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ABSTRACT

Wasserstein distance is a key metric for quantifying data divergence from a distri-
butional perspective. However, its application in privacy-sensitive environments,
where direct sharing of raw data is prohibited, presents significant challenges. Exist-
ing approaches, such as Differential Privacy and Federated Optimization, have been
employed to estimate the Wasserstein distance under such constraints. However,
these methods often fall short when both accuracy and security are required. In this
study, we explore the inherent triangular properties within the Wasserstein space,
leading to a novel solution named TriangleWad. This approach facilitates the
fast computation of the Wasserstein distance between datasets stored across dif-
ferent entities, ensuring that raw data remain completely hidden. TriangleWad not
only strengthens resistance to potential attacks but also preserves high estimation
accuracy. Through extensive experiments across various tasks involving both image
and text data, we demonstrate its superior performance and significant potential for
real-world applications.

1 INTRODUCTION

Optimal Transport (OT) is one of the representative approaches that provides a geometric view
that places a distance on the space of probability measures (1). Specifically, it aims to find a
coupling matrix that moves the source data to the target data with smallest cost, thereby inducing the
Wasserstein distance, a metric used to measure the divergence between two distributions. Due to its
favorable analytical properties, such as computational tractability and the ability to be computed from
finite samples, the Wasserstein distance has been applied in various domains, including document
similarity measurement (2), domain adaption (3;4), geometric measurement between labelled data (5)),
generative adversarial networks (6), dataset valuation and selection (75 [8).

However, calculating the Wasserstein distance often requires access to raw data, which restricts its
use in privacy-sensitive environments. In Federated Learning (FL), for instance, multiple parties
collaboratively train a model without sharing raw data, while their data are usually non-independently
and identically distributed (Non-IID) (9). In this context, the Wasserstein distance can be used to
measure data heterogeneity, cluster clients with similar distributions, filter out out-of-distribution
data, and ultimately improve FL model performance. However, since raw data cannot be accessed
in the FL setting, direct computation of the Wasserstein distance becomes infeasible. Similarly, in
a data marketplace, buyers seek to acquire training data from multiple sellers to build models for
specific predictive tasks. However, sellers are often reluctant to grant access to their data prior to
transactions due to the risk of data being copied, while buyers are hesitant to make purchases without
first assessing the data’s value, quality, and relevance (10)). In this case, a promising approach to
aligning the interests of data sellers and buyers is to compute the Wasserstein distance between
datasets in a privacy-preserving manner.

Recently, FedWad (11)) takes the first step to approximate the Wasserstein distance between two
parties via triangle inequality. However, its applicability is limited to scenarios involving only two
parties, making it unsuitable for data marketplaces with multiple data sellers, where the Wasserstein
distance between aggregated training data (from multiple sellers) and validation data (held by the
buyer) is required. Moreover, privacy concerns arise due to the shared information used to facilitate
FedWad calculations, which unintentionally exposes raw images from both parties. By exploiting
optimization conditions, it is even possible to reconstruct “clean’ images from the shared data.
Privacy risks are even more pronounced when dealing with textual data, as shared information in
the embedding space can reveal most of the original raw words. All of the aforementioned risks
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are undesirable for high-sensitive parties and make FedWad unacceptable in real-world applications.
FedBary (12) extends the previous work and addresses the task of noisy data detection based on
shared information, but it suffers from an asymmetry in detection capabilities: only clients in FL.
or sellers in the data marketplace know exactly which data points are noisy, while the server in FL
or data buyers lack this information. This asymmetry becomes particularly problematic when data
sellers or clients are not trusted. Therefore, there is an urgent need for a privacy-enhanced approach
to Wasserstein distance computation that ensures efficiency, accuracy, and symmetry in detection
capabilities, especially in settings involving sensitive data and multiple parties.

This paper aims to develop a faster and more secure method for approximating the Wasserstein
distance without sacrificing much accuracy. Our approach is based on geometric intuition derived
from the intercept theorem associated with geodesics: by constructing two similar triangles, we
establish a proportional relationship between their corresponding sides. This enables the direct
approximation of the Wasserstein distance between two data distributions through the distance of
their parallel segments. With our approach, accurate estimation can be achieved in just one round
of interaction, significantly reducing computational costs. Moreover, as we reduce the interactions
and change the optimization condition, our approach mitigates the privacy concerns associated with
previous methods, which will be discussed in detail later. Thanks to its scalability, efficiency, and
effectiveness, this solution addresses various real-world challenges. These include calculating client
contributions in FL, performing clustering in FL, filtering out corrupt data points before training,
assessing data relevance in data marketplaces, and any other privacy-sensitive contexts that require
measuring distributional similarity.

Our major contributions: (1) We conduct a comprehensive theoretical analysis of geometric
properties within the Wasserstein space, design a distributional attack against FedWad and introduce a
novel approach, TriangleWad; (2) TriangleWad is simple, fast, accurate and enhances privacy.
It also significantly improves the detection of noisy data from the server side in FL, better aligning
with real-world requirements; (3) We conduct extensive experiments on both image and text datasets,
covering a range of applications such as data evaluation, noisy data detection, and word movers
distance, demonstrating its strong generalization capabilities.

