradient ∇̂θiL(θ

t, µt+1) through a REINFORCE-based mechanism [44] as described
in (20). Finally, each agent i updates its local policy parameter by a projected gradient ascent.

We emphasize that Algorithm 1 is based on the distributed training regime and does not require full
observability of global states and actions.
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Algorithm 1 Primal-Dual Actor-Critic Method with Shadow Reward and κ-hop Policy

1: Input: Initial policy θ0 and dual variable µ0; initial distribution ρ; communication radius κ;
step-sizes ηθ and ηµ; batch size B; episode length H .

2: for iteration t = 0,1,2, . . . do
3: Sample B trajectories with length H under the κ-hop policy πθt and initial distribution ρ.

Each agent i collects its neighborhood trajectories τ = {(s0Nκ
i
, a0Nκ

i
),⋯, (sH−1Nκ

i
, aH−1Nκ

i
)} as

batch Bti .
4: Each agent i estimates its local occupancy measure λπθt

i under πθt :

λ̃ti =
1

B
∑
τ∈Bt

i

H−1
∑
k=0

γk ⋅ 1i (s
k
i , a

k
i ) ∈ R

∣Si∣×∣Ai∣. (17)

5: Each agent i computes the empirical constraint function value g̃ti = gi(λ̃
t
i) and empirical

shadow rewards r̃tfi = ∇λifi(λ̃
t
i) and r̃tgi = ∇λigi(λ̃

t
i).

6: Each agent i communicates with its neighborhood N κ
i and jointly executes an evaluation

subroutine to estimate the truncated shadow Q-functions with the empirical shadow rewards
r̃t♢i for ♢ ∈ {f, g}:

(Q̃t♢1 , . . . , Q̃
t
♢n) ← Eval (πθt , (r̃

t
♢1 , . . . , r̃

t
♢n)). (18)

7: Each agent i updates the dual variable with the empirical gradient ∇̃µiL(θ
t, µt) = g̃ti/n:

µt+1i = PU (−ηµ∇̃µiL(θ
t, µt)) . (19)

8: Each agent i shares µt+1i and values of Q̃tfi , Q̃
t
gi along the trajectories in Bti with agents inN κ

i

and estimates the truncated policy gradient at (θt, µt+1):

∇̃θiL(θ
t, µt+1) =

1

B
∑
τ∈Bt

i

[
H−1
∑
k=0

γk∇θi logπ
i
θi(a

k
i ∣s

k
Nκ

i
)⋅

1

n
∑
j∈Nκ

i

[Q̃tfj(s
k
Nκ

j
, akNκ

j
) + µt+1j Q̃tgj(s

k
Nκ

j
, akNκ

j
)] ].

(20)

9: Each agent i updates the local policy parameter:

θt+1i = PΘi
(θti + ηθ ⋅ ∇̃θiL(θ

t, µt+1)) . (21)

10: end for

4 Convergence analysis

In this section, we analyze the convergence behavior and the sample complexity of Algorithm 1. We
begin by summarizing the technical assumptions, including some mentioned previously in the paper.
We direct the reader to Appendices F and G where we provide discussions for each assumption and
present proofs for the results in this section.

Assumption 4.1. There exists Lλ > 0 such that ∇λifi(⋅) and ∇λigi(⋅) are Lλ-Lipschitz continuous
w.r.t. λi, i.e., ∥∇λifi(λi)−∇λifi(λ

′
i)∥∞ ≤ Lλ∥λi −λ

′
i∥2 and ∥∇λigi(λi)−∇λigi(λ

′
i)∥∞ ≤ Lλ∥λi −

λ′i∥2, ∀i ∈ N .

Assumption 4.2. The parameterized policy πθ is such that (I) the score function is bounded, i.e.,
∃Mπ > 0 s.t. ∥∇θi logπ

i
θi
(ai∣sNκ

i
)∥2 ≤ Mπ, ∀(s, a) ∈ S × A, θ ∈ Θ, i ∈ N . (II) ∃Lθ > 0 s.t. the

utility functions F (θ) = f(λπθ) and Gi(θ) = gi(λ
πθ

i ) are Lθ-smooth w.r.t. θ, ∀i ∈ N .

Assumption 4.3. There exist an FOSP (θ⋆, µ⋆) of (5) and a constant µ > 0 s.t. µ⋆i < µ, ∀i ∈ N . Let
U = Un = [0, µ]n.

In Lemma F.5, we summarize a few properties that are the direct consequence consequence of
Assumptions 4.1-4.3. Due to the non-concavity of problem (5), our focus is to find an approximate
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first-order stationary point (FOSP). A point (θ, µ) ∈ Θ × U is said to be an ϵ-FOSP if

E(θ, µ) ∶= [X(θ, µ)]
2
+ [Y(θ, µ)]

2
≤ ϵ, (23)

where the metrics X(⋅, ⋅) and Y(⋅, ⋅) are defined as

X(θ, µ) ∶= max
θ′∈Θ,∥θ′−θ∥2≤1

⟨∇θL(θ, µ), θ
′
− θ⟩ , Y(θ, µ) ∶= − min

µ′∈U,∥µ′−µ∥2≤1
⟨∇µL(θ, µ), µ

′
− µ⟩ . (24)

The definitions of X(⋅, ⋅) and Y(⋅, ⋅) are based on the first-order optimality condition [45, 46]. Given
θ⋆ ∈ Θ and µ⋆ ∈ U , it can be shown that E(θ⋆, µ⋆) = 0 implies that (θ⋆, µ⋆) is an FOSP of (5) (see
Lemma F.6). In the following, we first consider the exact setting where the agents can obtain the
true values of their local occupancy measures, shadow Q-functions, and truncated policy gradients.
Therefore, the only source of approximation error is the truncation of the policy gradient.
Theorem 4.4 (Exact setting). Let Assumptions 3.2, 3.3, 4.1-4.3 hold and suppose that the agents
can accurately estimate their local occupancy measures, shadow Q-functions, and truncated policy
gradients. For every T > 0, let {(µt, θt)}

T

t=0 be the sequence generated by Algorithm 1 with
ηµ = O (T

1/3) and ηθ = 1/(Lθθ + 4L
2
θµηµ), where Lθθ, Lθµ are Lipschitz constants defined in

Lemma F.5. Then, there exists t⋆ ∈ {0,1, . . . , T − 1} such that

E (θt
⋆
, µt

⋆+1
) = O (T −2/3) +O (ϕ2κ0 ) . (25)

Next, we delve into the sample complexity of Algorithm 1. For theoretical analysis, we assume that
the estimation process for the truncated Q-function offers an approximation to the true function, with
the error being associated with the magnitude of the reward function. Let Q̂πθ

i (ri; ⋅, ⋅) ∈ R
∣SNκ

i
∣×∣ANκ

i
∣

be the truncated Q-function with the reward function ri(⋅, ⋅) ∈ R∣Si∣×∣Ai∣ for agent i ∈ N .
Assumption 4.5. For every reward function ri(⋅, ⋅) and ϵ0 > 0, the subroutine computes an approxi-
mation Q̃πθ

i (ri; ⋅, ⋅) to the truncated Q-function Q̂πθ

i (ri; ⋅, ⋅) such that

∥Q̃πθ

i (ri; ⋅, ⋅) − Q̂
πθ

i (ri; ⋅, ⋅)∥∞ ≤ ∥ri∥∞ϵ0 (26)

with O(1/(ϵ0)2) samples, for every i ∈ N , θ ∈ Θ.

We comment that the sample complexity of the truncated Q-function evaluation described in Assump-
tion 4.5 is not restrictive. It can be achieved with high probability by the TD-learning procedure
outlined in Algorithm 2 when the agents have enough exploration [10, 43]. For brevity, we assume
that (26) holds almost surely. The only difference in the probabilistic version would be the presence of
an additional term for the failure probability, which does not affect the order of the sample complexity.
Theorem 4.6 (Sample-based setting). Suppose that Assumptions 3.2, 3.3, 4.1-4.3, and 4.5 hold.
For every ϵ > 0 and δ ∈ (0,1), let {(µt, θt)}

T

t=0 be the sequence generated by Algorithm 1 with
T = O (ϵ−1.5), ηµ = O (ϵ−0.5), ηθ = 1/(Lθθ + 4L2

θµηµ), ϵ0 = O (
√
ϵ), δ0 = δ/(2n(T + 1)), batch

size B = O (log(1/δ0)ϵ−2), episode length H = log(1/ϵ), where Lθθ, Lθµ are Lipschitz constants
defined in Lemma F.5. Then, with probability 1 − δ, there exists t⋆ ∈ {0,1, . . . , T − 1} such that

E (θt
⋆
, µt

⋆+1
) = O (ϵ) +O(ϕ2κ0 ). (27)

The required number of samples is Õ (ϵ−3.5).

4.1 Technical discussions

Theorem 4.4 implies an O(T −2/3) iteration complexity of Algorithm 1, matching the fastest conver-
gence rate for solving nonconcave-convex maximin problems in the literature [47]. The approximation
errorO(ϕ2κ0 ) decays at a linear rate w.r.t. the radius of communications. Thus, as long as the underly-
ing network is not densely connected, such as those in wireless communication [37] and autonomous
driving [48], an approximate FOSP to (5) can be efficiently computed, while each agent i only needs
to communicate with a small number of agents in its neighborhood. .

In Theorem 4.4, we have chosen large step-sizes for the dual variable update to achieve the best
convergence rate. This aggressive update ensures that the dual metric Y(θt, µt+1) always remains
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within a small range and also provides a satisfactory ascent direction for the policy update. Then, the
average primal metric 1/T ⋅∑T−1t=0 [X (θ

t, µt+1)]
2

is upper-bounded by exploiting a recursive relation

between any two consecutive dual updates. Hence, the existence of a point (θt
⋆
, µt

⋆+1) that satisfies
(25) is guaranteed. It is worth noting that the proof of Theorem 4.4 can be easily generalized to the
scenario where T is unspecified, and the same convergence rate can still be achieved with adaptive
step-sizes ηtµ = O (t

1/3) and ηtθ = 1/(Lθθ + 4L
2
θµη

t
µ).

Theorem 4.6 states that, with high probability, Algorithm 1 has an Õ (ϵ−3.5) sample complexity for
finding an ϵ-FOSP of (5) with an approximation error O(ϕ2κ0 ). Note that we absorb the logarithmic
terms in the notation Õ(⋅). The proof of Theorem 4.6 can be broken down into two parts. Firstly, we
evaluate the approximation errors of the estimators used in Algorithm 1 in relation to the model pa-
rameters, as outlined in Proposition G.1. Then, we integrate these errors into the iteration complexity
result established in Theorem 4.4 and optimize the selection of parameters.

5 Numerical experiment

In this section, we validate Algorithm 1 via numerical experiments, focusing on three key questions1:

• How does Algorithm 1 perform with multiple agents, and does the policy gradient truncation
effectively alleviate computational load?

• While Algorithm 1 is the first approach that provably solves the safe MARL problem with general
utilities, how does it compare with existing methods for standard Safe MARL?

• What benefits does the use of general utilities offer over standard cumulative rewards?

To answer these questions, we performed multiple experiments in three environments2. The objective
functions are based on cumulative rewards, while constraint functions leverage general utilities to
incentivize or dissuade agents from exploring the environments.

Synthetic environment Analogous to [24, Section 5.1], where agents are linearly arranged as
1−2−⋅ ⋅ ⋅−n. Each agent i has binary local state and action spaces, i.e., Si = Ai = {0,1}, and the local
transition matrix Pi depends solely on its action ai and the state of agent i + 1. The reward functions
are constructed such that the optimal unconstrained policy compels all agents to continuously choose
action 1, irrespective of their states.

Pistonball A physics-based game that emphasizes cooperations and high-dimensional states as
illustrated in Figure 1a. Each piston represents an agent, where its local neighborhood includes
adjacent pistons, and the goal is to collectively move the ball from right to left. The agent can move
up, down, or remain still. We modify the original game[49] so that the agent can only observe the
ball when it enters the local neighborhood, as well as the height of neighboring pistons.

Wireless communication An access control problem following a similar setup as in [24, 50].
As illustrated in Figure 1b, the agents try to transmit packets to common access points, and the
transmission fails if the access point receives more than one packet simultaneously. As there are more
agents than access points, some agents need to learn to forego their benefits for the collective good.

In addition to the objective, we incorporate two types of safety constraints characterized by general
utilities that cannot be easily encapsulated by standard value functions based on cumulative rewards.

• Entropy constraints that stimulates exploration, formalized as Entropy(λπθ

i ) ≥ c, ∀i ∈ N . The
function Entropy(λπθ

i ) represents the local entropy, defined as −∑s∈S d
π
i (s) ⋅ log (d

π
i (s)), where

dπθ

i (si) = (1 − γ)∑ai∈Ai
λπθ

i (si, ai) is the local state occupancy measure.
• ℓ2-constrains that deter agents from learning overly randomized policies, formulated as
∥∑si∈Si

λπθ

i ∥
2

2
≥ c, ∀i ∈ N . This constraint is beneficial in applications like autonomous driving

and human-AI collaboration, where an agent’s policy needs to be predictable for other agents.

1Code is available here: https://github.com/CDSAC-MARL/CDSAC.
2See Appendix H for detailed descriptions and complete experimental results.
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(a) Pistonball (b) Wireless comm. (c) Episodic return (d) Constraint violation

Figure 1: (a,b) Environment illustration. (c,d) Performance of Algorithm 1 in Pistonball with 20
agents under entropy constraints.

Table 1: Comparison between Scalable Primal-Dual Actor-Critic method in our work with MAPPO-L
by [31] in Pistonball and wireless communication.

Pistonball Wireless Communication
Algorithm Episodic return Const. vio. Episodic return Const. vio.

Ours 51.788 ± 1.346 0.04919 3.373 ± 0.112 0.1926
MAPPO-L 50.612 ± 2.118 0.06884 3.347 ± 0.131 0.4000

Decen. Agg. MAPPO-L 48.197 ± 6.188 0.2179 3.106 ± 0.673 1.1890
Decen. MAPPO-L 41.102 ± 18.769 0.09303 3.148 ± 0.614 1.5760

In Figure 1, we demonstrate the performance of Algorithm 1 in the 20-agent Pistonball environment
under entropy constraints. We observe that, while the truncation with κ = 3 converges in fewer itera-
tions, truncation with κ = 1 also yields comparable performance. This underscores the efficiency of
Algorithm 1 as employing a smaller communication radius can significantly reduce the computation.

Finally, we compare Algorithm 1 with three baselines based on the MAPPO-Lagrangian method [31].

• MAPPO-L: the original algorithm introduced in [31]. Note that each agent has access to global
information.

• Decentralized MAPPO-L: decentralized version of MAPPO-L, where each agent only has access
to information in the local neighborhood. However, since each agent is trained to greedily maximize
its individual reward, its behaviors might sacrifice the performance of other agents.

• Decentralized Aggregate MAPPO-L: decentralized version of MAPPO-L, where we address the
aforementioned issue by redefining each agent’s reward to be the sum of rewards of all agents in its
local neighborhood.

For a fair comparison, we consider two standard safe MARL problems, where both objectives and
constraints are shaped by cumulative rewards (see Appendix H.4). The results in Table 1 demonstrate
that our method consistently outperforms both the centralized and decentralized variants of MAPPO-
Lagrangian. We refer the readers to Appendix H for the comprehensive experimental results that fully
answer the three questions raised at the beginning of this section.

6 Conclusion

In this work, we study the safe MARL with general utilities, with a focus on the setting of distributed
training without global observability. To address the challenge of scalability and incorporating general
utilities, we propose a primal-dual actor-critic method with shadow reward and κ-hop policy. Taking
advantage of the spatial correlation decay property of the transition dynamics, we show that the
proposed method achieves an O(T −2/3) convergence rate to the FOSP of the problem in the exact
setting and achieves an Õ (ϵ−3.5) sample complexity, with high probability, in the sample-based
setting. Finally, the effectiveness of our model and approach is verified by numerical studies. For
future research, it would be interesting to develop scalable safe MARL algorithms with adaptive
communication of agents’ information [51] and intelligent sampling of agents’ trajectories.
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Limitations

This is a theoretical work that concerns with algorithm design for safe multi-agent reinforcement
learning with general utilities. The main results in the paper characterize the convergence rate of the
proposed algorithm to an approximate first-order stationary point. The proof of the main results rely
on several technical assumptions, which are detailedly discussed in Appendix F.1.

A Related work

Safe MARL The study of provably efficient algorithms for safe RL has received considerable
attention due to the crucial role of safety in autonomous systems [11, 52, 53, 54, 55, 56]. Our work is
closely related to Lagrangian-based CMDP algorithms [57, 58, 59, 60, 61, 62, 63], which update the
primal variable via policy gradient ascent and updates the dual variable via projected sub-gradient
descent. The concept of safe RL has also been extended to multi-agent systems. Specifically,
[25] study the distributed consensus CMDP with networked agents and propose a decentralized
policy gradient method to perform policy optimization over a network. Furthermore, [31] propose a
safe multi-agent policy iteration procedure that attains the monotonic improvement guarantee and
constraints satisfaction guarantee at every iteration, but has no convergence guarantee. In addition,
[26] adopt a mean-field control approach for safe MARL and provide a natural policy gradient-based
algorithm. Furthermore, the Nash equilibrium for constrained Markov potential games has been
studied in [64, 65, 66, 67], using the notion of constrained Nash equilibrium [68, 69, 70]. These
results are not applicable to the RL setting that assumes unknown models. Recently, [27] prove
the first result on the non-asymptotic convergence to the constrained Nash equilibrium by adding
built-in exploration mechanisms under constraints. However, these works all assume access to the
global state of all agents, whereas our method only requires the state-action information in the local
neighborhood while also guaranteeing small performance loss.

