Orig Description
Euler's Phi Function
For given integer n, count the totatives of n, that is, the positive integers less than or equal to n that are relatively prime to n.
Input
n
An integer n (1 ≤ n ≤ 1000000000).
Output
The number of totatives in a line.
Sample Input 1
6
Sample Output 1
2
Sample Input 2
1000000
Sample Output 2
400000
Extracted Specification
An integer X (1 ≤ X ≤ 10^9).
### Example Input:
```
6
```
### Function Signature:
Write a function f(X) that takes in the input.
def f(X: int):
'''
X: an integer
'''
Test Case Generator
Sure, I can help you write a test case generator for the given problem statement of Euler's Phi function.
Here's a suitable test case generator function for this problem:
```python
import random
def tcgen():
n = random.randint(1, 10**9)
return n
# Example usage
if __name__ == "__main__":
n = tcgen()
print(n)
```
This function generates a random integer `n` within the specified range (1 ≤ n ≤ 1000000000) and returns it. When the function is executed, it will print a random value of `n` which can be used as an input for the Euler's Phi function problem.
If you need more test cases at once, you can modify the function slightly to generate multiple test cases:
```python
def multiple_tcgen(num_cases):
test_cases = [random.randint(1, 10**9) for _ in range(num_cases)]
return test_cases
# Example usage
if __name__ == "__main__":
num_cases = 10 # Specify the number of test cases you want to generate
test_cases = multiple_tcgen(num_cases)
for tc in test_cases:
print(tc)
```
This function `multiple_tcgen` will generate a list of random test cases and print each of them. You can adjust the `num_cases` variable to specify how many test cases you want to generate.
These generators provide the input `n` within the required constraints and can be used to create a variety of test cases for the Euler's Phi function problem.
Extract Arguments
def extract_arguments(fh):
n = int(fh.readline().strip())
return (n,)