2 PRELIMINARY AND RELATED WORK

2.1 OPTIMAL TRANSPORT AND WASSERSTEIN DISTANCE

Definition 1 (Wasserstein distance) The p-Wasserstein distance between measures (i and v is

1/p
W, (i, v) :( inf / dp(x,x’)dw(x,x’)) : )
XXX

mell(p,v)

where d(x,x') is the pairwise distance metric, e.g. Euclidean distance. w € I(u,v) is the joint
distribution of p and v, and any w attains such minimum is considered as an optimal transport plan.

In the discrete space, the two marginal measures are denoted as p = ZZ’;I @0y, V= Z;”Zl b; 5;83_
,where ¢, is the dirac function at location z; € R<, and a; and b; are probability masses associated
to the - sample and belong to the probability simplex, Y./, a; = Z?zl b; = 1. Therefore, the
Monge problem seeks a map that associates to each point in x;, a single point x; and which must
push the mass of i toward the mass of v. However, when m # n, the Monge maps may not exist
between a discrete measure to another, especially when the target measure has larger support size of
the source measure. Therefore, we consider the Kantorovich’s relaxed formulation, which allows
mass splitting from a source toward several targets. The Kantorovich’s optimal transport problem is
Wy(p,v) = (_ min (C,P))!/» 2

(1) =, min(C.P)) @

where C = (d% (z;,2})) € R™" is the matrix of all pairwise costs, and TI(y,v) = {P €

R P1,, = y, P71, = v} is the set of all transportation couplings.

2.2  WASSERSTEIN GEODESICS AND INTERPOLAING MEASURE

Definition 2 (Wasserstein Geodesics, Interpolating measure (L1 [13)) Denote p,v € Pp(X) with
X C R? compact, convex and equipped with W,. Let m € II(u, v) be an optimal transport plan. For
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t € 10,1], define n(t) = (1 — t)x + ta’)pm, © ~ p, &’ ~ v, thus n(t) is the push-forward measure
under the map . Then, the curve i = (1(t))e[0,1] is a constant speed geodesic between i and
v, also called a Wasserstein geodesics between 1 and v. Any point 1)(t) on [i is an interpolating
measure between distribution i and v, as expected

W (1, v) = Wy (1, 0(2)) + Wy (1(t), v). ©)

In the discrete setup, denoting P* a solution of equation 2] an interpolating measure is obtained as

m,n

n(t) = ZP:,j(S(l—t)aci+tx}a 4)

,J
where P7 ; is the (4, j)-th entry of P*, and the maximum number of non-zero elements of P is
n+m — 1. (1) proposes to use the barycentric mapping to approximate the interpolating measure as

1
U(t) = E ; 5(17t)mi+tm(P*x”)i 5)

where z; is i-th support from p, x* is the matrix of ». When m = n, equation[4]and equation [5|are
exactly equivalent. In both equation 4] and 3] the parameter ¢ is defined as push-forward parameter,
which controls how much we could push forward the source distribution u to the target distribution v,
and construct the interpolating measure 7(t).

2.3 RELATED WORK

Private Wasserstein Distance There are very few efforts to provide privacy guarantees for com-
puting Wasserstein distance when raw data is forbidden to be shared. The first attempt is to apply
Differential Privacy (DP) (14) with Johnson-Lindenstrauss transform. However, this approach is
used for domain adaptation tasks, where only the source distribution is perturbed while the target
distribution remains unchanged. Additionally, it does not have geometric property, and has inaccurate
estimation empirically. The following work (15) considers DP for Sliced Wasserstein distance, and
(16) uses DP for graph embeddings. Recently proposed FedWad (11) develops a Federated way to
approximate distance iteratively based on geodesics and interpolating measures, and FedBary (12)
extends this approach to approximate data valuation and Wasserstein barycenter, which could further
be used for distributionally robust training (L7). It is worthy to note that one latest work Wasserstein
Differential Privacy (18]) focuses computing privacy budgets through Wasserstein distance, which is
not related to our applications.

Data Evaluation in FL and Data Marketplace Data quality valuation has gained more attentions
in recent years since it has impact on the trained models and downstream tasks. Due to privacy
issue, e.g. Federated Learning, only model gradients are shared for evaluation. Therefore, Shapley
value (SV) (19;120; 215 225 123)) is mainly used to measure client contributions as it provides marginal
contribution score. Recently, based on (11)), FedBary (12) uses Wasserstein distance to measure
dataset divergence as the score of client contribution, and it leverages sensitivity analysis to further
select valuable data points. In this paper, we focus on the horizontal FL, where clients’ data shares
the same feature space. Data evaluation with privacy guarantees is also applied in data marketplaces,
where evaluation must be conducted before granting data access. Recently, DAVED (10) proposed
a federated approach to the data selection problem, inspired by linear experimental design, which
achieves lower prediction error without requiring labeled validation data.