MARL with general utilities A series of recent works have focused on developing general
approaches for RL with general utilities (also known as convex MDPs) [17, 71, 23, 16, 72, 61, 73]. In
particular, our work is closely related to [23, 73] which extend RL with general utilities to multi-agent
systems. Specifically, [23] propose a decentralized shadow reward actor-critic (DSAC) method
in which agents alternate between policy evaluation (critic), weighted averaging with neighbors
(information mixing), and local gradient updates for their policy parameters (actor). The DSAC
approach augments the classic critic step by requiring the agents to estimate their local occupancy
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measure in order to estimate the derivative of the local utility with respect to their occupancy measure,
i.e., the “shadow reward”. However, this approach assumes full observability, i.e., each agent should
have access to the global states and actions of the team, which limits its application to systems with a
large numbers of agents. To address this issue, [73] develop a scalable algorithm for multi-agent RL
with general utilities without the full observability assumption by exploiting the spatial correlation
decay property of the network structure [10]. However, these works only consider the unconstrained
RL problem, which may lead to undesired policies in safety-critical applications. Therefore, additional
effort is required to deal with the emerging safety constraints while guaranteeing the scalability, and
our work addresses this problem.

B Notations

For a finite set S, let ∣S∣ denote its cardinality. When the variable s follows the distribution ρ, we
write it as s ∼ ρ. Let E[⋅] and E[⋅ ∣ ⋅], respectively, denote the expectation and conditional expectation
of a random variable. Let R denote the set of real numbers. For a vector x, we use x⊺ to denote
the transpose of x and use ⟨x, y⟩ to denote the inner product x⊺y. We use the convention that
∥x∥1 = ∑i ∣xi∣, ∥x∥2 =

√
∑i x

2
i , and ∥x∥∞ = maxi ∣xi∣. When applied to a matrix A, the norms are

referred to as the induced norms, e.g., ∥A∥1 =max∥x∥1≠0 {∥Ax∥1/∥x∥1} is the induced 1-norm and
∥A∥2 =max∥x∥2≠0 {∥Ax∥2/∥x∥2} stands for the spectral norm. For a set X ⊂ Rp, let cl(X) denote
the closure of X . Let PX denote the projection onto X , defined as PX(y) ∶= argminx∈X ∥x − y∥2.
For a function f(x), let argmin f(x) (resp. argmax f(x)) denote any global minimum (resp. global
maximum) of f(x) and let ∇xf(x) denote its gradient with respect to x.

C Further details on CMDPs with general utilities

In standard CMDPs, the objective function and the constraint function take the form of discounted
cumulative rewards, i.e.,

max
π

V π(r) ∶= E [
∞
∑
k=0

γkr (sk, ak) ∣ak ∼ π(⋅∣sk), s0 ∼ ρ] ,

s.t. V π(u) ∶= E [
∞
∑
k=0

γku (sk, ak) ∣ak ∼ π(⋅∣sk), s0 ∼ ρ] ≥ 0.

(28)

By using the definition of the occupancy measure λπ (see (1)), we can equivalently write problem
(28) as

max
π

f(λπ) = ⟨r, λπ⟩, s.t. g(λπ) = ⟨u,λπ⟩ ≥ 0. (29)

When viewing λπ as the decision variable, (29) is known to be the linear programming formulation of
the CMDP [11]. Thus, the standard CMDP problem is a special case of CMDPs with general utilities.

However, many decision-making problems of interests take a form beyond cumulative rewards. We
give three examples of such problems below.
Example C.1 (Safety-aware apprenticeship learning [74]). In apprenticeship learning, the agent
learns to mimic an expert’s demonstrations instead of maximizing the long-term reward. In the
presence of critical safety requirements, the learner will also strive to satisfy given constraints on the
expected total cost. This problem can be formulated as

max
π

f(λπ) = −dist(λπ, λe) s.t. g(λπ) = ⟨c, λπ⟩ ≤ 0,

where λe is the occupancy measure corresponding to the expert demonstration, c denotes the vector
of costs, and dist(⋅, ⋅) can be any distance function on the set of occupancy measures, e.g., ℓ2-distance
or Kullback-Liebler (KL) divergence.
Example C.2 (Feasibility constrained MDPs [75]). As an extension to standard CMDPs, the designer
may desire to control the MDP through limiting the deviation of the learned policy from a convex
feasibility region C, e.g., C may be a single point representing the occupancy measure of a known
safe policy. In this case, the problem can be cast as

max
π

f(λπ) = ⟨r, λ⟩ s.t. g(λπ) = dist(λ,C) ≤ d0,
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where r is the reward vector of the underlying MDP and d0 ≥ 0 denotes the threshold of the allowable
deviation.

Example C.3 (Constrained entropy maximization [76]). In the absence of a reward function, a
suitable intrinsic objective for the agent is to maximize the speed at which it explores the environment.
However, in safety-critical systems, it is important to account for the safety risks inevitably brought
by the pursuit of exploration. In this scenario, one can consider the problem

max
π

f(λπ) = − ∑
s∈S

dπ(s) ⋅ log (dπ(s)), s.t. g(λπ) = ⟨c, λπ⟩ ≤ 0,

where dπ(s) ∶= (1−γ)∑a∈A λ
π(s, a) is the discounted state occupancy measure and f(λπ) computes

the entropy of the distribution dπ(⋅) under policy π.

Finally, for the distributed problem (5), we remark that it recovers the standard constrained MARL
when all local utilities are linear, namely

max
θ∈Θ

F (θ) =
1

n
∑
i∈N
⟨ri, λ

πθ

i ⟩ =
1

n
∑
i∈N

E [
∞
∑
k=0

γkri (s
k
i , a

k
i ) ∣a

k
∼ πθ(⋅∣s

k
), s0 ∼ ρ] ,

s.t. Gi(θ) = ⟨ui, λπθ

i ⟩ = E [
∞
∑
k=0

γkui (s
k
i , a

k
i ) ∣a

k
∼ πθ(⋅∣s

k
), s0 ∼ ρ] ≥ 0, ∀i ∈ N ,

(30)

where ri ∶ Si ×Ai → R and ui ∶ Si ×Ai → R are vectors of local rewards and utilities, respectively.
The problem (30) is still not separable since the transition dynamics are coupled and the decisions of
the agents are intertwined through their policies.

D Further discussions on Algorithm 1

In this section, we provide a line-by-line discussion of the algorithm to offer further clarity. A detailed
flow diagram of Algorithm 1 at each iteration t is shown in Figure 2.

• Line 3 (trajectory sampling): In order to estimate the Lagrangian L(θ, µ) and its gradients
∇θL(θ, µ),∇µL(θ, µ), which depend on occupancy measures, we first make the agents estimate
their local occupancy measures through trajectory sampling. At the beginning of each period t, B
batches of trajectories are sampled under the κ-hop policy πθt . Because the local policy πiθti only
depends on the states of agent i’s κ-hop neighbors, each agent i only needs to communicate with
these neighbors to make decisions. Specifically, in each period k, the environment first samples
state sk ∼ P(⋅∣sk−1, ak−1). Then, each agent i obtains the states of its neighbors skNκ

i
and takes

action according to aki ∼ π
i
θi
(⋅∣skNκ

i
). After the sampling procedure, each agent i collects the partial

trajectories within its communication radius, which are trajectories formed by the state-action pairs
of the agents in N κ

i .
• Line 4 (occupancy measure estimation): With access to the batch of trajectories Bti , each agent

then forms an estimate for its local occupancy measure λπθt

i under πθt through (17). Note that
1i (s

k
i , a

k
i ) ∈ R∣Si∣×∣Ai∣ is an indicator vector, where all its entries are zero except for its (ski , a

k
i )-th

entry being one. Thus, the estimator (17) approximates the expected value (4) by counting the
discounted visiting time of different state-action pairs and taking the average over a batch of
trajectories. Such a Monte Carlo estimation is also used in [23, 71]. The accuracy of this occupancy
measure estimator is quantified in Proposition G.1.

• Line 5 (constraint and shadow reward evaluation): Recall that the shadow rewards are defined
as rπθ

fi
= ∇λifi(λ

πθ

i ) and rπθ
gi = ∇λigi(λ

πθ

i ) in Definition 3.1. With empirical occupancy measures,
each agent i can directly compute their constraint function value as g̃ti = gi(λ̃

t
i) and shadow

rewards as r̃tfi = ∇λifi(λ̃
t
i) and r̃tgi = ∇λigi(λ̃

t
i), where g̃ti is used in the dual update (Line 7) and

shadow rewards are used in the Q-function evaluation (Line 6). When fi(⋅) and gi(⋅) satisfy proper
smoothness assumptions, e.g., Assumption 4.1, the approximation errors of these estimators are
proportional to the errors of empirical occupancy measures.

• Line 6 (truncated shadow Q-function evaluation): To compute the truncated policy gradient
estimator, the agents need to estimate their truncated shadow Q-functions. For the estimation
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Figure 2: The flow diagram of Algorithm 1 at iteration t. There are three stages: policy evaluation
by the critic (line 3-6); Lagrangian multiplier update (line 7); policy update by the actor (line 8-9).
The steps highlighted by ▲ require each agent i to access the states/actions of the agents in its κ-hop
neighborhood, i.e., (sNκ

i
, aNκ

i
). The step highlighted by☀ corresponds to the computation of policy

gradient, which requires each agent i to share its local shadow Q-functions and dual variable with the
agents in N κ

i .

process, we introduce the distributed TD-learning algorithm [43], which is a model-free method
as outlined in Algorithm 2. In each iteration, a new state sk is sampled by the environment
according to the transition probability P(⋅∣sk−1, ak−1). Then, each agent i exchanges its state
information with agents in the neighborhood N κ

i and makes a decision using its κ-hop local policy
πiθi , i.e., sampling an action aki ∼ π

i
θi
(⋅∣skNκ

i
). Finally, the existing estimation Q̃k−1i is updated

using the TD-learning update in (31). This update is based on the Bellman equation [77]. The term
(ri(s

k−1
i , ak−1i ) + γQ̃

k−1
i (s

k
Nκ

i
, akNκ

i
))− Q̃k−1i (s

k−1
Nκ

i
, ak−1Nκ

i
) is referred to as the temporal difference

error, which can be viewed as a correction to the prior estimate after receiving a new reward. As
described in Section 3.3, this subroutine serves as an example of how the truncated Q-function
estimation can be computed and can be replaced by any other suitable approach that satisfies the
observation and communication requirements (also see the discussion in Appendix F.1.4).

• Line 7 (dual variable update): The dual variable is updated by solving the sub-problem in (22),
which is equivalent to

µt+1 = argmin
µ∈U

⟨∇µL(θ
t, µt), µ − µt⟩ +

1

2ηµ
∥µ∥22,

by the linearity of L(θt, µ) in µ. Thus, it is clear that the sub-problem yields the solution in (22).
The regularization term 1/(2ηµ) ⋅ ∥µ∥

2
2 helps to provide curvature to the problem and can also be

substituted by 1/(2ηµ) ⋅ ∥µ − µ0∥
2
2/2 for any fixed point µ0 ∈ U . We assume the feasible region

for µ is a high-dimensional box, denoted by U ∶= Un = [0, µ]n, where µ is some fixed number.
To optimize the convergence rate/sample complexity in the analysis, we will choose large values
for ηµ, resulting in an aggressive dual update. Empirically, the benefit of having a large ηµ is to
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Algorithm 2 Evaluation Subroutine Based on Temporal Difference Learning [43] (Eval)

1: Input: κ-hop policy πθ; local shadow rewards {ri}i∈N ; communication radius κ; initial truncated
shadow Q-functions {Q̃0

i ∈ R
∣SNκ

i
∣×∣ANκ

i
∣
}
i∈N

as zero vectors; uniform initial distribution ρ0;

episode length K; step-sizes {ηkQ}
K−1
k=0 .

2: Sample the initial state s0 ∼ ρ0. Each agent i obtains the states of neighbors s0Nκ
i

, takes action
according to a0i ∼ π

i
θi
(⋅∣s0Nκ

i
), and receives the reward ri(s0i , a

0
i ).

3: for iteration k = 1,2, . . . ,K do
4: Sample state sk ∼ P(⋅∣sk−1, ak−1). Each agent i obtains the states of neighbors skNκ

i
, takes

action according to aki ∼ π
i
θi
(⋅∣skNκ

i
), and receives the reward ri(ski , a

k
i ).

5: Each agent i communicates with its neighbor agents N κ
i and updates its truncated shadow

Q-functions through

Q̃ki (s
k−1
Nκ

i
, ak−1Nκ

i
) ← Q̃k−1i (s

k−1
Nκ

i
, ak−1Nκ

i
) + ηk−1Q [ (ri(s

k−1
i , ak−1i ) + γQ̃

k−1
i (s

k
Nκ

i
, akNκ

i
))

− Q̃k−1i (s
k−1
Nκ

i
, ak−1Nκ

i
)],

Q̃ki (sNκ
i
, aNκ

i
) ← Q̃k−1i (sNκ

i
, aNκ

i
), ∀(sNκ

i
, aNκ

i
) ≠ (sk−1Nκ

i
, ak−1Nκ

i
).

(31)

6: end for
7: Output: Empirical truncated shadow Q-functions {Q̃Ki }i∈N .

also ensure a relative low constraint violation during the training stage, which is essential in many
safety-critical systems.

• Line 8 (policy gradient evaluation): The agents approximates their policy gradients through the
truncated policy gradient defined in (15). By the equivalent forms of the policy gradient theorem
(see Lemma D.1), (15) can be written as

∇̂θiL(θ, µ) = E
⎡
⎢
⎢
⎢
⎢
⎣

∞
∑
k=0

γk∇θi logπ
i
θi(a

k
i ∣s

k
Nκ

i
) ⋅

1

n
∑
j∈Nκ

i

(Q̂πθ

fj
(skNκ

j
, akNκ

j
) + µjQ̂

πθ
gj (s

k
Nκ

j
, akNκ

j
))

⎤
⎥
⎥
⎥
⎥
⎦

,

where the expectation is taken over all possible trajectories under policy πθ. Thus, the truncated
policy gradient ∇̂θiL(θ

t, µt+1) can be estimated through a REINFORCE-based mechanism [44]
as shown in (20). It is important to note that, since all the batches {Bti}i∈N come from the same
global trajectories sampled in Line 3, the values of each agent i’s empirical truncated Q-functions
along the trajectories in its batch, i.e., {{Q̃t♢i(s

k
Nκ

i
, akNκ

i
)}H−1k=0 }τ∈Bt

i

for ♢ ∈ {f, g}, are used in the

computation of ∇̃θjL(θ
t, µt+1) for all agents j ∈ Ni. Therefore, it is sufficient for each agent i to

share this information and its updated dual variable µt+1i with all other agents in its neighborhood
N κ
i .

• Line 9 (policy parameter update): The policy update uses the vanilla projected gradient ascent
with the estimated gradient in (20).

D.1 Policy gradient theorem

In this section, we present the well-known policy gradient theorem [30].

Lemma D.1 (Policy gradient under general parameterization). Let V πθ(r) be a standard value
function under policy πθ with an arbitrary reward function r ∶ S × A → R, defined as

V πθ(r) ∶= ⟨r, λπθ ⟩ = E [
∞
∑
k=0

γkr (sk, ak) ∣ak ∼ πθ(⋅∣s
k
), s0 ∼ ρ] .
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The gradient of V πθ(r) with respect to θ can be given by the following three equivalent forms:

∇θV
πθ (r) = r⊺ ⋅ ∇θλ

πθ =
1

1 − γ
Es∼dπθEa∼πθ(⋅∣s)[∇θ logπθ(a∣s) ⋅Q

πθ(r; s, a)]

= E [
∞
∑
k=0

γk∇θ logπθ(a
k
∣sk) ⋅Qπθ(r; sk, ak)∣ak ∼ πθ(⋅∣s

k
), s0 ∼ ρ]

= E [
∞
∑
k=0

γk ⋅ r(sk, ak) ⋅ (
k

∑
k′=0
∇θ logπθ(a

k′
∣sk

′
)) ∣ak ∼ πθ(⋅∣s

k
), s0 ∼ ρ] ,

where dπθ(s) ∶= (1 − γ)∑a∈A λ
πθ(s, a) is the discounted state occupancy measure, and Qπθ(r; ⋅, ⋅)

is the state-action value function (Q-function) with reward r defined in (8).

E Supplementary materials for section 3

In this section, we provide the proofs of the results in Section 3.

E.1 Proof of Proposition 3.4

Proof. For ease of notations, we treat the set of agents N = {1,2, . . . , n} and the set of numbers
[n] = {1,2, . . . , n} as equivalent when it is clear from the context. Given the decay condition
∥πiθi(⋅∣s) − π

i
θi
(⋅∣s′)∥

1
≤ cϕκ, it is clear that the induced κ-hop policy π̂θ satisfies that

∥π̂iθi(⋅∣sNκ
i
) − πiθi(⋅∣s)∥1 ≤ cϕ

κ, ∀s ∈ S, i ∈ N .

Below, we first bound the difference between the global policies πθ and π̂θ by leveraging the policy
factorization as follows

∥π̂θ(⋅∣s) − πθ(⋅∣s)∥1 = ∑
a∈A
∣π̂θ(a∣s) − πθ(a∣s)∣

= ∑
a∈A
∣
n

∏
i=1
π̂iθi(ai∣sNκ

i
) −

n

∏
i=1
πiθi(ai∣s)∣

= ∑
a∈A
∣
n

∏
i=1
π̂iθi(ai∣sNκ

i
) − π̂1

θ1(a1∣sNκ
1
)
n

∏
i=2
πiθi(ai∣s)

+ π̂1
θ1(a1∣sNκ

1
)
n

∏
i=2
πiθi(ai∣s) −

n

∏
i=1
πiθi(ai∣s)∣

≤ ∑
a∈A
∣
n

∏
i=1
π̂iθi(ai∣sNκ

i
) − π̂1

θ1(a1∣sNκ
1
)
n

∏
i=2
πiθi(ai∣s)∣

+ ∑
a∈A
∣π̂1
θ1(a1∣sNκ

1
)
n

∏
i=2
πiθi(ai∣s) −

n

∏
i=1
πiθi(ai∣s)∣

= ∑
a∈A

π̂1
θ1(a1∣sNκ

1
) ⋅ ∣

n

∏
i=2
π̂iθi(ai∣sNκ

i
) −

n

∏
i=2
πiθi(ai∣s)∣

+ ∑
a∈A
∣π̂1
θ1(a1∣sNκ

1
) − π1

θ1(a1∣s)∣ ⋅
n

∏
i=2
πiθi(ai∣s),

(32)

where we used the triangular inequality. For the second term above, it holds that

∑
a∈A
∣π̂1
θ1(a1∣sNκ

1
) − π1

θ1(a1∣s)∣ ⋅
n

∏
i=2
πiθi(ai∣s)

= ∑
ai∈A1

∣π̂1
θ1(a1∣sNκ

1
) − π1

θ1(a1∣s)∣ ⋅ ∑
a−1∈A−1

n

∏
i=2
πiθi(ai∣s)

= ∑
ai∈A1

∣π̂1
θ1(a1∣sNκ

1
) − π1

θ1(a1∣s)∣

= ∥π̂1
θ1(⋅∣sNκ

1
) − π1

θ1(⋅∣s)∥1 .

(33)
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The first term in the right-hand side of (32) can be further written as

∑
a∈A

π̂1
θ1(a1∣sNκ

1
) ⋅ ∣

n

∏
i=2
π̂iθi(ai∣sNκ

i
) −

n

∏
i=2
πiθi(ai∣s)∣

= ∑
a1∈A1

π̂1
θ1(a1∣sNκ

1
) ∑
a−1∈A−1

∣
n

∏
i=2
π̂iθi(ai∣sNκ

i
) −

n

∏
i=2
πiθi(ai∣s)∣

= ∑
a−1∈A−1

∣
n

∏
i=2
π̂iθi(ai∣sNκ

i
) −

n

∏
i=2
πiθi(ai∣s)∣ .

(34)

Together, by substituting (33) and (34) into (32), we have that

∥π̂θ(⋅∣s) − πθ(⋅∣s)∥1

= ∑
a∈A
∣
n

∏
i=1
π̂iθi(ai∣sNκ

i
) −

n

∏
i=1
πiθi(ai∣s)∣

≤ ∥π̂1
θ1(⋅∣sNκ

1
) − π1

θ1(⋅∣s)∥1 + ∑
a−1∈A−1

∣
n

∏
i=2
π̂iθi(ai∣sNκ

i
) −

n

∏
i=2
πiθi(ai∣s)∣

≤ ∑
i∈N
∥π̂iθi(⋅∣sNκ

i
) − πiθi(⋅∣s)∥1

≤ ncϕκ, ∀s ∈ S,

where the second inequality follows from recursively applying the derivations in (32).

Now, before showing the desired bound (13), we first derive an upper bound on ∥λπ̂θ − λπθ∥
1

using
the matrix representation of the occupancy measure. For a given policy π, let ρπ ∈ R∣S∣∣A∣ be
the vector that represents the joint distribution of the state-action pair in the initial period, i.e.,
ρπ(s, a) ∶= ρ(s)π(a∣s). Let Pπ ∈ R∣S∣∣A∣×∣S∣∣A∣ be the matrix of transition probability under policy π,
where its ((s′, a′), (s, a))-th entry is the probability of transiting from the state-action pair (s, a) to
(s′, a′) in the next period, i.e.,

Pπ((s′, a′), (s, a)) ∶= P(s′∣s, a)π(a′∣s′).

As the occupancy measure λπ is defined as the discounted expected number of times that the agent
will visit a particular state-action pair under policy π, we can represent λπ as

λπ = ρπ + γPπρπ + (γPπ)2ρπ +⋯ = [
∞
∑
k=0
(γPπ)k]ρπ = (1 − γPπ)−1ρπ.

Thus, the difference ∥λπ̂θ − λπθ∥
1

is equal to

∥λπ̂θ

i − λ
πθ

i ∥1
= ∥(1 − γPπ̂θ)

−1ρπ̂θ − (1 − γPπθ)
−1ρπθ∥

1

= ∥(1 − γPπ̂θ)
−1ρπ̂θ − (1 − γPπ̂θ)

−1ρπθ + (1 − γPπ̂θ)
−1ρπθ − (1 − γPπθ)

−1ρπθ∥
1

≤ ∥(1 − γPπ̂θ)
−1ρπ̂θ − (1 − γPπ̂θ)

−1ρπθ∥
1
+ ∥(1 − γPπ̂θ)

−1ρπθ − (1 − γPπθ)
−1ρπθ∥

1

≤ ∥(1 − γPπ̂θ)
−1∥

1
∥ρπ̂θ − ρπθ∥

1
+ ∥[(1 − γPπ̂θ)

−1
− (1 − γPπθ)

−1]ρπθ∥
1
,

(35)
where ∥A∥1 ∶= supx

∥Ax∥1
∥x∥1 = sup∥x∥=1 ∥Ax∥1 is the induced 1-norm for matrices and the last line

follows from the norm inequality ∥Ax∥1 ≤ ∥A∥1∥x∥1. Below, we separately bound the terms that
appear on the right-hand side of (35). Note that the induced one norm is indeed the maximum
absolute column sum of the matrix, i.e., ∥A∥1 =maxj∑i ∣aij ∣. Then, for any policy πθ, since Pπθ is
the transition matrix and has its column sum equal to 1, it holds that

∥(1 − γPπθ)
−1∥

1
= sup
(s,a)∈S×A

∑
(s′,a′)∈S×A

(1 − γPπθ)
−1((s′, a′), (s, a)) =

∞
∑
k=0

γk =
1

1 − γ
.
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Thus, by utilizing the definition of ρπ(s, a) = ρ(s)π(a∣s), we have that

∥(1 − γPπ̂θ)
−1∥

1
∥ρπ̂θ − ρπθ∥

1
=

1

1 − γ
∥ρπ̂θ − ρπθ∥

1

=
1

1 − γ
∑
s∈S
∑
a∈A
∣ρ(s)π̂θ(a∣s) − ρ(s)πθ(a∣s)∣

=
1

1 − γ
∑
s∈S

ρ(s) ∑
a∈A
∣π̂θ(a∣s) − πθ(a∣s)∣

≤
1

1 − γ
max
s∈S
∥π̂θ(⋅∣s) − πθ(⋅∣s)∥1

≤
ncϕκ

1 − γ
,

(36)

where the first inequality holds since ρ(⋅) is a distribution. To bound the second term in (35), we can
first derive that

∥[(1 − γPπ̂θ)
−1
− (1 − γPπθ)

−1]ρπθ∥
1

= ∥[(1 − γPπθ)
−1
⋅ [(1 − γPπθ) − (1 − γPπ̂θ)] ⋅ (1 − γPπ̂θ)

−1]ρπθ∥
1

= γ ∥[(1 − γPπθ)
−1
⋅ [Pπ̂θ − Pπθ] ⋅ (1 − γPπ̂θ)

−1]ρπθ∥
1

≤ γ ∥(1 − γPπθ)
−1∥

1
∥Pπ̂θ − Pπθ∥

1
∥(1 − γPπ̂θ)

−1∥
1
∥ρπθ∥1

=
γ

(1 − γ)2
∥Pπ̂θ − Pπθ∥

1
,

(37)

where we apply the norm equality again and use the fact that ∥ρπθ∥1 = 1. The term ∥Pπ̂θ − Pπθ∥
1

can
be further upper-bounded as follows

∥Pπ̂θ − Pπθ∥
1
= sup
(s,a)∈S×A

∑
(s′,a′)∈S×A

∣Pπ̂θ((s′, a′), (s, a)) − Pπθ((s′, a′), (s, a))∣

= sup
(s,a)∈S×A

∑
(s′,a′)∈S×A

∣P(s′∣s, a)π̂θ(a′∣s′) − P(s′∣s, a)πθ(a′∣s′)∣

= sup
(s,a)∈S×A

∑
(s′,a′)∈S×A

P(s′∣s, a) ∣π̂θ(a′∣s′) − πθ(a′∣s′)∣

≤max
s′∈S
∥π̂θ(⋅∣s

′
) − πθ(⋅∣s

′
)∥1

≤ ncϕκ,

(38)

where we used the definition of Pπθ in the second line and the fact that P(⋅∣s, a) is a distribution in
the fourth line. By substituting inequalities (36), (37), and (38) back into (35), we conclude that

∥λπ̂θ − λπθ∥
1
≤ ∥[(1 − γPπ̂θ)

−1
− (1 − γPπθ)

−1]ρπθ∥
1

≤
ncϕκ

1 − γ
+

γ

(1 − γ)2
⋅ ncϕκ

=
ncϕk

(1 − γ)2
.

Finally, recall that the local occupancy measure is the marginalization of the global occupancy
measure (see the discussion below (4)). Therefore, for every agent i ∈ N , it holds that

∥λπ̂θ

i − λ
πθ

i ∥1
= ∑
(si,ai)∈Si×Ai

∣λπ̂θ

i (si, ai) − λ
πθ

i (si, ai)∣

= ∑
(si,ai)∈Si×Ai

RRRRRRRRRRRR

∑
(s−i,a−i)∈S−i×A−i

λπ̂θ(s, a) − ∑
(s−i,a−i)∈S−i×A−i

λπθ(s, a)

RRRRRRRRRRRR

≤ ∑
(s,a)∈S×A

∣λπ̂θ(s, a) − λπθ(s, a)∣

= ∥λπ̂θ − λπθ∥
1

≤
ncϕk

(1 − γ)2
,
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where the first inequality follows from the triangular inequality. This completes the proof.

E.2 Proof of Lemma 3.5

Firstly, when ∥rπθ
♢i ∥∞ ≤Mr for every ♢ ∈ {f, g} and θ ∈ Θ, it follows from [34, Proposition 6] that

the shadow Q-functions satisfy the so-called exponential decay property. Specifically, for every θ ∈ Θ,
agent i ∈ N , and state-action pairs (s, a), (s′, a′) ∈ S ×A such that sNκ

i
= s′Nκ

i
, aNκ

i
= a′Nκ

i
, it holds

that
∣Qπθ
♢i (s, a) −Q

πθ
♢i (s

′, a′)∣ ≤ c0ϕ
κ
0 , ∀♢ ∈ {f, g}, (39)

where (c0, ϕ0) = (
2γχMr

2−γχ , e−ω). Then, it is clear from the definition of the truncated Q-function that

sup
s,a
∣Q̂πθ
♢i (sNκ

i
, aNκ

i
) −Qπθ

♢i (s, a)∣ ≤ c0ϕ
κ
0 , ∀θ ∈ Θ, i ∈ N . (40)

In the proof below, we write the expectation Es∼dπθ ,a∼πθ(⋅∣s) simply as Eπθ to reduce the burden of
notations. By the definitions of the truncated policy gradient in (15) and the true policy gradient with
κ-hop policies in (10), we have that

n(1 − γ) [∇̂θiL(θ, µ) − ∇θiL(θ, µ)]

= Eπθ

⎡
⎢
⎢
⎢
⎢
⎣

∇θi logπ
i
θi(ai∣sNκ

i
)

⎡
⎢
⎢
⎢
⎢
⎣

∑
j∈Nκ

i

(Q̂πθ

fj
(sNκ

j
, aNκ

j
) + µjQ̂

πθ
gj (sNκ

j
, aNκ

j
))−∑

j∈N
(Qπθ

fj
(s, a) + µjQ

πθ
gj (s, a))

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

= Eπθ

⎡
⎢
⎢
⎢
⎢
⎣

∇θi logπ
i
θi(ai∣sNκ

i
) ⋅

⎡
⎢
⎢
⎢
⎢
⎣

∑
j∈N
(Q̂πθ

fj
(sNκ

j
, aNκ

j
) −Qπθ

fj
(s, a)) + µj (Q̂

πθ
gj (sNκ

j
, aNκ

j
) −Qπθ

gj (s, a))

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
T1

−Eπθ

⎡
⎢
⎢
⎢
⎢
⎣

∇θi logπ
i
θi(ai∣sNκ

i
) ⋅ ∑

j∈Nκ
−i

(Q̂πθ

fj
(sNκ

j
, aNκ

j
) + µjQ̂

πθ
gj (sNκ

j
, aNκ

j
))

⎤
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
T2

,

(41)
where we add and subtract the truncated shadow Q-functions of agents in N κ

−i in the second equality.
Below, we first show that the term T2 is actually equal to 0. For any given state s ∈ S, one can write

Ea∼πθ(⋅∣s)

⎡
⎢
⎢
⎢
⎢
⎣

∇θi logπ
i
θi(ai∣sNκ

i
) ⋅ ∑

j∈Nκ
−i

(Q̂πθ

fj
(sNκ

j
, aNκ

j
) + µjQ̂

πθ
gj (sNκ

j
, aNκ

j
))

⎤
⎥
⎥
⎥
⎥
⎦

= ∑
a∈A

πθ(a∣s) ⋅
∇θiπ

i
θi
(ai∣s)

πiθi(ai∣s)
⋅

⎡
⎢
⎢
⎢
⎢
⎣

∑
j∈Nκ

−i

(Q̂πθ

fj
(sNκ

j
, aNκ

j
) + µjQ̂

πθ
gj (sNκ

j
, aNκ

j
))

⎤
⎥
⎥
⎥
⎥
⎦

= ∑
a∈A
(∏
k∈N

πkθk(ak ∣s)) ⋅
∇θiπ

i
θi
(ai∣s)

πiθi(ai∣s)
⋅

⎡
⎢
⎢
⎢
⎢
⎣

∑
j∈Nκ

−i

(Q̂πθ

fj
(sNκ

j
, aNκ

j
) + µjQ̂

πθ
gj (sNκ

j
, aNκ

j
))

⎤
⎥
⎥
⎥
⎥
⎦

= ∑
a∈A

⎛

⎝
∏

k∈N/{i}
πkθk(ak ∣s)

⎞

⎠
⋅ ∇θiπ

i
θi(ai∣s) ⋅

⎡
⎢
⎢
⎢
⎢
⎣

∑
j∈Nκ

−i

(Q̂πθ

fj
(sNκ

j
, aNκ

j
) + µjQ̂

πθ
gj (sNκ

j
, aNκ

j
))

⎤
⎥
⎥
⎥
⎥
⎦

(∆)
=
⎡
⎢
⎢
⎢
⎣
∑
ai∈Ai

∇θiπ
i
θi(ai∣s)

⎤
⎥
⎥
⎥
⎦
∑

a−i∈A−i

⎛

⎝
∏

k∈N/{i}
πkθk(ak ∣s)

⎞

⎠
⋅

⎡
⎢
⎢
⎢
⎢
⎣

∑
j∈Nκ

−i

(Q̂πθ

fj
(sNκ

j
, aNκ

j
) + µjQ̂

πθ
gj (sNκ

j
, aNκ

j
))

⎤
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
T3

= T3 ⋅ ∇θi

⎡
⎢
⎢
⎢
⎣
∑
ai∈Ai

πiθi(ai∣s)
⎤
⎥
⎥
⎥
⎦

= T3 ⋅ ∇θi1

= 0,
(42)
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where we expand the summation ∑a∈A to ∑ai∈Ai ∑a−i∈A−i in equality (∆). Since j ∈ N κ
−i means

that agent j is not in the κ-hop neighborhood of agent i, which further implies that i ∉ N κ
j , we know

that the term T3 is not relevant to agent i. Thus, the expansion in (∆) is justified. The last two lines
follow from the facts that πiθi(⋅∣s) is a distribution over Ai and the gradient of a constant is equal to 0.