3 METHODOLOGY

3.1 PROBLEM STATEMENT

Our goal is to compute the Wasserstein distance among different datasets distributed on separate
parties, with the constraint that raw data is not shared. Without loss of generality, we start with the
case to calculate the Wasserstein distance between two measures, which can be easily extended to
measuring the divergence among multiple measures. We consider the case where p = 2, and use the
notation of W(-, -) to represent the 2-Wasserstein distance for simplicity.
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3.2 INTUITION AND MOTIVATION

Based on equation |3} FedWad (11) proposes a Federated manner to approximate the interpolating
measure & between g and v, and obtain the Wasserstein distance W (u, v) via W(u, €) + W(E, v).
However, based on equation d]and equation [5} directly calculating the interpolating measure £ needs
to access to raw data from both sides. Therefore, two additional measures 7, and 7, are introduced
to approximate . The proposed approach decomposes the Wasserstein distance WW(pu, v) into 4 parts
as follows, and the right-hand side provides an upper bound of the exact distance,

W, v) < WP (u,v) = Wip, ) + wn®, %) + w1 5y + wn,v). )

Specifically, £(%) is randomly initialized and shared with both parties. For every round k, each party

calculates the interpolating measure 7],8’6) / n,(,k) between /v and £(*~1), respectively. Then n,&k) and

7]1(,k) are shared to optimize a new £*), which is an interpolating measure between n,&k) and n,(,k).

With iterative optimizations, the Federated Wasserstein distance W(u, v) will converge to the exact

value W(u, v) at K -th round, when all nLK), £K), n,(,K) are interpolating measures between p and v

)

(geometrically p, nLK)7 ), n,(,K , v are on the same plane).

During the iterative procedure, a set of {n,(f), nﬁk), WK and Wasserstein distances W (p, £))
and W(£) | 1) are shared. The OT plans between z and £(¥), OT plans between &%) and v, and
parameters ¢t randomly set by both sides are not shared. From the analysis above, it seems that the
privacy is protected as OT plans and ¢ are not shared, which are the main elements for reconstructing
raw data. However, the privacy guarantee from either theoretical analysis or empirical result is not
provided, and a question raises: when the equality holds, without those informative elements, is the
Federated Wasserstein distance real privacy-friendly?

Firstly, we find FedWad is not applicable for text data, as we could directly retrieve top-1 similar
words within embedding space of €% (Figure [3)), and most of them are from raw text. Secondly, we
find when [fis an equality, there is a potential distributional attack to extract raw data information.
Theoretically, the attacker could use available information, to find a /i such that W(ji, 1) < e with a
small e. This is undesirable to some high-sensitive parties such as hospitals. Suppose the attacker
holds p, and he wants to infer information of v from the other side. Available information for this
attacker is: W(u, v), W(p, €5, p, nff{), and €5 Therefore, the intuition of the proposed attack
is straightforward: Two Wasserstein balls B(u, W (i, £5))) and B(u, W(u,v)), along with the
condition that 2, €)1 lie on the same geodesics, could uniquely determine the distribution of .
The attacker could initialize a learnable attack data matrix 7, and computes the distance W(7, i)
and W (9, £5)). In empirical experiments, we relax the constraint that © is on the same geodesics
with £z and v, and only meet two conditions: W (1, ) = W(u, v) and W(i, £5)) = W(v, ¢)) =
W(v, 1) — W(EE) | 11). Then we find we could get & such that W (2, ) ~ 0, which means the attack
data and raw data are distributional identical. Empirical results are shown in Appendix [D.T]

3.3 PROPOSED SOLUTION

From the previous discussion, we observe a trade-off between privacy and accuracy: performing
exact calculations constructs Wasserstein balls, which provide geometric information that could
reveal the distribution of the raw data. Therefore, our proposed solution is to avoid constructing any
interpolating measures between raw distributions and to minimize interactions as much as possible.
The technical comparison is shown in Figure[1] Suppose 1 € R™*% v € R¥*?, where i and v are
raw data held by two separate parties, 7 € R"*¢ ~ N (m., 0,2Y) is a randomly initialized gaussian
measure. If 7,,(¢) is an interpolating measure between p and +, 1, (¢) is an interpolating measure
between v and -y, we state there is a proportional relationship between W(7,,,7,) and W(u, v) as

1
ﬁw(nmnu)' @)

The geometric intuition behind is the intercept theorem: if 7, is on the segment [, ], 7,, is on the
segment [, V], given the segment [7),,,7,] is parallel to the segment [, V], there is a proportional
relationship between W (1., 7,,) and W (y, v). We follow the same barycentric mapping in equation|[3]

and analyze the error bound between W (u, v) and W(u, v) as follows,

W(p,v) < W(n,v) =
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Figure 1: Technical Comparison: In previous work (I1), two Wasserstein balls B(p, W(u, §))
and B(u, W(u, v)), along with the condition that u, £, v lie on the same geodesics, could uniquely
determine the distribution of v. TriangleWad does not have such an interpolating measure between
and v. Simultaneously, W(v,y), W(v,n,,), W(n,,,y) are private information. M (a, b) represents
the interpolating measure between a and b

Theorem 1 Let 7*(11,7) € R™** be the OT plan between p and v, 7w (v,~) € Rk be the OT
plan between v and . If n,, and n,, are approximated by Eq. equation@as

1 & 1 &
n“(t) = m Z 6(1—t)lli+mt[7f*(/h’7)7]i 771’(8) = n Z 5(1—S)Vi+ns[7r*(u,'y)'y],;~ (8)
i=1 i=1

with the condition that both measures have the same push parameters, e.g. t = s, then the approxi-
mation error |W? (i, v) — W?(u, v)| is bounded by O(Ca?), where C << 1, and it has a negative
relationship with k: the data size of .

The proof is shown in Appendix. ¢ and s are parameters to control how much we could push forward
the raw data to the target distribution - and construct the interpolating measure. This theorem tells
that if both sides calculate the interpolating measures between their own data and v with the same
push-forward parameter ¢, then they can easily approximate the Wasserstein distance with trivial
errors. Furthermore, based on the proof of the Theorem [T} there are some special cases that the
approximated Wasserstein distance is an unbiased estimation, as shown in the following corollaries.

Corollary 1 If one of the following condition holds: 0, = 0, k = 1, k — oo, u and v are Gaussian
distributions with the same covariance matrix or m = n, then W, (1, v) is an unbiased estimation.

Corollary 2 Each element of 1,, is obtained by applying an equal mean degree of linear transforma-
tion to the corresponding element of p as

M(8) = D S0ttty a1 ©)

i=1

where z; ~ N(0,1). If k — oo, then o(7* (11, 7)) — 0.

The above corollary [2]tells about the strategy to balance the randomness and utility. Given a fixed
variance, increasing the data size of « could decrease the variance of the added noises on the raw
data, and further decrease the approximation error. In practice, we could set k ~ min{m, n}.

Remark 1 Advantages of approximating the interpolating measure: The OT plan between /v and
v has at most (m + k — 1)/(n + k — 1) non-zero elements, when m # n # k. If we use the exact
calculation as in equation the larger size of the interpolating measures n,, and 1, will potentially
lead to significant computational overhead. However, with barycentric mapping as in equation 3]
we can ensure that the size of the interpolating measures 1,, and 1, remains consistent with i and
v, respectively, which helps reduce computational costs, as discussed in Sec {.1| Additionally, from
Corollary[2}] we observe that the interpolating measure is equivalent to a linear transformation of the
raw data, which is useful for detecting noisy data points. This will be further discussed in Sec[3.3.2)
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3.4 APPROXIMATE WASSERSTEIN DISTANCE WITH UNKNOWN ¢

Theorem states that the approximation error is minimized when the interpolating measures 7,,(t)
and 7, (t) are calculated using the same ¢ via equation implying that the value of ¢ should be public
information. As discussed in Sec[3.2] OT plans and push-forward parameters are key elements for
reconstructing raw data and should remain private. While making ¢ public might seem to contradict
privacy guarantees, we argue that the OT plan is the most critical component for reconstructing raw
data, and it is impossible to reconstruct raw data without access to this information, which will be
discussed in detail in Sec However, we find when computing Wasserstein distance among
multiple data distributions, there is a solution to hide such push-forward parameter. Before explaining
the calculation procedure, we present the following theorem,

Theorem 2 Suppose 1,,(to) is the interpolating measure on the geodesics connecting v and ~y with a
fixed value to € (0,1). If n,(s) is the interpolating measure on the geodesics connecting v and ~y
with Vs € (0, 1), then the 2-Wasserstein distance between n,,(t) and 1, (s) constitutes a quadratic
function with respective to the value of s, such that

W2 (mu(to), mu(s)) = f(s) = azs® + as + ao, (10)

where as, ay, ag are constant coefficients.

The proof is shown in Appendix B} Specifically, the party A calculates the measure 7, (to), where ¢,
is his private information. Then party A shares 7, (to) with party B, and requires the set of tuples
{s;, W(n.(s;), nu(to))}]‘B:Sp where s; € (0,1), By is the sampling budget and W(n,,(s;), 1. (t0)) is
calculated by the party B. Then the party A could fit an estimator function f(s) = W(nu(to0), 7. (s))
based on equation and calculate W2 (y, v) with ﬁ f(to)-

P & - ) 2
(0,1, a2) = avg_min >~ (W20mu(s,),ma(to) = W2 () ma(to))) - (1D

In practice, we opt for the choice of s; € {1, 1, 2}, which is enough to provide accurate estimations.
Once the parameters are learned, the distance predictor can be used to predict the Wasserstein distance
by plugging true push-forward parameter ¢, as input to the predictor.