Thus, it suffices to bound the term T1 only. Using the exponential decay property of shadow Q-
functions, we can derive from (41) that

n(1 − γ) ∥∇̂θiL(θ, µ) − ∇θiL(θ, µ)∥2

=

XXXXXXXXXXXX

Eπθ

⎡
⎢
⎢
⎢
⎢
⎣

∇θi logπ
i
θi(ai∣sNκ

i
) ⋅

⎡
⎢
⎢
⎢
⎢
⎣

∑
j∈N
(Q̂πθ

fj
(sNκ

j
, aNκ

j
) −Qπθ

fj
(s, a)) + µj (Q̂

πθ
gj (sNκ

j
, aNκ

j
) −Qπθ

gj (s, a))

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

XXXXXXXXXXXX2

≤ Eπθ

⎡
⎢
⎢
⎢
⎢
⎣

∥∇θi logπ
i
θi(ai∣sNκ

i
)∥

2
⋅

⎡
⎢
⎢
⎢
⎢
⎣

∑
j∈N
∥Q̂πθ

fj
(sNκ

j
, aNκ

j
) −Qπθ

fj
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2

+ ∣µj ∣ ∥Q̂
πθ
gj (sNκ

j
, aNκ

j
) −Qπθ

gj (s, a)∥2

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

≤Mπ ⋅ max
(s,a)∈S×A

⎡
⎢
⎢
⎢
⎢
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∑
j∈N
∥Q̂πθ

fj
(sNκ

j
, aNκ

j
) −Qπθ

fj
(s, a)∥

2
+ ∣µj ∣ ∥Q̂

πθ
gj (sNκ

j
, aNκ

j
) −Qπθ

gj (s, a)∥2

⎤
⎥
⎥
⎥
⎥
⎦

≤Mπ [n ⋅ c0ϕ
κ
0 + n∥µ∥∞c0ϕ

κ
0 ]

=Mπ ⋅ (1 + ∥µ∥∞) ⋅ nc0ϕ
κ
0 ,

where we use the assumption ∥∇θi logπ
i
θi
∥
2
≤Mπ in the second inequality. Thus, we conclude that

∥∇̂θiL(θ, µ) − ∇θiL(θ, µ)∥2 ≤
(1 + ∥µ∥∞)Mπc0ϕ

κ
0

1 − γ
,

which completes the proof.

F Supplementary materials for Section 4

In this appendix, we first provide a detailed explanation for the assumptions used Section 4. We then
present a summary of the problem’s properties under these assumptions in Appendix (F.1.5).

F.1 Discussions about assumptions

Besides the boundedness of score functions, Assumptions 4.1 and 4.2 require that fi(λπθ

i ) and
gi(λ

πθ

i ) be smooth w.r.t. both the local occupancy measure λπθ

i and the parameter θ. These
assumptions are standard in the literature of reinforcement learning with general utilities [14, 23, 71,
61]. Assumption 4.3 mainly ensures the existence an FOSP within the search region. When Slater’s
condition is met and the general utilities are concave in the occupancy measure, Assumption 4.3 is
naturally satisfied since the strong duality holds and the optimal dual variable is bounded (see Lemma
F.3).

F.1.1 Discussion about Assumption 4.1

Let Λ be the set of all possible (global) occupancy measures. It is well-known that Λ is a convex
polytope [78] and can be defined as:

Λ ∶=

⎧⎪⎪
⎨
⎪⎪⎩

λ ∈ R∣S∣∣A∣ ∣ λ ≥ 0, ∑
a∈A

λ(s, a) = (1 − γ) ⋅ ρ(s) + γ ∑
(s′,a′)∈S×A

P (s∣s′, a′) ⋅ λ (s′, a′) ,∀s ∈ S
⎫⎪⎪
⎬
⎪⎪⎭

,

(43)
where ρ(⋅) is the initial distribution. Since Λ is a compact set, and if the general utilities fi(⋅) and
gi(⋅) are twice continuously differentiable, the smoothness property required by Assumption 4.1
naturally holds on Λ.
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F.1.2 Discussion about Assumption 4.2

The assumption on the boundedness of the score function is standard in the study of RL with/without
general utilities [79, 71, 23, 10, 43]. Specifically, this assumption is essential in quantifying the
approximation error of REINFORCE-based gradient estimators [44]. Similarly, the assumption of
the smoothness of general utilities with respect to the policy parameter is common in the literature
[17, 80, 71, 23, 61]. Indeed, the following existing results show that Assumption 4.2 holds true for
two classes of policies under mild conditions. For the ease of notations, we present these results in
the centralized (single-agent) setting, while they naturally generalize to the distributed (multi-agent)
setting.

Proposition F.1 (Direct parameterization [61]). Suppose that the general utility f(λ) has a bounded
and Lipschitz gradient in Λ, namely, there exist ℓf,1, ℓf,2 > 0 such that

∥∇λf(λ)∥∞ ≤ ℓf,1, ∥∇λf(λ) − ∇λf(λ
′
)∥∞ ≤ ℓf,2∥λ − λ

′
∥2, ∀ λ,λ′ ∈ Λ.

Then, f(λπ) is ℓF -smooth with respect to the policy π, where

ℓF =
4ℓf,1γ∣A∣ + ℓf,2∣A∣

3/2

(1 − γ)2
.

Proposition F.2 (General soft-max parameterization [71]). Consider the general soft-max parame-
terization πθ(⋅∣⋅), defined as

πθ(a∣s) =
exp{ψ(θ; s, a)}

∑a′∈A exp{ψ (θ; s, a′)}
, ∀ (s, a) ∈ S ×A.

Suppose that ψ(⋅; s, a) is twice differentiable for all (s, a) ∈ S ×A and there exist ℓψ,1, ℓψ,2 > 0 such
that

max
(s,a)∈S×A

sup
θ
∥∇θψ(θ; s, a)∥2 ≤ ℓψ,1 and max

(s,a)∈S×A
sup
θ
∥∇

2
θψ(θ; s, a)∥2 ≤ ℓψ,2.

Assume that f(λ) has a bounded and Lipschitz gradient in Λ, namely, there exist ℓf,1, ℓf,2 > 0 such
that

∥∇λf(λ)∥∞ ≤ ℓf,1, ∥∇λf(λ) − ∇λf(λ
′
)∥∞ ≤ ℓf,2∥λ − λ

′
∥2, ∀ λ,λ′ ∈ Λ.

The following statements hold:

(I) For every θ ∈ Θ and (s, a) ∈ S ×A, it holds that

{
∥∇θ logπθ(a∣s)∥2 ≤ 2ℓψ,1,

∥∇2
θ logπθ(a∣s)∥2 ≤ 2 (ℓψ,2 + ℓ

2
ψ,1) ,

and ∥∇θf(λ
πθ)∥2 ≤

2ℓψ,1 ⋅ ℓf,1

(1 − γ)2
.

(II) For every θ1, θ2 ∈ Θ, it holds that

∥λπθ1 − λπθ2 ∥1 ≤
2ℓψ,1

(1 − γ)2
⋅ ∥θ1 − θ2∥2 .

(III) The function f(λπθ) is ℓF -smooth with respect to the parameter θ, where

ℓF =
4ℓf,2 ⋅ ℓ

2
ψ,1

(1 − γ)4
+
8ℓ2ψ,1 ⋅ ℓf,1

(1 − γ)3
+
2ℓf,1 ⋅ (ℓψ,2 + ℓ

2
ψ,1)

(1 − γ)2
.

F.1.3 Discussion about Assumption 4.3

In constrained optimization, it is common to assume that the feasible region for the dual variable is
bounded [25]. In particular, when all the utilities are concave in the occupancy measure λπ , problem
(5) becomes a convex program with respect to λπ. Under this circumstance, if the feasible region
contains an interior point, which is usually the case when no equality constraints are enforced, it can
be proven that the strong duality holds and the optimal dual variable is bounded [81, 82, 61]. This
assumption of having an interior point is also referred to as Slater’s condition.
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Lemma F.3 (Strong duality and boundedness of the optimal dual variable [61]). Consider the
centralized reinforcement learning problem with general utilities

max
θ∈Θ

f(λπθ) s.t. g(λπθ) ≥ 0,

where f(⋅) and g(⋅) are concave functions. Denote θ⋆ and µ⋆ as the optimal primal variable and
dual variable, respectively. Suppose Slater’s condition holds true, i.e., there exist θ̃ ∈ Θ and ξ > 0
such that g(λπθ̃) ≥ ξ, and the set cl ({λπθ ∣θ ∈ Θ}) is convex. Then we have:

(I) the strong duality holds, i.e.,

f(λπθ⋆ ) = L(θ⋆, µ⋆) =max
θ∈Θ
L(θ, µ⋆),

(II) the optimal dual variable is bounded, s.t.

0 ≤ µ⋆ ≤
f(λπθ⋆ ) − f(λπθ̃)

ξ
.

F.1.4 Discussion about Assumption 4.5

The following proposition on the effectiveness of Algorithm 2 is adapted from [10].
Proposition F.4 (Sample complexity of Algorithm 2 [10]). Suppose that there exists positive integer
k0 and σ ∈ (0,1) such that for any policy πθ and any initial state-action pair (s, a) ∈ S ×A, it holds
that

P ((sk0Nκ
i
, ak0Nκ

i
) = (s′Nκ

i
, a′Nκ

i
) ∣ (s0, a0) = (s, a)) ≥ σ, ∀(s′Nκ

i
, a′Nκ

i
) ∈ SNκ

i
×ANκ

i
, i ∈ N . (44)

Let k1 and h be two numbers such that h ≥ 1/σ ⋅max{2,1/(1 −
√
γ)} and k1 ≥max{2h,4σh, k0}.

For given local shadow rewards {ri}i∈N such that maxi∈N ∥ri∥∞ ≤ Mr, denote {Q̂πθ

i }i∈N as the
true truncated Q-functions and {Q̃Ki }i∈N as the empirical truncated Q-functions output by Algorithm

2 with step-sizes {ηkQ = h/(k + k1)}
K−1
k=0 . For each agent i ∈ N , with probability at least 1 − δ, it

holds that

∥Q̃Ki − Q̂
πθ

i ∥∞ ≤
Ci

√
K + k1

+
C ′i

K + k1
, (45)

where

Ci =
6ϵ̄

1 −
√
γ

√
hk0
σ
[log (

2k0K2

δ
) + ∣N κ

i ∣ log (∣Si∣∣Ai∣)]

C ′i =
2

1 −
√
γ
max(

16ϵ̄hk0
σ

,
2Mr

1 − γ
(k0 + k1)) ,

(46)

with ϵ̄ = 4Mr/(1 − γ) + 2Mr.

The condition (44) requires every state-action pair in the κ-hop neighborhood to be visited with some
probability σ > 0 after some period k0. Intuitively, it means that the agents can quickly explore
the environment no matter what the initial distribution is. Under this assumption, Proposition (F.4)
implies that the error bound described in (26) can be achieved using O(1/(ϵ0)2) samples with high
probability. We remark that, since the error term on the right-hand side of (45) only logarithmically
depends on the failure probability, the probabilistic version of Assumption 4.5 can be easily adapted
to the proof by applying a similar argument as the the one before (72). The same order of the sample
complexity would still hold true.

Besides the TD-learning method introduced in this work, various algorithms in the literature that
enjoy faster convergence rates can be used in the truncated Q-function evaluations, such as the two
timescale linear TD with gradient correction (TDC) [83, 84, 85] and the nonlinear TDC [86, 87].

F.1.5 Direct consequences of Assumptions 4.1-4.3

The following properties are the direct consequence of Assumptions 4.1-4.3.
Lemma F.5. Under Assumptions 4.1-4.3, it holds that
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(I) the shadow rewards are bounded, i.e., ∃Mr > 0 s.t. ∥rπθ
♢i ∥2 ≤Mr, ∀♢ ∈ {f, g}, θ ∈ Θ, i ∈ N .

(II) the Lagrangian and its gradient are bounded, i.e., ∃ML,Mθ > 0 s.t. ∣L(θ, µ)∣ ≤ ML,
∥∇θL(θ, µ)∥2 ≤Mθ, ∀θ ∈ Θ, µ ∈ U .

(III) ∇θL(θ, µ) is Lipschitz continuous w.r.t. θ and µ, i.e., ∃Lθθ, Lθµ > 0 s.t. ∀θ, θ′ ∈ Θ and µ,µ′ ∈ U

∥∇θL(θ, µ) − ∇θL(θ
′, µ)∥2 ≤ Lθθ ∥θ − θ

′
∥2 , ∥∇θL(θ, µ) − ∇θL(θ, µ

′
)∥2 ≤ Lθµ ∥µ − µ

′
∥2 .
(47)

Proof of (I). By Definition 3.1, the shadow rewards are the gradients of local utility functions w.r.t.
the correponding local occupancy measures, i.e., rπθ

fi
∶= ∇λifi(λ

πθ

i ) and rπθ
gi
∶= ∇λigi(λ

πθ

i ), ∀i ∈ N .
Since the local occupancy measure λπθ

i can be expressed by the global occupancy measure through
λπi (si, ai) = ∑s−i,a−i λ

π(s, a), we can also view fi(⋅) and gi(⋅) as functions of λπθ .

Recall that the set of global occupancy measures, denoted as Λ, is compact (see (43)). When
Assumption 4.1 holds, rπθ

fi
and rπθ

gi are Lipschitz continuous functions on a compact set. Thus, there
∃Mr > 0 such that ∥rπθ

♢i ∥2 is universally bounded by Mr ∀♢ ∈ {f, g}, i ∈ N .

Proof of (II). Similarly, since utilities functions fi(⋅) and gi(⋅) are assumed to be continuously
differentiable w.r.t. λπθ

i , they are continuous functions on the compact set Λ. Thus, there exists
Mf > 0 and Mg > 0 such that ∣fi(⋅)∣ ≤ Mf and ∣gi(⋅)∣ ≤ Mg hold for all λπθ ∈ Λ. As the feasible
region region for µ is assumed to be bounded according to Assumption 4.3, we have that

∣L(θ, µ)∣ ∶= ∣
1

n
∑
i∈N
[fi(λ

πθ

i ) + µigi(λ
πθ

i )]∣ ≤Mf + µMg =∶ML.

The boundedness of ∥∇θL(θ, µ)∥2 follows from the boundedness of score functions, shadow rewards,
and dual variables. Similar as (10), we can write that

∥∇θL(θ, µ)∥2 = ∥
1

1 − γ
Es∼dπθ ,a∼πθ(⋅∣s)[∇θ logπθ(a∣s) ⋅

1

n
∑
i∈N
(Qπθ

fi
(s, a) + µiQ

πθ
gi (s, a)) ]∥

2

≤
1

1 − γ
⋅ max
θ∈Θ,(s,a)∈S×A

{∥∇θ logπθ(a∣s)∥2} ⋅ max
θ∈Θ,i∈N

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∥rπθ

fi
∥
∞
+ ∣µi∣ ∥r

πθ
gi
∥∞

1 − γ

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

≤
(1 + µ)Mr

(1 − γ)2
⋅ max
θ∈Θ,(s,a)∈S×A

{∥∇θ logπθ(a∣s)∥2}

(∆)
=
(1 + µ)Mr

(1 − γ)2
⋅ max
θ∈Θ,(s,a)∈S×A

√

∑
i∈N
∥∇θi logπ

i
θi
(ai∣s)∥

2

2

≤
(1 + µ)Mr

(1 − γ)2
⋅
√
nM2

π

=

√
n(1 + µ)MrMπ

(1 − γ)2
=∶Mθ,

(48)
where the first inequality is due to ∣Qπθ(r; s, a)∣ ≤ ∥r∥∞ /(1−γ) for any reward function r(⋅, ⋅). Then,
the subsequent inequality follows from the norm inequality ∥x∥∞ ≤ ∥x∥2 for any vector x. In equality
(∆) above, we use the fact that the global policy can be factorized as the product of local policies, so
that ∇θ logπθ(a∣s) = ∑i∈N ∇θ logπ

i
θi
(ai∣sNκ

i
) = ∑i∈N ∇θi logπ

i
θi
(ai∣sNκ

i
). Thus, ∇θ logπθ(a∣s)

can be viewed as the concatenation of ∇θi logπ
i
θi
(ai∣sNκ

i
) for all i ∈ N , which implies (∆).

Proof of (III). By Assumption 4.2, the general utilities F (θ) = f(λπθ) and Gi(θ) = gi(λπθ

i ) are
Lθ-smooth w.r.t. θ. Thus, when µ ∈ U = [0, u]n, we have that the Lagrangian function L(θ, µ) =
F (θ) + 1/n ⋅ ∑i∈N µiGi(θ) is Lθθ ∶= (1 + µ)Lθ-smooth, i.e.,

∥∇θL(θ, µ) − ∇θL(θ
′, µ)∥2 ≤ Lθθ ∥θ − θ

′
∥2 , ∀θ, θ

′
∈ Θ and µ ∈ U .
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To show the second inequality, we can write that

∥∇θL(θ, µ) − ∇θL(θ, µ
′
)∥2 = ∥∇θ [F (θ) +

1

n
∑
i∈N

µiGi(θ)] − ∇θ [F (θ) +
1

n
∑
i∈N

µ′iGi(θ)]∥
2

=
1

n
∥∑
i∈N
(µi − µ

′
i)∇θGi(θ)∥

2

≤
1

n
max

i∈N ,θ∈Θ
{∥∇θGi(θ)∥2} ⋅ ∥µ − µ

′
∥1

≤
1
√
n

max
i∈N ,θ∈Θ

{∥∇θGi(θ)∥2} ⋅ ∥µ − µ
′
∥2 ,

where the last line follows from the norm inequality that ∥x∥1 ≤
√
n ∥x∥2 for any vector x ∈ Rn.