The above procedures could be applied in the data marketplace, when there are multiple data sources

{v;}X,, and the data buyer wants to know the Wasserstein distance between the aggregated data
Zilil v; and his own validation set y, e.g. W(Zfil v;, ). Follow the similar procedure, a global
shared random distribution  is initialized. The buyer calculates 7, (ty) and sends it to each data

seller without sharing the value of ¢¢. Then the i-th data seller calculates the cost matrix C;(s;) =
C.;(nw,;(s5),mu(to)), which represents the point-wise euclidean distance between the interpolating
measure 7),, (s;) and 7, (to), where s; is the sampling ratio requested by the data buyer. Then the
concatenated cost matrix C(s;) = [C;(s;), - ,Cn(s;)]” is utilized to optimize the OT problem,
and calculate the 2-Wasserstein distance W%Zil 7, (55), Mu(to)) = minp(C(s;), P). Finally the
set {s;, W2(Z£V:1 N, (85), Uu(to))}fil is used to approximate the parameters in equation and
the buyer could calculate the Wasserstein distance by putting the true value of ¢;.

3.5 BROADER APPLICATIONS

We will explain how TriangleWad can be extended to various applications with minor modifications,
which are useful for domain adaptation and data evaluation in privacy setting.

3.5.1 WASSERSTEIN DISTANCE BETWEEN LABELED DATASET
OOTD (5) introduces an effective way to augment data representations for calculating Wasserstein
distance with labeled data. It leverages the point-wise notion z = (z,y) € X x ) for measurements

d(z,2') = d((z,y), (') 2 (dlx,2) + W (ay, )",

W (ay, ) = [|my — my |5 + 2y — Sy |3, (12)
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where o, is conditional feature distribution P(x|Y" = y') ~ N (m,, Eg,). However, the calculation
of the interpolating measure requires the vectorial representation, which means the point-wise cost
matrix could not be directly applied for our setting. For our extension, we follow the similar
way in (11), to incorporate the label information by constructing the augmented representation as

X = [x;my; Vec(Egl/ 2)] Therefore, when conducting approximations, all labeled datasets should
be pre-processed into such form and the random initialisation of - follows the same dimension.

3.5.2 DETECTING NOISY DATA POINTS

Beyond calculating the Wasserstein distance between datasets, we could evaluate the “contribution
score” of individual data point, to identify the valuable or noisy subsets. We take advantage of
characteristics that the duality of the optimal transport problem is linear, and conduct the sensitivity
analysis as in (7;112)), to assign the score to individual data point. We use the interpolating measures 7),,
and 7, to conduct the evaluation, as a noisy data point in the raw data should also be the distributional
outlier in the transformed form. The duality problem is W(n,,n,) = max(s geco(z)2{f, Mu) +
{(g,m.), where C°(Z) is the set of all continuous functions, f € R™*! and g € R™*! are the dual
variables. Then the constructed gradient score is as follows

Wy, F
ot Je{tmpN

which represents the rate of change in W(7,,,7,,) w.r.t. the given data point z; in 1),,, likewise for 7,,.
The interpretation of the value s; is: the data point with the positive/negative sign of the score causes
W(nu,n,) to increase/decrease, which is considered noisy/valuable. This score suggests removing
data points with large positive gradient could help to match the target distribution. (12} discovered the
detection capability is unsymmetrical. In TriangleWad, introducing 7,, and 7),, engenders symmetrical
capabilities in identifying noisy data, facilitating recognition by both the client and Server. This
enhancement aligns more closely with real-world scenarios: Server can select valuable data points or
identify potential attacks from clients.

4 THEORETICAL ANALYSIS

4.1 COMPLEXITY ANALYSIS

We conduct similar complexity analysis as in (11). The communication cost involves the transfer of +,
n,, and n,,. If the size of the data dimension is d, then the communication cost is O((k+m+n)d). As
for the computational complexity of interpolating measures and Wasserstein distance, an appropriate
choice of the support size of v is necessary. If we choose for the exact calculations, considering
that 1 and v are discrete measures, 7, and 7, are supported on at most m +k —landn +k — 1
respectively based on equation 4l Then for computing W(n,,, 7, ), there are (m + n + 2k — 2)
non-negative elements in the OT plan, it might yield the computational overhead when all n, m, S
are large. Therefore, we opt for the choice of a smaller support size of -y, such as k = min{m, n}.
Furthermore, with the barycentric mapping as in equation [} we can guarantee that the support size of
7, and 7, are always m and n respectively. Therefore, for computing W(1,,, 1, ), we can guarantee
the computational complexity as O((n + m)nmlog(n +m)).

4.2 PRIVACY ANALYSIS

In this section, we will discuss two privacy benefits of our proposed approach.

(1) Secd.2.1; Attackers lack important pieces of information to infer raw data: Attackers can
only infer raw data y when they know 7, (o), the OT plan 7(y,~) and the value of push-forward
parameter tg, while the later two terms are kept private. And approximating the OT plan is an NP-hard
problem; Compared to the previous approach, our approach involves only one round of interaction,
which limits the available common information and hinders any attempts at approximation.

(2) Sec[d.2.2}Setting a large ¢ could help protect privacy: from a geometric perspective, it controls
how much the interpolating measure is pushed closer to random Gaussian noise. From a statistical
perspective, it introduces more substantial noise to the raw data. Consequently, a larger ¢, results in a
greater Wasserstein distance between 7),,(to) and ., indicating higher dissimilarity between them.
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4.2.1 DEFENSE TO ATTACKS

Traditional general attacks cannot be directly applied in our setting, as our approach does not involve
any model training, and the shared information is insufficient to train a model. We consider two types
of attack tailored to this research from both geometric and statistical views. Suppose an attacker tries
to infer [ based on available information, there are two potential attacks:

(1) Distributional attack: Whether W(ji, u) < € for a very small €?
(2) Reconstruction attack: Whether ||fi — pu||?> < € for a very small €?

The first attack is the distributional attack designed for FedWad. TriangleWad does not calculate
any interpolating measure between p and v, so the attacker can not use available information to
identify the distribution of the raw data. For the second attack, the attacker knows the structure
of equation Nu,7y- The attacker might approximate ji = %_t(nu — t) while the groundtruth is
ﬁ (nu—tom (i, y)y). In the worst case that t, becomes public information, it is also challenging for
the attacker to reconstruct raw data, as private information 7 (u, ) has m + k — 1 non-zero elements
with non-identical value, which is impossible to exactly approximate. Therefore, without knowing the
exact value of both ¢y and 7(u, ), i and p will have a significant gap in both the Euclidean distance
and Wasserstein distance, making the attack fail. We visualize this result in Figure 2] (lower right
panel) in the experiments, and find each element in 7, (Local IM) and /i (Attack) are uninformative.

4.2.2 QUANTIFY THE DIFFERENCE BETWEEN p AND 7),,(%)

We have proved that the proposed approach preserves the procedure of normal perturbations with
some randomness in Corollary [2| The following theorem helps to quantify the distance between the
interpolating measure and the raw data.

Theorem 3 The 2-Wasserstein distance between raw data and the interpolating measure is propor-
tional to the 2-Wasserstein distance between raw data and the random noises as

W, nu(t)) =W (1, y)- (14)

The proof is shown in Appendix. This result implies that we can set a larger ¢ € (0, 1) to increase
the dissimilarities between 7),,(¢) and p in Wasserstein space, thereby protecting privacy without
sacrificing utility. The empirical result is shown in Appendix

5 EXPERIMENTS

We conduct experiments on both image and text datasets to demonstrate the efficiency and effective-
ness of TriangleWad across multiple tasks. For the quantitative analysis, we expect TriangleWad
to provide accurate estimations with reduced computational time. For the qualitative analysis, we
anticipate that the shared measure will reveal minimal information from the raw data: for image
data, visual elements should be unrecognizable, and for text data, fewer raw words will be retrieved.
Additional applications with empirical results are provided in the Appendix.

5.1 QUANTITATIVE AND QUALITATIVE ANALYSIS FOR IMAGE DATA

We employ CIFAR10, Fashion, and MNIST datasets as case studies to provide both quantitative and
qualitative analyses among DirectWad, FedWad, and TriangleWad. DirectWad calculates Wasserstein
distance with raw data directly, which is our ground truth. We will compare FedWad and TriangleWad
in terms of their approximation differences from the ground truth and the average computation
timeand the results are summarized in Table For data processing, we randomly select subsets
w and v with equal sizes (100/500/1000), and their distributions do not necessarily to be identical.
Dio's¢ and D¢ are derived from the clean data y, with the former containing 20 noisy data points
and the latter containing 50 noisy data points. The noisy type is to add the Gaussian noise in the
feature space. For fair comparisons, we set 7 = £(9) ~ A/(0, 1) for TriangleWad and FedWad, and
the iteration epoch is set as 30 for FedWad because the optimization round does not affect the distance
significantly when attaining the local convergence (11). DirectWad provides the ground truth distance.
FedWad is our baseline, using the triangle inequality to approximate the distance. The average gap
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Histogram of Data

Data A

Defens
o = FedWad IM
|| Local Data
. Local IM
Gaussian

Local IM Attai‘.ﬂk
Figure 2: Qualitative Visualizations with Gaussian Noises: the global interpolating measure -y in
FedWad (FedWad IM) is visually informative, while in our approach, all interpolating measures (Local
IM and Server IM) and v (Defense) are visually noisy. In addition, the statistic plot in the right side
shows Local IM indeed follows the Gaussian distribution while FedWad IM is similar to raw data.

refers to the distance gap with DirectWad, while the average time represents the computational cost.
Therefore, TriangleWad provides competitive approximation accuracy with less computational time
compared to FedWad. These findings emphasize the efficiency of our approach without compromising
estimation precisions. The qualitative analysis aims to demonstrate the privacy guarantee, and we
visualize the results in Figure 2] The left panel illustrates the CIFAR10 data distributed in parties
A and B, 7 of FedWad between A and B (FedWad IM), 7, and 7, of TriangleWad (Local IM,
Server IM), and randomly constructed v (Defense). Both Local IM and Server IM do not reveal
any information about the data. From FedWad IM, we can identify the class of each image. In the
right-side histogram plot, we construct a statistical test to demonstrate that our local interpolating
measure follows a Gaussian distribution, while FedWad IM would reveal statistical information. In
addition, we visualize the reconstruction attack towards TriangleWad in lower right panel, where the

~ follows the gamma distribution. Both local IM and Eauack are uninformative noises.