Following the same derivation as (48), one can show that

max
i∈N ,θ∈Θ

{∥∇θGi(θ)∥2} ≤

√
nMrMπ

(1 − γ)2
,

which subsequently implies that ∥∇θL(θ, µ) − ∇θL(θ, µ′)∥2 ≤ Lθµ ∥µ − µ
′∥2 with Lθµ ∶=

MrMπ/(1 − γ)
2. This completes the proof.

F.2 Implication of metric E(θ, µ)

The following lemma states the relation of the metric E(θ, µ), defined in (23), to the first-order
stationary point of problem (5).

Lemma F.6. Given θ⋆ ∈ Θ and µ⋆ ∈ U , if E(θ⋆, µ⋆) = 0 and u⋆ is in the interior of U , then (θ⋆, µ⋆)
is a pair of first-order stationary point of problem (5).

Proof. We denote gi(θ⋆) ∶= gi(λ
πθ⋆
i ) = n ⋅ [∇µL(θ

⋆, µ⋆)]i for the ease of notation. The first-order
optimality condition for problem (5) is

⟨∇θL(θ
⋆, µ⋆), θ′ − θ⋆⟩ ≤ 0,∀θ′ ∈ Θ, (49a)

gi(θ
⋆
) ≥ 0,∀i ∈ N , (49b)

gi(θ
⋆
)µ⋆i = 0,∀i ∈ N , (49c)

µ⋆i ≥ 0,∀i ∈ N . (49d)

By reformulation, we observe that (49a) is equivalent to

max
θ′∈Θ,∥θ′−θ⋆∥2≤1

⟨∇θL(θ
⋆, µ⋆), θ′ − θ⋆⟩ = 0 (50)

Then, we use a contradictory argument to show that (49b) and (49c) are implied by the equality
minµ′∈U,∥µ′−µ⋆∥2≤1 ⟨∇µL(θ

⋆, µ⋆), µ′ − µ⟩ = 0.

Firstly, if there exists an index i such that gi(θ⋆) < 0, since µ⋆ is in the interior of U , there must
exist some µ′ ∈ U with ∥µ′ − µ∥ ≤ 1 and µ′i > µ

⋆
i as well as µ′j = µ

⋆
j for all i ≠ j such that

[∇µL(θ, µ)]i (µ
′
i − µi) = gi(θ

⋆)(µ′i − µ
⋆
i )/n < 0. Then, we have that

min
µ′∈U,∥µ′−µ⋆∥2≤1

⟨∇µL(θ
⋆, µ⋆), µ′ − µ⟩ ⋅ n ≤ gi(θ

⋆
)(µ′i − µ

⋆
i ) +∑

j≠i
gj(θ

⋆
)(µ⋆j − µ

⋆
j ) < 0, (51)

which violates the condition that Y(θ⋆, µ⋆) = 0. Thus, it holds that gi(θ⋆) ≥ 0 for all i.

Furthermore, if there exists an index i such that gi(θ⋆) > 0 and µ⋆i > 0, then there must exist some
µ′ ∈ U , with ∥µ′ − µ∥ ≤ 1 and 0 ≤ µ′i < µ

⋆
i such that [∇µL(θ, µ)]i (µ

′
i −µi) = gi(θ

⋆)(µ′i −µ
⋆
i )/n < 0.

By a similar argument as (51), we conclude that the condition Y(θ⋆, µ⋆) = 0 is also violated. Thus, it
holds that gi(θ⋆)µi = 0 for all i ∈ N .
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G Proof of Theorems 4.4 and 4.6

Before proving the main theorems, we first quantify the approximation errors of the estimators λ̃ti, r̃
t
♢i ,

Q̃t♢i , ∇̃µiL(θ
t, µt), and ∇̃θiL(θ

t, µt+1), which are computed in Algorithm 1 in the sampled-based
setting. The results are summarized in the proposition below, whose proof can be found in Appendix
G.1.

Proposition G.1. Suppose that Assumptions 3.2, 3.3, 4.1-4.5 hold. Let δ0 ∈ (0,1/(2n)) be the failure
probability. Denote ∇̃θL(θt, µt) and ∇̃µL(θt, µt) as the concatenations of gradient estimators
{∇̃θiL(θ

t, µt)}
i∈N and {∇̃µL(θt, µt)}∈N , respectively. Then, for every period t ≥ 0 in Algorithm 1,

the following inequalities hold with probability at least 1 − 2nδ0:

(Occupancy measures): ∥λ̃ti − λ
πθt

i ∥2
≤ ϵ1(δ0), ∀i ∈ N (52a)

(Shadow rewards): ∥r̃t♢i − r
πθt

♢i ∥∞ ≤ Lλϵ1(δ0), ∀♢ ∈ {f, g}, i ∈ N . (52b)

(Truncated Q-functions): ∥Q̃t♢i − Q̂
πθt

♢i ∥∞ ≤Mrϵ0 +
Lλϵ1(δ0)

1 − γ
, ∀♢ ∈ {f, g}, i ∈ N . (52c)

(Dual gradient): ∥∇̃µL(θt, µt) − ∇µL(θt, µt)∥
2

2
≤
(Mrϵ1(δ0))

2

n
=∶ ϵµ (52d)

(Policy gradient): ∥∇̃θL(θt, µt+1) − ∇θL(θt, µt+1)∥
2

2
≤ (∑

i∈N

∣N κ
i ∣

2

n2
) ϵ2(δ0) + nϵ3 =∶ ϵθ.

(52e)

where the constant Mr is defined in Lemma F.5 and

ϵ1(δ0) ∶=

¿
Á
ÁÀ4 + 2γ2HB − 16 log δ0

(1 − γ)2B

ϵ2(δ0) ∶= 4 [
(1 + µ)MrMπ

(1 − γ)2
]

2

⋅

⎡
⎢
⎢
⎢
⎢
⎣

((1 − γ)ϵ0 +
Lλϵ1(δ0)

Mr
)

2

+
2 − 8 log δ0

B
+ γ2H

⎤
⎥
⎥
⎥
⎥
⎦

= O(ϵ20 +
log(1/δ0)

B
+ γ2H)

ϵ3 ∶= 4 [
(1 + µ)Mπc0ϕ

κ
0

1 − γ
]

2

= O (ϕ2κ0 ) .

(53)

Remark G.2 (Exact setting). Consider the exact setting where the agents have accurate estimates of
their local occupancy measures, shadow Q-functions, and truncated policy gradients. In this case, it
is evident that the error bounds (52d) and (52e) always hold with ϵµ = 0 and ϵθ = nϵ3, where ϵ3, as
defined in (53), represents the truncation error of the policy gradient.

Remark G.3 (Truncation error). As stated in (52e), the error of the policy gradient estimator, ϵθ,
is composed of two parts. The second part, nϵ3, arises from the use of truncated Q-functions and
truncated policy gradients. It it important to note that this error has the factor n because we assume
that the norm of each agent i’s local score function, ∥∇θi logπ

i
θi
(⋅∣⋅)∥

2
, is individually bounded by

the constant Mπ. If we instead assume a constant upper bound on the norm of the global score
function ∇θ logπθ(⋅∣⋅), then the factor n would not be present (as in [10]).

With the shorthand notations ∇̃θL(θt, µt) and ∇̃µL(θt, µt), we can express the updates in Algorithm
1 as

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

µt+1 = PU (−ηµ∇̃µL(θ
t, µt))

θt+1 = PΘ (θ
t + ηθ ⋅ ∇̃θL(θ

t, µt+1))

, for t = 0,1,2, . . . . (54)

Recall that the exact dual variable update rule is given by (22). For ease of the notation, we define
Lt(µ) as the exact objective function in sub-problem (22) and L̃t(µ) as the empirical objective
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function used in Algorithm 1, i.e.,

L
t
(µ) ∶= L(θt, µ) +

1

2ηµ
∥µ∥22, L̃

t
(µ) ∶= ⟨∇̃µL(θ

t, µt), µ⟩ +
1

2ηµ
∥µ∥22. (55)

By definition, it is clear that µt+1 = argminµ∈U L̃
t(µ). Also, we note that both Lt(µ) and L̃t(µ) are

1/ηµ-strongly convex quadratic functions.

Proof of Theorem 4.4. Throughout the proof below, we assume that the following error bounds hold
for t = 0,1, . . . , T − 1.

∥∇̃µL(θ
t, µt) − ∇µL(θ

t, µt)∥
2

2
≤ ϵµ, ∥∇̃θL(θ

t, µt+1) − ∇θL(θ
t, µt+1)∥

2

2
≤ ϵθ. (56)

According to Remark G.2, this is always the case in the exact setting with ϵµ = 0 and ϵθ = nϵ3, where
ϵ3 is the approximation error of the truncated policy gradient estimator.

We begin with a general argument that applies to both the exact setting (Theorem 4.4) and the
sample-based setting (Theorem 4.6). Since the feasible set Θ is convex, by the property of the
projection operator, it holds that

⟨[θt + ηθ ⋅ ∇̃θL(θ
t, µt+1)] − θt+1, θ − θt+1⟩ ≤ 0, ∀θ ∈ Θ, (57)

which thus implies that

⟨∇̃θL(θ
t, µt+1) , θ − θt+1⟩ ≤

1

ηθ
⟨θt+1 − θt, θ − θt+1⟩ . (58)

Therefore, for any θ ∈ Θ, we have that

⟨∇̃θL(θ
t, µt+1) , θ − θt⟩ = ⟨∇̃θL(θ

t, µt+1) , θ − θt+1⟩ + ⟨∇̃θL(θ
t, µt+1) , θt+1 − θt⟩

≤
1

ηθ
⟨θt+1 − θt, θ − θt+1⟩ + ⟨∇̃θL(θ

t, µt+1) , θt+1 − θt⟩

=
1

ηθ
⟨θt+1 − θt, θ − θt⟩ +

1

ηθ
⟨θt+1 − θt, θt − θt+1⟩

+ ⟨∇̃θL(θ
t, µt+1) , θt+1 − θt⟩

=
1

ηθ
⟨θt+1 − θt, θ − θt⟩ −

1

ηθ
∥θt − θt+1∥

2

2
+ ⟨∇̃θL(θ

t, µt+1) , θt+1 − θt⟩ .

(59)
By taking the maximum on both sides over all θ ∈ Θ such that ∥θ − θt∥

2
≤ 1, the inequality (59)

becomes

max
θ∈Θ,∥θ−θt∥≤1

⟨∇̃θL(θ
t, µt+1) , θ − θt⟩

≤ max
θ∈Θ,∥θ−θt∥≤1

{
1

ηθ
⟨θt+1 − θt, θ − θt⟩} −

1

ηθ
∥θt − θt+1∥

2

2
+ ⟨∇̃θL(θ

t, µt+1) , θt+1 − θt⟩

≤
1

ηθ
∥θt+1 − θt∥

2
−

1

ηθ
∥θt − θt+1∥

2

2
+ ∥∇̃θL(θ

t, µt+1)∥
2
⋅ ∥θt+1 − θt∥

2

≤ (
1

ηθ
+ ∥∇̃θL(θ

t, µt+1)∥
2
) ∥θt+1 − θt∥

2
,

(60)
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where we apply the Cauchy’s inequality ⟨x, y⟩ ≤ ∥x∥2 ∥y∥2 in the third line. Thus, it holds that

[X (θt, µt+1)]
2

= [ max
θ∈Θ,∥θ−θt∥≤1

⟨∇θL(θ
t, µt+1) , θ − θt⟩]

2

= [ max
θ∈Θ,∥θ−θt∥≤1

{⟨∇̃θL(θ
t, µt+1) , θ − θt⟩ + ⟨∇θL(θ

t, µt+1) − ∇̃θL(θ
t, µt+1) , θ − θt⟩}]

2

≤ [ max
θ∈Θ,∥θ−θt∥≤1

{⟨∇̃θL(θ
t, µt+1) , θ − θt⟩} + max

θ∈Θ,∥θ−θt∥≤1
{⟨∇θL(θ

t, µt+1) − ∇̃θL(θ
t, µt+1) , θ − θt⟩}]

2

≤ [ max
θ∈Θ,∥θ−θt∥≤1

{⟨∇̃θL(θ
t, µt+1) , θ − θt⟩} + ∥∇θL(θ

t, µt+1) − ∇̃θL(θ
t, µt+1)∥

2
]

2

≤ 2 [ max
θ∈Θ,∥θ−θt∥≤1

{⟨∇̃θL(θ
t, µt+1) , θ − θt⟩}]

2

+ 2 ∥∇θL(θ
t, µt+1) − ∇̃θL(θ

t, µt+1)∥
2

2

(∆)
≤ 2(

1

ηθ
+ ∥∇̃θL(θ

t, µt+1)∥
2
)

2

∥θt+1 − θt∥
2

2
+ 2ϵθ

≤2(
1

ηθ
+Mθ)

2

∥θt+1 − θt∥
2

2
+ 2ϵθ,

(61)
where we apply (60) and (56) in (∆). The last line follows from the fact that ∇̃θL(θt, µt+1) is the
Monte Carlo estimator for the true gradient ∇θL(θt, µt+1), thus enjoying the same upper bound
∥∇̃θL(θ

t, µt+1)∥
2
≤Mθ (see Lemma F.5). Therefore, it is important to properly upper-bound the

term ∥θt+1 − θt∥
2

2
. We proceed by focusing on the dual variable update. By the definition of Lt(µ) in

(55), we can derive that

L
t+1
(µt+2) − Lt(µt+2)= [L(θt+1, µt+2) +

1

2ηµ
∥µt+2∥22]−[L(θ

t, µt+2) +
1

2ηµ
∥µt+2∥22]

= [L(θt+1, µt+2) − L(θt, µt+2)]

≥ ⟨∇θL(θ
t, µt+2), θt+1 − θt⟩ −

Lθθ
2
∥θt+1 − θt∥

2

2
,

(62)

where we apply the Lθθ-smoothness of L(θ, µ) w.r.t. θ (see Lemma F.5), i.e.,

−L(θt+1, µt+2) ≤ −L(θt, µt+2) + ⟨−∇θL(θ
t, µt+2), θt+1 − θt⟩ +

Lθθ
2
∥θt+1 − θt∥

2

2
.

Then, from (62), we further deduce that

L
t+1
(µt+2) ≥ Lt(µt+2) + ⟨∇θL(θ

t, µt+2), θt+1 − θt⟩ −
Lθθ
2
∥θt+1 − θt∥

2

2

= L
t
(µt+2) + ⟨∇θL(θ

t, µt+2) − ∇θL(θ
t, µt+1), θt+1 − θt⟩ −

Lθθ
2
∥θt+1 − θt∥

2

2

+ ⟨∇θL(θ
t, µt+1), θt+1 − θt⟩

(∆)
≥ L

t
(µt+2) −Lθµ ∥µ

t+2
− µt+1∥

2
∥θt+1 − θt∥

2
−
Lθθ
2
∥θt+1 − θt∥

2

2

+ ⟨∇θL(θ
t, µt+1), θt+1 − θt⟩

= L
t
(µt+1) −Lθµ ∥µ

t+2
− µt+1∥

2
∥θt+1 − θt∥

2
−
Lθθ
2
∥θt+1 − θt∥

2

2

+ ⟨∇θL(θ
t, µt+1), θt+1 − θt⟩ + [Lt(µt+2) − Lt(µt+1)] ,

(63)
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where (∆) is due to Lemma F.5 and Cauchy’s inequality. Then, we lower-bound the term
[Lt(µt+2) − Lt(µt+1)] using the 1/ηµ-strong convexity of Lt(⋅) as follows

L
t
(µt+2) − Lt(µt+1) ≥ ⟨∇µL

t
(µt+1), µt+2 − µt+1⟩ +

1

2ηµ
∥µt+2 − µt+1∥

2

2

(∆1)
= ⟨∇µL(θ

t, µt) +
1

ηµ
µt+1, µt+2 − µt+1⟩ +

1

2ηµ
∥µt+2 − µt+1∥

2

2

=
1

ηµ
⟨µt+1 − (−ηµ∇̃µL(θ

t, µt)) − ηµ∇̃µL(θ
t, µt), µt+2 − µt+1⟩

+ ⟨∇µL(θ
t, µt), µt+2 − µt+1⟩ +

1

2ηµ
∥µt+2 − µt+1∥

2

2

(∆2)
≥ ⟨∇µL(θ

t, µt) − ∇̃µL(θ
t, µt), µt+2 − µt+1⟩ +

1

2ηµ
∥µt+2 − µt+1∥

2

2

(∆3)
≥ −ηµ ∥∇µL(θ

t, µt) − ∇̃µL(θ
t, µt)∥

2

2
−

1

4ηµ
∥µt+2 − µt+1∥

2

2

+
1

2ηµ
∥µt+2 − µt+1∥

2

2

≥ −ηµϵµ +
1

4ηµ
∥µt+2 − µt+1∥

2

2
.

(64)

In the above inequality, (∆1) follows from the definition of Lt(⋅) in (55). Next, we use the property
of the projection operator in inequality (∆2), i.e.,

⟨(−ηµ∇̃µL(θ
t, µt)) − µt+1, µ − µt+1⟩

= ⟨(−ηµ∇̃µL(θ
t, µt)) − PU (−ηµ∇̃µL(θ

t, µt)) , µ − PU (−ηµ∇̃µL(θ
t, µt))⟩ ≤ 0, ∀µ ∈ U .

Finally, (∆3) is due to Cauchy’s inequality ⟨x, y⟩ ≥ −k/2 ⋅ ∥x∥22 − 1/(2k) ⋅ ∥y∥
2
2 for any k > 0 and the

last inequality follows from the error bound in (56).

In addition, the term ⟨∇θL(θt, µt+1), θt+1 − θt⟩ on the right-hand side of (63) can be lower-bounded
as follows

⟨∇θL(θ
t, µt+1), θt+1 − θt⟩

= ⟨∇̃θL(θ
t, µt+1), θt+1 − θt⟩ + ⟨∇θL(θ

t, µt+1) − ∇̃θL(θ
t, µt+1), θt+1 − θt⟩

≥
1

ηθ
∥θt+1 − θt∥

2

2
+ ⟨∇θL(θ

t, µt+1) − ∇̃θL(θ
t, µt+1), θt+1 − θt⟩

≥
1

ηθ
∥θt+1 − θt∥

2

2
−
ηθ
2
∥∇θL(θ

t, µt+1) − ∇̃θL(θ
t, µt+1)∥

2

2
−

1

2ηθ
∥θt+1 − θt∥

2

2

=
1

2ηθ
∥θt+1 − θt∥

2

2
−
ηθ
2
∥∇θL(θ

t, µt+1) − ∇̃θL(θ
t, µt+1)∥

2

2

≥
1

2ηθ
∥θt+1 − θt∥

2

2
−
ηθ
2
ϵθ,

(65)

where the first inequality uses (58) by taking θ = θt, and the second inequality is again due to
Cauchy’s inequality.
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Substituting (64) and (65) into the right-hand side of (63), we have that

L
t+1
(µt+2) − Lt(µt+1)

≥ −Lθµ ∥µ
t+2
− µt+1∥

2
∥θt+1 − θt∥

2
−
Lθθ
2
∥θt+1 − θt∥

2

2
+

1

2ηθ
∥θt+1 − θt∥

2

2
+

1

4ηµ
∥µt+2 − µt+1∥

2

2

−
ηθ
2
ϵθ − ηµϵµ

= −Lθµ ∥µ
t+2
− µt+1∥

2
∥θt+1 − θt∥

2
+ (

1

2ηθ
−
Lθθ
2
) ∥θt+1 − θt∥

2

2
+

1

4ηµ
∥µt+2 − µt+1∥

2

2

−
ηθ
2
ϵθ − ηµϵµ

(∆)
≥ −Lθµ (

1

4Lθµηµ
∥µt+2 − µt+1∥

2

2
+Lθµηµ ∥θ

t+1
− θt∥

2

2
) + (

1

2ηθ
−
Lθθ
2
) ∥θt+1 − θt∥

2

2

+
1

4ηµ
∥µt+2 − µt+1∥

2

2
−
ηθ
2
ϵθ − ηµϵµ

=(
1

2ηθ
−
Lθθ
2
−L2

θµηµ) ∥θ
t+1
− θt∥

2

2
−
ηθ
2
ϵθ − ηµϵµ

=L2
θµηµ ∥θ

t+1
− θt∥

2

2
−
ηθ
2
ϵθ − ηµϵµ,

(66)
where we apply the Cauchy’s inequality to the term ∥µt+2 − µt+1∥

2
∥θt+1 − θt∥

2
in (∆) and substitute

in the value ηθ = 1/(Lθθ + 4L2
θµηµ) in the last line. Therefore, by rearranging the terms in (66), we

obtain the desired upper bound on ∥θt+1 − θt∥
2

2
, i.e.,

∥θt+1 − θt∥
2

2
≤

1

L2
θµηµ

⋅ [L
t+1
(µt+2) − Lt(µt+1) +

ηθ
2
ϵθ + ηµϵµ] . (67)

We remark that (67) also implies the terms on the right-hand side must be strictly nonnegative.
Returning back to (61) with the above inequality, we deduce that

[X (θt, µt+1)]
2

≤ 2(
1

ηθ
+Mθ)

2 1

L2
θµηµ

⋅ [L
t+1
(µt+2) − Lt(µt+1) +

ηθ
2
ϵθ + ηµϵµ] + 2ϵθ

= 2 (Lθθ + 4L
2
θµηµ +Mθ)

2 1

L2
θµηµ

⋅ [L
t+1
(µt+2) − Lt(µt+1) +

ηθ
2
ϵθ + ηµϵµ] + 2ϵθ

= 2
⎡
⎢
⎢
⎢
⎣

(Lθθ +Mθ)
2

L2
θµηµ

+ 8(Lθθ +Mθ) + 16L
2
θµηµ
⎤
⎥
⎥
⎥
⎦
[L

t+1
(µt+2) − Lt(µt+1) +

ηθ
2
ϵθ + ηµϵµ] + 2ϵθ,

(68)
where the first equality follows from substituting in the value of ηθ We sum the inequality (68) over
t = 0,1, . . . , T − 1 and divide it by T , which yields that

1

T

T−1
∑
t=0
[X (θt, µt+1)]

2

≤ 2
⎡
⎢
⎢
⎢
⎣

(Lθθ +Mθ)
2

L2
θµηµ

+ 8(Lθθ +Mθ) + 16L
2
θµηµ
⎤
⎥
⎥
⎥
⎦
⋅

⎡
⎢
⎢
⎢
⎢
⎣

∑
T−1
t=0 [L

t+1(µt+2) − Lt(µt+1)]

T
+
ηθ
2
ϵθ + ηµϵµ

⎤
⎥
⎥
⎥
⎥
⎦

+ 2ϵθ

= 2
⎡
⎢
⎢
⎢
⎣

(Lθθ +Mθ)
2

L2
θµηµ

+ 8(Lθθ +Mθ) + 16L
2
θµηµ
⎤
⎥
⎥
⎥
⎦
⋅
⎡
⎢
⎢
⎢
⎣

[LT (µT+1) − L0(µ1)]

T
+
ηθ
2
ϵθ + ηµϵµ

⎤
⎥
⎥
⎥
⎦
+ 2ϵθ

≤ 2
⎡
⎢
⎢
⎢
⎣

(Lθθ +Mθ)
2

L2
θµηµ

+ 8(Lθθ +Mθ) + 16L
2
θµηµ
⎤
⎥
⎥
⎥
⎦
⋅
⎡
⎢
⎢
⎢
⎣

2ML

T
+
nµ2

2ηµT
+

ϵθ
2Lθθ + 8L2

θµηµ
+ ηµϵµ

⎤
⎥
⎥
⎥
⎦
+ 2ϵθ,

(69)
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where the equality is due to a telescoping sum. The last line follows from the choice of ηθ and the
boundedness of Lt(⋅). Specifically, by Assumption 4.3 and Lemma F.5, we have that

∣L
T
(µT+1) − L0

(µ1
)∣ = ∣L(θT , µT+1) +

1

2ηµ
∥µT+1∥

2

2
− L(θ0, µ1

) −
1

2ηµ
∥µ1∥

2

2
∣

≤ ∣L(θT , µT+1)∣ + ∣L(θ0, µ1
)∣ +

1

2ηµ
max
µ∈U
∥µ∥

2
2

≤ 2ML +
1

2ηµ
nµ2.

Now, we focus on evaluating the dual stationarity metric Y(θ, µ) defined in (23). Firstly, we recall
that the dual gradient is equal to the values of constraint functions and is irrelevant to the value of the
dual variable, i.e., ∇µL(θ, µ) = ∇µL(θ, µ′), ∀µ,µ′. Then, for any t = 0,1, . . . , T − 1, we have that

Y(θt, µt+1)

= − min
µ∈U,∥µ−µt+1∥2≤1

⟨∇µL(θ
t, µt), µ − µt+1⟩

= − min
µ∈U,∥µ−µt+1∥2≤1

{⟨∇̃µL(θ
t, µt), µ − µt+1⟩ + ⟨∇µL(θ

t, µt) − ∇̃µL(θ
t, µt), µ − µt+1⟩}

= − min
µ∈U,∥µ−µt+1∥2≤1

{⟨∇µL̃
t
(µt+1) −

1

ηµ
µt+1, µ − µt+1⟩ + ⟨∇µL(θ

t, µt) − ∇̃µL(θ
t, µt), µ − µt+1⟩} ,

(70)
where we use the definition of L̃t(⋅) in the last equality. Since µt+1 is the minimizer of the convex
quadratic function L̃t(⋅) in U , it follows that

⟨∇µL̃
t
(µt+1), µ − µt+1⟩ ≥ 0, ∀µ ∈ U .

Substituting the above inequality into (70), we conclude that

Y(θt, µt+1)

≤ − min
µ∈U,∥µ−µt+1∥2≤1

{−
1

ηµ
⟨µt+1, µ − µt+1⟩ + ⟨∇µL(θ

t, µt) − ∇̃µL(θ
t, µt), µ − µt+1⟩}

= max
µ∈U,∥µ−µt+1∥2≤1

{
1

ηµ
⟨µt+1, µ − µt+1⟩ + ⟨∇µL(θ

t, µt) − ∇̃µL(θ
t, µt), µt+1 − µ⟩}

≤ max
µ∈U,∥µ−µt+1∥2≤1

{
1

ηµ
∥µt+1∥

2
∥µt+1 − µ∥

2
+ ∥∇µL(θ

t, µt) − ∇̃µL(θ
t, µt)∥

2
∥µt+1 − µ∥

2
}

≤
1

ηµ
∥µt+1∥

2
+ ∥∇µL(θ

t, µt) − ∇̃µL(θ
t, µt)∥

2

≤
1

ηµ

√
nµ +

√
ϵµ.

(71)

In the exact setting, according to Remark G.2, inequality(69) can be simplified by taking ϵµ = 0 and
ϵθ = nϵ3:

1

T

T−1
∑
t=0
[X (θt, µt+1)]

2

≤ 2
⎡
⎢
⎢
⎢
⎣

(Lθθ +Mθ)
2

L2
θµηµ

+ 8(Lθθ +Mθ) + 16L
2
θµηµ
⎤
⎥
⎥
⎥
⎦
⋅
⎡
⎢
⎢
⎢
⎣

2ML

T
+
nµ2

2ηµT
+

nϵ3
2Lθθ + 8L2

θµηµ

⎤
⎥
⎥
⎥
⎦
+ 2nϵ3

= 2 [O (T −1/3) +O(1) +O (T 1/3)] ⋅
⎡
⎢
⎢
⎢
⎣
O (T −1) +O (T −4/3) +

nϵ3

O(1 + T 1/3)

⎤
⎥
⎥
⎥
⎦
+ 2nϵ3

≤ O (T 1/3) ⋅ [O (T −1) + nϵ3 ⋅ O (T
−1/3)] + 2nϵ3

= O (T −2/3) +O(ϵ3)

= O (T −2/3) +O(ϕ2κ0 ),
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where the last equality follows from the definition of ϵ3 in (53). Since 1/T ⋅ ∑
T−1
t=0 [X (θ

t, µt+1)]
2

is
the average of T non-negative numbers, there must exist t⋆ ∈ {0,1, . . . , T − 1} such that

[X (θt
⋆
, µt

⋆+1
)]

2

2
= O (T −2/3) +O(ϕ2κ0 ).

Therefore, it follows from inequality (71) that

E (θt
⋆
, µt

⋆+1
) = [X (θt

⋆
, µt

⋆+1
)]

2

2
+ [Y (θt

⋆
, µt

⋆+1
)]

2

≤ O (T −2/3) +O(ϕ2κ0 ) + (
1

ηµ

√
nµ)

2

= O (T −2/3) +O(ϕ2κ0 ),

which completes the proof.

Proof of Theorem 4.6. As stated in Proposition G.1, for any fixed t ≥ 0, the empirical gradient
estimators have the error bounds (52d) and (52e) with probability 1 − 2nδ0. By applying the union
bound, we have that the error bounds are met for all t = 0,1, . . . , T with probability 1 − (T + 1) ⋅
(2nδ0) = 1 − δ. Assuming that the error bounds hold true, the previously derived inequalities (69)
and (71) are applicable. In particular, for the primal stationarity metric X(θ, µ), we have that

1

T

T−1
∑
t=0
[X (θt, µt+1)]

2

≤ 2
⎡
⎢
⎢
⎢
⎣

(Lθθ +Mθ)
2

L2
θµηµ

+ 8(Lθθ +Mθ) + 16L
2
θµηµ
⎤
⎥
⎥
⎥
⎦
⋅
⎡
⎢
⎢
⎢
⎣

2ML

T
+
nµ2

2ηµT
+

ϵθ
2Lθθ + 8L2

θµηµ
+ ηµϵµ

⎤
⎥
⎥
⎥
⎦
+ 2ϵθ.

(72)
With the choice of the batch size B = O (log(1/δ0)ϵ−2) and episode length H = log(1/ϵ) as stated
in Theorem 4.6, it holds that

ϵµ =
(Mrϵ1(δ0))

2

n
=
M2
r

n
⋅
4 + 2γ2HB − 16 log δ0

(1 − γ)2B
= O(

1

B
+ γ2H +

log(1/δ0)

B
) = O(ϵ2). (73)

Similarly, since ϵ0 =
√
ϵ, the size of the policy gradient approximation error can be evaluated as

ϵθ = (∑
i∈N

∣N κ
i ∣

2

n2
) ϵ2(δ0) + nϵ3

= O(ϵ20 +
log(1/δ0)

B
+ γ2H + ϕ2κ0 ) = O (ϵ + ϵ

2
+ ϕ2κ0 ) = O (ϵ + ϕ

2κ
0 ) .

(74)

Therefore, since the step-sizes are chosen as ηµ = O (ϵ−0.5) and ηθ = 1/(Lθθ + 4L2
θµηµ), and the

number of periods is T = O (ϵ−1.5), we deduce from (72) that

1

T

T−1
∑
t=0
[X (θt, µt+1)]

2

= [O (
√
ϵ) +O (1) +O (ϵ−0.5)] ⋅

⎡
⎢
⎢
⎢
⎣
O (ϵ1.5) +O (ϵ2) +

O (ϵ + ϕ2κ0 )

O (ϵ−0.5)
+O (ϵ1.5)

⎤
⎥
⎥
⎥
⎦
+O (ϵ + ϕ2κ0 )

= O (ϵ−0.5) ⋅
⎡
⎢
⎢
⎢
⎣
O (ϵ1.5) +

O (ϵ + ϕ2κ0 )

O (ϵ−0.5)

⎤
⎥
⎥
⎥
⎦
+O (ϵ + ϕ2κ0 )

= O (ϵ + ϕ2κ0 ) .
(75)

As a result, there must exist t⋆ ∈ {0,1, . . . , T − 1} that satisfies

[X (θt
⋆
, µt

⋆+1
)]

2

2
= O (ϵ) +O(ϕ2κ0 ).
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At the meanwhile, it follows from (71) that

Y (θt
⋆
, µt

⋆+1
) ≤

1

ηµ

√
nµ +

√
ϵµ = O (

√
ϵ + ϵ) = O (

√
ϵ) .

Thus, we conclude that

E (θt
⋆
, µt

⋆+1
) = [X (θt

⋆
, µt

⋆+1
)]

2

2
+[Y (θt

⋆
, µt

⋆+1
)]

2
= O (ϵ)+O(ϕ2κ0 )+O(ϵ) = O (ϵ)+O(ϕ

2κ
0 ).

(76)
In each period, the number of samples required is

B ×H +O (1/(ϵ0)
2) = O (log(1/δ0)ϵ

−2) ⋅ log(1/ϵ) +O (1/ϵ)

= O (log(T /δ)ϵ−2) ⋅ log(1/ϵ) +O (1/ϵ)

= O (log(ϵ−1.5/δ)ϵ−2) ⋅ log(1/ϵ) +O (1/ϵ)

= Õ (ϵ−2) ,

(77)

where the first part comes from the trajectory sampling and the second part comes from the truncated
shadow Q-function evaluation. Therefore, the total number of samples required is T ⋅ Õ (ϵ−2) =
Õ (ϵ−3.5). This completes the proof.

G.1 Proof of Proposition G.1

Proof of (52a) and (52b). The proof can be found in [23, Appendix D.1]. For the sake of complete-
ness, we will also provide it here.

Let F t−1 denote the σ-algebra generated by all trajectories sampled at 0,1, . . . , t − 1-th periods.
For any trajectory τ = {(s0, a0),⋯, (sH−1, aH−1)} of length H , we use the shorthand notation
λi(τ) ∶= ∑

H−1
k=0 γ

k ⋅1i (s
k
i , a

k
i ) to denote the empirical occupancy measure estimation along trajectory

τ . Then, by the definition of λ̃ti in (17), we have that λ̃ti = 1/B ⋅ ∑τ∈Bt
i
λi(τ) and thus

∥E [λ̃ti∣F
t−1] − λ

πθt

i ∥1
=

XXXXXXXXXXXX

E
⎡
⎢
⎢
⎢
⎢
⎣

1

B
∑
τ∈Bt

i

λi(τ)∣F
t−1
⎤
⎥
⎥
⎥
⎥
⎦

− λ
πθt

i

XXXXXXXXXXXX1

≤
γH

1 − γ
. (78)

Additionally, since it always holds that ∥λi(τ)∥22 ≤ ∥λi(τ)∥
2
1 ≤ 1/(1 − γ)

2, by [88, Lemma 18], we
have that for an agent i ∈ N ,

P (∥λ̃ti −E [λ̃
t
i∣F

t−1]∥
2

2
≥ ϵ) ≤ exp(−

2 + (1 − γ)2ϵB

8
) .