5.2 MEASURE DOCUMENT SIMILARITY WITH PRIVACY

Datasets We utilize BBC data processed by (24), and use the Word2Vec model (23)) to map raw data
into embeddings e(-). We remove stop words, which are generally category independent.
Baselines We compare FedWad (11)), as it is the only approach that is fit to this case.

This experiment aims to demonstrate that using interpolating measures in FedWad raises more
serious privacy concerns for text data compared to image data. In images, the interpolating measures
provide a visual recognition of each image, but not the original data statistics. However, with text
data, the interpolating measures can accurately retrieve original words of raw data in embedding
space, causing privacy leakage. Specifically, after computing the Wasserstein distance, we employ
the similar_by_vector function to explore the most similar words with e(¢(%)); and e(1,,);
respectively. In Figure we observe the text retrieved from e(£(%)) matches words in the raw data
1, but for e(7,,), most words are unrelated. We define the matching rate as the proportion of words
retrieved by e(+) that are identical to the words in the original text, e.g.words retrieved by e(u). When
comparing two different texts VW (e(x), e(v)), the matching rates for £() and 7,, are 69% and 4%.

5.3 ABLATION STUDY

Our approach is also fast and accurate when exactly calculating the interpolating measures instead of
approximating. We set pu ~ N (20, 52), |u| = N — 200 and v ~ N (100, 10?), |v| = N + 200. Data
dimension is set to be d = 50. For fair comparisons, we set the supporting size of £(°) for FedWad and
~y for ours as || + || — 1. The global iteration rounds for FedWad are set to be 10. The experimental
results are shown in Figure[d] These three plots show the calculation time and approximated distance
of FedWad and TriangleWad when N = [500, 1000, 1500] and o () = o(¢£(®)) = 10. Our approach
is efficient since we only need 3 OT plans in total, thus preventing the computational overhead
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DirectWad FedWad TriangleWad( 100/1000)

CIFAR10 100 500 1000 100 500 1000 100 500 1000
Wa(p, v) 27.46 2473 24.16 32.90 30.75 30.72 27.51/32.88 24.73/30.76 24.16/30.69
V\/’g(D?‘Jise7 v) 57173  216.54 141.68 | 571.99  217.50 143.08 | 571.74/572.01 216.54/217.02 141.68/143.68
Wg(Dg"ise, v) 975.79 376.65 248.32 975.94 377.15 249.16 975.80/975.88 376.65/377.32 248.32/249.10

Avg.Gap - - - 1.95 2.49 2.93 0.05 0.00 0.00
Avg.time(s) - - - 2.55 34.23 92.46 0.17 1.38 3.26
Fashion 100 500 1000 100 500 1000 100 500 1000
Wa(p, 1) 12.68 10.94 10.45 15.59 14.30 15.22 12.68/15.67 10.94/15.77 10.45/15.34
Wa (D1, v) 295.17  107.62 70.51 29529  108.14 71.81 295.17/296.38 107.62/107.71 70.51/71.88
Wa (ng‘, v) | 687.70  269.77  178.21 68776 270.06  179.22 | 687.70/688.40  269.78/270.88 178.21/179.17
Avg.Gap - - - 1.02 1.39 2.35 0.00 0.00 0.00
Avg.time(s) - - - 1.76 18.62 54.72 0.08 0.69 3.32
MNIST 100 500 1000 100 500 1000 100 500 1000
Wa(p, v) 15.05 12.99 12.57 18.66 17.13 17.04 15.05/18.40 12.99/17.02 12.57/17.66
Wa (qu, v) 290.19 11430 75.81 290.37  115.12 76.90 290.19/290.88 114.30/115.13 75.81/76.88
Wg(D‘;‘i“e, v) 688.94 27437 18139 | 688.98 27506  182.04 | 688.94/689.69  274.37/275.54  181.39/ 182.88
Avg.Gap - - - 1.27 1.88 2.07 0.00 0.00 0.00
Avg.time(s) - - - 1.44 17.22 65.33 0.07 2.44 9.71

Table 1: Quantitative Comparisons in the balanced OT problem: DirectWad represents the ground-
truth, we compare FedWad and TriangleWad on the approximation error and computational time.

Raw Data

FedWad TriangleWad

cabinet anger at brown cash raid ministers are unhappy about plans to use
whitehall cash to keep council tax bills down local government minister
nick raynsford has acknowledged. gordon brown reallocated 512m from
central to local government budgets in his pre-budget report on thursday. mr
raynsford said he had held some pretty frank discussions with fellow
ministers over the plans.

low-budget film wins cesar a film that follows a group of alienated youth in
a paris suburb as they prepare to perform an 18th century play has won
france s top cinema award.