By setting ϵ = 2−8 log δ0
(1−γ)2B , the above equation becomes

P(∥λ̃ti −E [λ̃
t
i∣F

t−1]∥
2

2
≥
2 − 8 log δ0
(1 − γ)2B

) ≤ δ0.

Together with (78), we derive that with probability at least 1 − δ0, it holds that

∥λ̃ti − λ
πθt

i ∥
2

2
≤ 2 ∥λ̃ti −E [λ̃

t
i∣F

t−1]∥
2

2
+ 2 ∥E [λ̃ti∣F

t−1] − λ
πθt

i ∥
2

2

≤
2γ2H

(1 − γ)2
+
4 − 16 log δ0
(1 − γ)2B

=
4 + 2γ2HB − 16 log δ0

(1 − γ)2B
=∶ (ϵ1(δ0))

2
,

(79)

where the first inequality follows from the fact that ∥x + y∥22 ≤ 2∥x∥
2
2 + 2∥y∥

2
2 for any two vectors

x, y. Thus, by applying the union bound, we know that with probability 1 − nδ0, (79) holds for every
agent i ∈ N .

When (79) holds for all agents, by the Lipschitz continuity of ∇λifi(⋅) and ∇λigi(⋅) (see Assumption
4.1), we have that

∥r̃tfi − r
πθt

fi
∥
∞
= ∥∇λifi(λ̃

t
i) − ∇λifi(λ

πθt

i )∥∞ ≤ Lλ ∥λ̃
t
i − λ

πθt

i ∥2
≤ Lλϵ1(δ0). (80)

This also holds for the constraint shadow rewards rgi , which completes the proof of (52a) and
(52b).
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Proof of (52c). We note that Line 6 of Algorithm 1 aims at estimating the truncated Q-function Q̂πθt

♢i
with the empirical shadow reward r̃t♢i . Thus, the approximation error in this step can be attributed
to two factors: the imprecision of the empirical shadow reward and the evaluation subroutine used.
Recall that we denote Q̂πθ

i (ri; ⋅, ⋅) as the true truncated local Q-function with reward ri(⋅, ⋅) under
policy πθ. Then, we can decompose the approximation error as follows

∥Q̃t♢i − Q̂
πθt

♢i ∥∞ ≤ ∥Q̃
t
♢i − Q̂

πθt

i (r̃
t
♢i ; ⋅, ⋅)∥∞ + ∥Q̂

πθt

i (r̃
t
♢i ; ⋅, ⋅) − Q̂

πθt

♢i ∥∞

≤ ∥r̃t♢i∥∞ ϵ0 + ∥Q̂
πθt

i (r̃
t
♢i − r

πθt

♢i ; ⋅, ⋅)∥∞

≤Mrϵ0 +
∥r̃t♢i − r

πθt

♢i ∥∞
1 − γ

,

(81)

where the second inequality follows from Assumption 4.5 and the third inequality is due to
∥Q̂πθ

i (ri; ⋅, ⋅)∥ ≤ ∥ri∥∞ /(1 − γ) for any reward function ri(⋅, ⋅). Therefore, when (52b) holds,
which happens with probability 1 − nδ0, it also holds that

∥Q̃t♢i − Q̂
πθt

♢i ∥∞ ≤Mrϵ0 +
∥r̃t♢i − r

πθt

♢i ∥∞
1 − γ

≤Mrϵ0 +
Lλϵ1(δ0)

1 − γ
, ∀♢ ∈ {f, g}, i ∈ N ,

which completes the proof of (52c).

Proof of (52d). The dual gradient is equal to the constraint function value, i.e., ∇µiL(θ
t, µt) =

Gi(θ
t)/n = gi(λ

πθt

i )/n, and the empirical estimator we use has the expression ∇̃µiL(θ
t, µt) =

g̃ti/n = gi(λ̃
t
i)/n. By Lemma F.5 (I), the shadow rewards are bounded by the constant Mr, which is

equivalent to

max
i∈N ,θ∈Θ

∥∇λig(λ
πθ

i )∥2
= max
i∈N ,θ∈Θ

∥rπθ
gi
∥
2
≤Mr. (82)

Thus, for every i ∈ N , the constraint utility gi(⋅) is Mr-Lipschitz continuous w.r.t. its local occupancy
measure. Therefore, it holds that

∥∇̃µL(θ
t, µt) − ∇µL(θ

t, µt)∥
2

2
= ∑
i∈N
∣∇̃µiL(θ

t, µt) − ∇µiL(θ
t, µt)∣

2

2

=
1

n2
∑
i∈N
∣gi(λ̃

t
i) − gi(λ

πθt

i )∣
2

2

≤
M2
r

n2
∑
i∈N
∥λ̃ti − λ

πθt

i ∥
2

2
,

where we use the mean value theorem and (82) in the last line. Thus, when (52a) holds, which
happens with probability 1 − nδ0, we have that

∥∇̃µL(θ
t, µt) − ∇µL(θ

t, µt)∥
2

2
≤
M2
r

n2
⋅ n(ϵ1(δ0))

2
=
(Mrϵ1(δ0))

2

n
,

which completes the proof or (52d).

Proof of (52e). Similar to the proof of (52a), we denote F t−1 as the σ-algebra generated by all
trajectories sampled at 0,1, . . . , t − 1-th periods. For each i ∈ N , let

L
t
i ∶=

1

B
∑
τ∈Bt

i

[
H−1
∑
k=0

γk∇θi logπ
i
θi(a

k
i ∣s

k
Nκ

i
) ⋅

1

n
∑
j∈Nκ

i

[Q̂
πθt

fj
(skNκ

j
, akNκ

j
) + µt+1j Q̂

πθt

gj (s
k
Nκ

j
, akNκ

j
)] ].

(83)
Note that the only distinction between Lti and ∇̃θiL(θ

t, µt+1) is in the Q-function term,
where we use the true truncated Q-functions in the definition of Lti. Then, the difference
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∥∇̃θiL(θ
t, µt+1) − ∇θiL(θ

t, µt+1)∥
2

2
can be decomposed into the following four parts

∥∇̃θiL(θ
t, µt+1) − ∇θiL(θ

t, µt+1)∥
2

2
≤ 4

⎡
⎢
⎢
⎢
⎢
⎣

∥∇̃θiL(θ
t, µt+1) − Lti∥

2

2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

T1

+∥L
t
i −E [L

t
i∣F

t−1]∥
2

2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

T2

+ ∥E [Lti∣F
t−1] − ∇̂θiL(θ

t, µt+1)∥
2

2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

T3

+ ∥∇̂θiL(θ
t, µt+1) − ∇θiL(θ

t, µt+1)∥
2

2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

T4

⎤
⎥
⎥
⎥
⎥
⎦

,

(84)

where we used the inequality that ∥∑Jj=1 xj∥
2

2
≤ J ∑

J
j=1 ∥xj∥

2
2. Below, we separately upper-bound

the terms T1 - T4. Firstly, by the boundedness of score function (see Assumption 4.2) and the dual
variable, we can write that

T1 ≤

XXXXXXXXXXXX

1

B
∑
τ∈Bt

i

[
H−1
∑
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γk∇θi logπ
i
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k
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i
) ⋅
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∞
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t
gj − Q̂

πθt
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XXXXXXXXXXXX

2

2

≤

XXXXXXXXXXXX

1

B
∑
τ∈Bt

i

[
H−1
∑
k=0

γk∇θi logπ
i
θi(a

k
i ∣s

k
Nκ

i
)]

XXXXXXXXXXXX

2

2

⋅ [
∣N κ
i ∣(1 + µ)

n
(Mrϵ0 +

Lλϵ1(δ0)

1 − γ
)]

2

≤ (
Mπ

1 − γ
)

2

⋅ [
∣N κ
i ∣(1 + µ)

n
(Mrϵ0 +

Lλϵ1(δ0)

1 − γ
)]

2

= [
∣N κ
i ∣(1 + µ)Mπ

n(1 − γ)
(Mrϵ0 +

Lλϵ1(δ0)

1 − γ
)]

2

,

(85)
where we assume the upper bound in (52c) holds in the second inequality, which happens with
probability 1 − nδ0.

To upper-bound T2, we use a similar argument as (78). For any trajectory τ =

{(s0, a0),⋯, (sH−1, aH−1)} of length H , we define the shorthand notation Gi(τ) as

Gi(τ) ∶=
H−1
∑
k=0

γk∇θi logπ
i
θi(a

k
i ∣s

k
Nκ

i
) ⋅

1

n
∑
j∈Nκ

i

[Q̂
πθt

fj
(skNκ

j
, akNκ

j
) + µt+1j Q̂

πθt

gj (s
k
Nκ

j
, akNκ

j
)] . (86)

Then, it is clear from (83) that Lti = 1/B ⋅ ∑τ∈Bt
i
Gi(τ). By the boundedness of the score function,

dual variable, and the shadow Q-function, we have that

∥Gi(τ)∥
2
2 ≤ (

∣N κ
i ∣(1 + µ)Mr

n(1 − γ)
)

2

⋅ ∥
H−1
∑
k=0

γk∇θi logπ
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θi(a
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i ∣s
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i
)∥

2

2

≤ (
∣N κ
i ∣(1 + µ)Mr

n(1 − γ)
)

2

⋅
M2
π

(1 − γ)2

= (
∣N κ
i ∣(1 + µ)MrMπ

n(1 − γ)2
)

2

,

(87)

where we bound the Q-function terms in the first step and apply the boundedness of the score function
in the second step. Again, it follows from [88, Lemma 18] that with probability 1 − δ0

T2 = ∥L
t
i −E [L

t
i∣F

t−1]∥
2

2
≤
2 − 8 log δ0

B
(
∣N κ
i ∣(1 + µ)MrMπ

n(1 − γ)2
)

2

. (88)
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To upper-bound T3, which is the error due to trajectory truncation, we have that

T3 =

XXXXXXXXXXXX

E
⎡
⎢
⎢
⎢
⎢
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1/B ⋅ ∑
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XXXXXXXXXXXX

2

2

≤[
Mπγ
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⋅
∣N κ
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i ∣(1 + µ)MrMπ

n(1 − γ)2
]

2

,

(89)

where (∆) follows from the definition of the truncated policy gradient ∇̂θiL(θ
t, µt+1) (see (D)) and

the inequality is due to a similar argument as (87).

Finally, the upper bound of the last term T4 is provided in Lemma 3.5, and it holds that

T4 = ∥∇̂θiL(θ
t, µt+1) − ∇θiL(θ

t, µt+1)∥
2

2
≤ [
(1 + ∥µ∥∞)Mπc0ϕ

κ
0

1 − γ
]

2

≤ [
(1 + µ)Mπc0ϕ

κ
0

1 − γ
]

2

. (90)

Together, by substituting (85), (88), (89), and (90) into (84), we derive that

∥∇̃θiL(θ
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n2
ϵ2(δ0) + ϵ3.

(91)

Note that, when (52c) is satisfied (which has probability 1 − nδ0), (91) has a failure probability of
δ0 due to the probabilistic bound (88). Thus, by applying the union bound, we can conclude that
(91) holds for all agent i ∈ N with probability 1 − 2nδ0. Recall that ∇̃θL(θt, µt+1) is defined as the
concatenation of local estimators {∇̃θiL(θ

t, µt+1)}
i∈N . We conclude that with probability 1 − 2nδ0,

it holds that

∥∇̃θL(θ
t, µt+1) − ∇θL(θ

t, µt+1)∥
2

2
= ∑
i∈N
∥∇̃θiL(θ

t, µt+1) − ∇θiL(θ
t, µt+1)∥

2

2

≤ (∑
i∈N

∣N κ
i ∣

2

n2
) ϵ2(δ0) + nϵ3.

(92)

Finally, we remark that by definitions ϵ3 = O (ϕ2κ0 ) and

ϵ2(δ0) = O(ϵ
2
0 + (ϵ1(δ0))

2
+
log(1/δ0)

B
+ γ2H) = O(ϵ20 +

log(1/δ0)

B
+ γ2H) , (93)
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which completes the proof.

H Numerical experiments

In this section, we provide details on the experimental results. First, in Appendices H.1-H.3, we
separately introduce the three environments considered in this work and discuss the performance of
Algorithm 1 on these environments. Then, in Appendix H.4, we compare Algorithm 1 with three
baselines based on the MAPPO-Lagrangian method by [31] in two standard safe MARL problems.
Finally, in Appendix H.5, we illustrate the effectiveness of employing general utilities.

H.1 Synthetic environment

Consider an environment similar to that of [24, Section 5.1], where the agents are placed along a line,
i.e., 1− 2− ⋅ ⋅ ⋅ −n. The local state and action spaces of every agent i are binary, i.e., Si = Ai = {0,1},
with the transition dynamics specified as follows:

• For agent 1, st+11 = 1 if and only if st2 = 1.
• For agent n, st+1n = 1 if and only if atn = 1.
• For every agent i ∈ N/{1, n}, the local transition probability Pi is specified by

Pi(st+1i = 1∣st, at) =

⎧⎪⎪
⎨
⎪⎪⎩

1, if ati = 1, s
t
i+1 = 1

0.8, if ati = 1, s
t
i+1 = 0

0, otherwise.
The goal of the agents is to jointly maximize a cumulative reward while complying with the explo-
ration requirements, which can be formulated as

max
θ∈Θ
∑
i∈N
⟨λπθ

i , ri⟩ , s.t. Entropy(λπθ

i ) ≥ c, ∀i ∈ N , (94)

where the local rewards only depend on the states of the agents with r1(1) = 1 and ri(1) = 0.1, ∀i ∈
N/{1}. In all other cases, the reward is 0. The function Entropy(λπθ

i ) = −∑s∈S d
π
i (s) ⋅ log (d

π
i (s))

refers to the local entropy. Without the constraint, it is clear that the optimal policy is that all agents
take action 1 regardless of their states. However, the optimality of this policy is compromised in the
presence of the entropy constraint, since the agents are restricted from taking the same action all the
time.

H.1.1 Experimental results

In the experiment, we consider n = 10 and γ = 0.99. The results are plotted in Figure 3, where we
evaluate the performance of Algorithm 1 using episodic return and total constraint violation as metrics.
The agents are initialized with random policies, resulting in a high entropy during the early stages of
training. As a result, the constraints are always being strictly satisfied at the beginning. As the agents
strive to increase their cumulative reward, they gradually begin to take action 1 more frequently
and spend more time in state 1, which results in a decrease in entropy. Eventually, the agents find a
balance between maximizing the cumulative reward and satisfying the entropy constraint.

Below, we discuss the experiment results shown in Figure 3.

Different communication ranges In this experiment, we test the algorithm with communication
radius κ ∈ {0,1,2,5}. We note that the case κ = 5 is close to global observation for agents in the
middle. The results demonstrate that κ = 1,2,5 exhibit comparable performances, i.e., a stricter
restriction on the communication range does not compromise the optimality in this environment,
which is due to the simplicity of the environment. The case with no communication (κ = 0) is slightly
worse than others and suffers from a higher constraint violation during training.

Different constraint RHS values In addition, we also vary the values for the threshold of the
entropy constraints. A larger threshold value implies a stronger requirement for exploration, which
subsequently results in a lower cumulative reward since the agents only receive rewards when their
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Figure 3: Performance of Algorithm 1 in synthetic environment with 10 agents under entropy
constraints. Left: different communication ranges. Middle: different constraint right-hand side
(RHS) values. Right: different dual step-sizes.

states are equal to 1. As seen in the two middle plots of Figure 3, the experimental results uphold this
argument.

Different dual step-sizes Furthermore, we test how the size of the dual step-size/regularization-
weight ηµ influences the learning process. The results show that when ηµ is reasonably large, e.g.,
ηµ ≥∈ {2,3,10}, the performances of the algorithm are roughly the same. Notably, we observe
that having a large ηµ not only ensures a low constraint violation for the learned policy, but also
guarantees a low violation during the training stage. On the other side, a small ηµ, e.g., ηµ ∈ {0,1}
may not provide enough incentive to offset the violated constraints.

H.2 Pistonball environment

The Pistonball [49] is a physics-based cooperative game where each piston at the bottom represents
an agent (see Figures 5 and 6). The agents naturally form a network where there is an edge between
two adjacent pistons. The agents’ goal is to collaboratively move the ball from the right wall to the
left while satisfying the exploratory constraint defined by an entropy function. The action space
Ai of each agent i contains three elements: moving four pixels up, moving four pixels down, and
remaining still. The local state space Si consists of two components: the y-position of agent i and
its observed information of the ball, which is a five tuple, namely the ball’s x-position, y-position,
x-velocity, y-velocity, and angular velocity. Each agent i can only observe the ball when it enters the
space above itself, otherwise the agent receives a binary value indicating whether the ball is to its left
or to its right.

The local reward function ri is constructed such that agent i can receive a non-zero reward (penalty)
only if any part of the ball is above itself at the current or the last time step. The size of reward
(penalty) depends on the change in the ball’s x-position, where a rightwards move receives a penalty
of twice the size of the reward for a leftwards move. When the ball stays at the same place for over
three steps, the agents below will receive a negative time penalty. Mathematically, the problem can
be formulated as:

max
θ∈Θ

1

n
∑
i∈N
⟨λπθ

i , ri⟩ , s.t. Entropy(λπθ

i ) ≥ c, ∀i ∈ N , (95)

where we use a common constraint threshold c for all agents.
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Figure 4: Performance of Algorithm 1 in the Pistonball environment with 10 agents under entropy
constraints. Left: different communication range. Middle: different constraint RHS value. Right:
different dual step-size. The total constraint violation is defined as the sum of absolute violations for
each local constraints.

(a) Start (b) Middle (c) End

Figure 5: Visualization of Pistonball environment at three different stages when executing the learned
policy.

H.2.1 Experimental results

We consider the scenario of 10 agents and label them by {1,2, . . . ,10} from right to left. The
experimental results are summarized in Figure 4, where we test the proposed algorithm based
on different communication ranges, constraint RHS values, and dual step-sizes. The algorithm’s
performance is evaluated using two metrics: the cumulative reward and absolute constraint violation
of the learned policy. Below, we first present some general observations, followed by individual
discussions of three comparisons.

General observations.

• The safety constraint plays an important role in this environment. Without the constraint, sometimes
the learning process is trapped in sub-optimal policies. A common local optimum is that all agents
move to the lowest position and keep staying there. In this situation, the ball can still move to the
left at a significantly slower pace, driven by its initial velocity, and agents will receive some rewards.
By incorporating a mild entropy constraint (e.g., c = 1.8), agents are encouraged to explore the
environment and escape sub-optimal policies. However, our comparison of different right-hand
side values below also reveals that the optimality of the learned policy can be compromised if the
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Figure 6: Illustration of the benefit of having a relatively-larger communication range (κ = 2). The
agents on the right make a sacrifice by intentionally raised the ball all the way up to provide more
flexibility for agents on their left.

exploration requirement is too strict. These two findings highlight the trade-off between exploration
and exploitation.
It is worth noting that, although encouraging exploration is a common practice in RL, our formula-
tion allows for the direct incorporation of the entropy of the occupancy measure since we allow the
objective and constraint to be general utilities. Compared with standard approaches, such as adding
a discounted entropy with respect to the policy in the objective [89], our approach provides a more
explicit characterization for the exploration requirement.

• We visualize the learned policy with κ = 3, c = 2, and ηµ = 100 in Figure 5, considering three
different time points where the ball is located in the right-most region, middle region, and left-most
region, respectively. The policy (action probability) of agents for the given state is displayed by the
text at the bottom of the figure.
As shown in Figure 5a, agents’ positions are initialized randomly at the beginning. To facilitate the
ball’s leftward movement, agent 1 must move upwards, while agent 2 should move downwards.
This is confirmed by the current policies of the two agents, where the upward probability of agent
1 is one, and the downward probability of agent 2 is 0.83. Subsequently, Figure 5b demonstrates
that agents 1 − 4 have created a slope for the ball to move leftward rapidly. After the ball passes,
we can see that the upward probabilities of agents 1 − 4 are very close to one, meaning that they
move upwards to eliminate the possibility of the ball moving back to the right. However, agents
8−10 still obstruct the ball’s path, as they have not detected the arrival of the ball due to the limited
communication range and move mostly randomly to satisfy the entropy constraint. Finally, in
Figure 5c, we observe that when the ball approaches, the downward probabilities of agents 9 − 10
become one, and the upward probabilities of agents 5 − 8 also increase to one.

Different communication ranges. We alter the communication radius from κ = 0 to 3, keeping
other parameters constant. The results indicate that κ = 2 or 3 yields better performance, while
disallowing any communication (κ = 0) results in lower rewards. This outcome can be attributed
to the fact that, for the efficient movement of the ball from right to left, each agent must maintain
the correct position before the ball’s arrival. With no communication, agents are unaware of the
ball’s arrival in advance, and they mostly move randomly to fulfill the exploration requirement.
Additionally, when agents cannot share their local shadow Q-functions with neighbors, they may end
up learning a "selfish" policy focused solely on their own objectives. A larger communication radius
not only enables agents to observe the ball earlier but also allows some agents to perform actions that
assist other agents. In Figure 6, we observe that agents 1 − 3 decide to move the ball all the way up.
Despite incurring a time penalty for themselves, this provides more flexibility for agent 4 and allows
more time to take random actions in order to satisfy the safety constraint. However, as a trade-off,
a larger communication range also implies a larger input size. Therefore, the convergence rate is
generally slower for a larger communication range when the same hyperparameters are used (see the
comparison of κ = 1 and κ = 3 in Figure 4 at early stages).

In contrast to the objective, we find the constraint violation remains relatively low in all cases. This is
because the entropy constraint encourages each individual agent to actively explore the environment,
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Figure 7: Wireless communication network with n2 agents and (n − 1)2 access points [24].

enabling the agents to find ways to keep the constraint violations low under different communication
ranges.

Different constraint RHS values. Here, we run the algorithm with different constraint RHS values
c ∈ {1.5,1.8,2.0,2.2,2.5}. In the middle two plots of Figure 4, we observe that increasing c from
1.5 to 2.0 yields a policy with higher rewards. This occurs because a slightly stricter exploration
requirement helps the algorithm avoid sub-optimal stationary points and discover a superior policy
(as explained in general observations). However, further increment of the constraint right-hand side
value (from 2.0 to 2.5) forces the agents to make many unnecessary moves to meet the constraint,
hindering the effective transfer of the ball to the left.

Different dual step-sizes. Finally, we test four different values {0,1,10,100} of dual step-size ηµ.
The result in the lower two plots in Figure 4 demonstrates that a larger value of ηµ yields a smaller
constraint violation. Since ηµ serves as the weight of penalization of the constraint violation in the
Lagrangian function, this observation is consistent with the developed theory in this paper. On the
other side, we can observe that the objective is slightly lower for larger values of ηµ, which can be
viewed as a compromise in exchange for a better-satisfied constraint.

H.3 Wireless communication environment

Consider an access control problem with safety constraints in wireless communication, following a
similar network setup and transition dynamics as presented in [24, 50]. Specifically, we consider a
grid with n2 users (agents) N = [n] × [n] and (n − 1)2 access points Y , as illustrated in Figure 7.
The goal of the users is to successfully transmit their packets to access points for processing. Each
user i is connected to a set Yi ⊂ Y of access points located at the corner of the block it resides in.
Two users are considered direct neighbors if they share a common access point. In every period,
user i receives a new packet by deadline di with probability pi ∈ (0,1). The user can then choose to
send the earliest packet in its queue to an access point y ∈ Yi or not send any packet at all. User i
receives a reward 1 if and only if access point y does not receive transmissions from other users and
successfully processes the packet from i, which occurs with probability qy ∈ (0,1).

When formulated as a standard RL problem, the state of each user i is defined by a di-dimensional
vector with binary values, i.e., si ∈ {0,1}di . The k-th entry of si takes the value 1 when user i
currently has a packet with k days remaining until the deadline. The action space of user i is defined
as Ai = Yi ∪ {null}, which means agent i can choose to send the packet to an access point y ∈ Yi or
do nothing. It is important to note that the local transition dynamic and local reward function of each
user depend on the states and actions of other users in its neighborhood. This slightly differs from the
setting presented in our paper, as we assume ri ∶ Si ×Ai → R. However, since this objective takes
the form of cumulative reward (rather than general utilities), our analysis can be extended to settings
where the local reward ri depends on (sNi , aNi).

In this experiment, safety is a critical concern. More specifically, potential risks may arise when
agents learn overly randomized policies, causing the neighbors failing to know which access points
will be occupied and thereby resulting in a collision. This resonates with real-life applications such as
autonomous driving and human-AI collaboration, where an agent’s policy needs to be predictable to
other agents. In light of this, we introduce an additional safety constraint, 1/2 ⋅ (1 − γ)2 ⋅ ∥λπθ∥

2
2 ≥ c,
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(a) Start (b) Middle

Figure 8: Two consecutive frames from the wireless communication experiment when η = 100, rhs =
0.3. The agents are encouraged to take deterministic actions. Pink arrows indicate successful
transmissions, and the binary integers below each agent indicates its state.

to encourage agents to learn less randomized policies. The term (1 − γ)2 serves as a normalization
constant. In summary, the problem can be formulated as:

max
θ∈Θ

1

n
∑
i∈N

V πθ(ri), s.t.
(1 − γ)2

2

XXXXXXXXXXX

∑
si∈Si

λπθ

i

XXXXXXXXXXX

2

2

≥ c, ∀i ∈ N . (96)

H.3.1 Experimental results

In our experiments, we consider a setting with n = 5 (comprising 25 agents and 16 access points) and
di = 3. Probabilities pi and qy are randomly generated. We perform the same set of comparisons based
on various communication ranges, constraint RHS values, and dual step-sizes. The experimental
results are illustrated in Figure 9, with key findings summarized as follows:

• The performance of the algorithm with κ = 1 clearly surpasses that of κ = 0. This highlights the
critical role of communication in situations where potential conflicts between neighbors can occur.

• Unlike the Pistonball environment, discouraging exploration via constraints leads to an improved
performance in this example (c = 0.3 yields higher return than c = 0.2). This can be explained by
the fact that when all agents strive to learn less-randomized policies, their actions become more
predictable for other agents, thus minimizing the conflicts. As shown in Figure 8, agents always
take the same actions. Some agents even choose to forfeit their own packets, either by not taking
actions or selecting non-existent access points, as a strategy to minimize the overall collisions
within the environment.
Our model lets the agents learn about the behaviors of other agents, thereby facilitating understand-
ing of the collective interplay between the locations and actions of those agents. Remarkably, the
agents are able to collaboratively identify a plan so that each access point is only used by one agent
in order to avoid collision in Figure 8.

• The final two plots in Figure 9 confirm that a relatively large dual step-size is needed in order to
achieve a good performance. It is important to note that the policy learned with η = 1 significantly
violates the constraint, while the policy learned with η = 10 gets trapped in some sub-optimal
points.

H.4 Baseline comparison

We emphasize that our method distinguishes itself from existing approaches like MAPPO-Lagrangian
(MAPPO-L) [31], as we allow for the objective and constraints to take the form of general utilities,
i.e., nonlinear functions of the occupancy measure. The adoption of general utilities enable our
formulation cover a wider range of problems (as discussed in Section 2 and Appendix H.5), but also
renders the existing analysis inapplicable.

To make fair comparisons, we consider two standard safe MARL problems, where both objectives
and constrains are defined using cumulative rewards, i.e., the problem can be formulated as (30).
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Figure 9: Performance of Algorithm 1 in wireless communication environment with 25 agents under
ℓ2-constraints. Left: different communication ranges. Middle: different constraint RHS values.
Right: different dual step-sizes.

Figure 10: Comparison between Scalable Primal-Dual Actor-Critic method in our work with MAPPO-
L by [31] in Pistonball.

The experiment results are illustrated in Figures 10 and 11 and Table 1. The two experiments are
respectively conducted within the contexts of the Pistonball (10 agents) and wireless communication
(25 agents) environments. In Pistonball, the constraints are designed to keep the pistons away from
high positions: each agent i receives an additional reward ui (constraint reward), proportional to its
current height, and we enforce a upper bound for the cumulative reward. In wireless communication,
the constraints are designed to encourage agents only taking actions when necessary: each agent i
receives a negative reward once it chooses to send out a packet, and we enforce a lower bound for the
cumulative reward.

The original MAPPO-L is not designed for decentralized (distributed) training, as it assumes that each
agent has access to global information. Therefore, we introduced three baselines based on MAPPO-
L and studied their performances in the distributed settings, namely MAPPO-L, Decentralized
MAPPO-L, and Decentralized Aggregate MAPPO-L (see Section 5).

From Figures 10 and 11 and Table 1, we observe that our method consistently outperforms the
baselines while maintaining a satisfying constraint violation. MAPPO-L is the closest baseline in
terms of performance, but it requires centralized training and access to global information. If we adapt
MAPPO-L to the decentralized case, the performance quickly drops, since in Decentralized MAPPO-
L, each agent is only trained to maximize its individual rewards. This is especially problematic in
scenarios such as wireless communication where some agents need to make sacrifices. Even if we
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Figure 11: Comparison between Scalable Primal-Dual Actor-Critic method in our work with MAPPO-
L by [31] in wireless communication.

aggregate all the rewards in the local neighborhood as in Decentralized Aggregate MAPPO-L, the
overall returns are still inferior to our algorithm.

H.5 Benefits of general utilities

Finally, we present an experiment underscoring the advantages of using general utilities. We remark
that prior works such as [17, 23] have also demonstrated the power of RL with general utilities
compared to traditional cumulative rewards. It is noteworthy that using occupancy measures is not
guaranteed to get higher returns. Rather, it allows for a more extensive range of objectives and
constraints and simplifies the design of cumulative reward-based schemes in certain scenarios. This
versatility is particularly useful in tasks like imitation learning (where the agent’s actions need to
align closely with expert trajectories) and pure exploration, where designing suitable reward schemes
can be challenging. Indeed, [16, Lemma 1] demonstrated that for certain MDPs, no stationary reward
function could equate to a general utility.

To better illustrate the benefits of general utilities, we focus on a scenario where the constraint conflicts
with the objective. We use the wireless communication environment, which requires less-randomized
policies to achieve a good objective value, but this time we instead enforce a high entropy constraint
(see (96)). A potential alternative for achieving this is introducing a gradient penalty term during
critic training by directly deducting the next step action entropy from the policy gradient loss [90].
However, this approach suffers from the ambiguity in selecting the penalty coefficient: while a small
coefficient fails to enforce the constraint, an excessively large one can impede the objective. In our
experiments, we find it challenging to identify a single penalty coefficient λ that can achieve high
return while keeping the total constraint violation under one.

Figure 12 compares the performance of our method with the gradient penalty approach. Under a
simple grid search, our method (shown in blue) can readily obtain a satisfactory performance while
meeting the safety constraint with ηµ = 200. Conversely, even after an extensive search for the
appropriate penalty coefficient, the baseline performances are still unsatisfying. When λ = 0.025,
the gradient penalty baseline is unable to match the return of our method and exceeds the constraint
violation requirement. The baseline performance only begins to exceed our method at λ = 0.024, but
at this point, the constraint violation significantly exceeds the threshold of one.

H.6 Network Architecture and Hyperparameters

In this section, we specify the network architecture and hyperparameters for our algorithm. We
refer the readers to our public Github repository for more details: https://github.com/CDSAC-
MARL/CDSAC, where we also present the animated GIF figures of the experiments.

The hyperparameters used are summarized in Table 2. For all experiments, we perform a grid search
by randomly sampling from the above list of hyperparameters for each experiment setting and choose
the combination that offers the best trade-off between episodic return and constraint violation. We
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Figure 12: General utility constraint versus gradient penalty in wireless communication.

Table 2: Hyperparameters for Algorithm 1.
Hyperparameter Synthetic Pistonball Wireless Comm.
Total iterations (T) 400 1500 800
Horizon (H) 125 200 12
Number of agents 10 10 5 × 5
Frame stack size 0 4 0
Actor lr. 10−3 ∈ {10, 5, 2, 1} × 10−4 ∈ {5, 1} × 10−4

Critic lr. 10−3 ∈ {10, 5, 2, 1} × 10−4 ∈ {10, 5} × 10−4

Batch size (B) 5 ∈ {5, 8, 16} 30
Q-evaluation step 500 ∈ {512, 1024, 1600} 512
Target Q polyak 0.95 0.995 ∈{0.95, 0.99, 0.995}
Discount (γ) 0.99 ∈ {0.8, 0.9, 0.95, 0.99} ∈ {0.7,0.8,0.9}

then run 3-6 seeds on the chosen set of hyperparameters to produce the confidence intervals in the
above figures. The experiments are produced on Tesla V100s and NVIDIA 3090s.

Below, we separately introduce the network architecture for the three environments.

Synthetic environment The actor network is defined as follows:

(2κ + 1,1)
Embedding
ÐÐÐÐÐÐ→ (2κ + 1,4)

flatten
ÐÐÐÐ→ (4 × (2κ + 1))

linear
ÐÐÐ→ (32)

linear
ÐÐÐ→ (num_actions).

For each agent actor, we first project the states of its 2κ neighbors along with its own state each into a
vector of size 4. We flatten the resulting embedding and additionally process it with two linear layers.
The critic is defined similarly, except that we also include the actions of its 2κ neighbors along with
its own action, so that the resulting vector is of size 8 × (2κ + 1).

Pistonball The actor network is defined as follows:

(frame_stack_size,2κ + 6)
linear
ÐÐÐ→ (frame_stack_size, h1)

flatten
ÐÐÐÐ→ (frame_stack_size × h1)

linear
ÐÐÐ→ (h2)

linear
ÐÐÐ→ (h3)

linear
ÐÐÐ→ (num_actions).

We first process each frame with a linear layer of hidden_dim h1 ∈ {32,64} and flatten the result as
input into a stack of linear layers, where h2 ∈ {128,256,512} and h3 ∈ {32,64}. We use ReLu as
the activation function. The critic network is defined similarly, except we additionally embed each
neighbor action into a vector of size 8 and concatenate the result together with (frame_stack_size ×
h1).

Wireless communication The actor network is defined as follows:

(di, (2κ+ 1)
2
)
linear
ÐÐÐ→ (di, h1)

flatten
ÐÐÐÐ→ (di ×h1)

linear
ÐÐÐ→ (h2)

linear
ÐÐÐ→ (h3)

linear
ÐÐÐ→ (num_actions).

Here, h1, h2, h3 take the same values as in the Pistonball experiment.
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