Brown unhappy minister
cash council Gordon

Volkswagen_Passats_amid Kapersky Labs
Neiman Marcus_Saks PM_Boyko_Borisov

government Designer_Outlets Fiuczynski Imperial_College
Budgets council broadcaster Tommy_Heinsohn
tax Jones occasional_flashes

By DAVID_KINVIG awards grommet
foul _mouthed misanthrope Darr
SuperNova_Acceleration_Probe

unopened_envelopes_relating sara hero

schoolteacher M5_Motorway Spotlighting

africa travails paris cinema

featuring for french actor at

wistful wanted show best for
for an the cesar youth

Figure 3: BBC Data: words in highlight are words retrieved by e(u). We randomly choose words
retrieved by embeddings of FedWad e(¢(%)) and embeddings of TriangleWad e(1,,).

mentioned in FedWad. Additionally, TriangleWad does not have the significant gap when calculating
the exact interpolating, whereas FedWad is unstable and has a larger approximation gap.

6 CONCLUSION

In summary, we introduce TriangleWad, a novel approach to efficiently and effectively compute the
Wasserstein distance among datasets stored by different parties. We provide a detailed analysis of
the approximation bound and the privacy benefits of our proposed approach, along with empirical
results demonstrating its practical effectiveness through simulations on various problems, such as
data valuation in FL and data selection in data markets. Extensive experiments showcase its superior
performance across various tasks involving image and text data.

80
e FedWad (learn) _/‘* 642 ____—*———'_'_: 24175 —
ours (learn) - . —— e T
60 = FedWad (approx) Pl g 641 P g 441.50 /_/‘ —x
—*  Ours (approx) " £ e £ 44125 P
o e g 640 - —# DirectWad (learn) E o'
E 40 - £ R FedWad (lean) < 441.00
F - * 86391 7} Arm———,
. —_ 4 = Ours (leam) £ 44075 . —_—
* " g ] R
20 L & 638 % 44050 /./ =~ DirectWad (approx)
e— = = 025 PR Fedad (approx)
= 637 ’ . —~ Ours (approx)
o] F=i=mimimi= L femp - o L pp
500 1000 1500 500 1000 1500 500 1000 1500
N N N

Figure 4: Comparisons when the interpolating measure is exactly calculated/approximated: in both
settings, TriangleWad is faster and more accurate than FedWad.
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A PROOF OF THEOREM [I]

Our approach mainly focus on the discrete OT problem. However, we also provide the proof for the
general continuous OT problem, where we have a similar conclusion: For 2-Wasserstein distance, the
approximation error is bounded by the variance of -y is it follows the Gaussian distribution.

A.1 PROOF OF THE DISCRETE OT PROBLEM
Before proving the Theorem [T} we provide the essential property [T| from (26)) as follows
Property 1 For any vector v € R>*L W(X + 2, Y +2) = W(X,Y).

We will begin our proof with the case of Gaussian distributions, as their Wasserstein distance has
a clear analytical form, which could provide a rigorous approximation error bound. However, our
theoretical analysis can be extended to more complex distributions.

Suppose X, € R™*% ~ N(q,07), Xy € R™% ~ N(uy,07), v € RF*? ~ N(py,02). We
consider 2-Wasserstein distance and the Kantorovich relaxation of mass splitting. Without loss of
generality, we set £ = 0.5. Then based on the barycentric mapping, the interpolating measures are

nx, = 0.5 x Xq + 0.5 x m[r(Xq,v)7],
Nx, = 0.5 % X, + 0.5 x n[r(Xy, 7)), (15

where 7(X,,7) € R™** 7(X;,7) € R™** are optimal transport plans.
(1) When k = 1,7 = [v1,++ , Ya)ixd, T(Xa:7) = [E]mx1.7(Xp,7) = []nx1, then based on

m

Property [1} 2W(nx,, nx,) = W(Xa +7, Xy +7) = W(X4, X3)

(2) When k > 1and k # m # n. m(X,,7) € R™* 1(X,,7) € Rk, For n(X,, ), we define
w;,; as the value of the (7,1)-position value, where i € [1,m],l € [1,d],w; = Zle wi = ~.

m
Further, with uniform weights, there are | ™+%£=1] non zero elements in each row of 7(X,, 7). We

denote the indices of the nonzero values in each row as the set Z;. For simplicity, we assume all
non-zero elements in (X, ) has an uniform weight of ﬁ
a. k — oo, then the weight is around % if [ € Z; and 0 otherwise. In geometirc view, each point in
X, are splited to map k points in . Then we have

k

, m
2nx, = Xa+mx D wip x5, = % < KEM), - E(ya)]
=1

== m[:)/la "'7f_}/d]1><d (16)
Then based on the Property [[]we have 2W(nx,,nx,) = W(Xa, Xp).

b. When k£ < o0, 2nx, = X, +m X [Zle w; 1 X ’Yl,j]zlj’i1 = Xg+mx 7m+1k_1 [Zle Liez,vi5] =
lieq ymid 2 1md s b (nd

X, +m x ﬁ X mty’j 1 [’Yg,jmljzl =X, + [fyf’j];r;:l. Similarly, nx, = Xp + | ?,ﬂ?,j:y If

we denote 7¢ = [W]];"Jil = [ty + 00 Za), A° = [y + 0bZp), where Z, € R™*4 ~ N(0,1),Z;, €

R4 ~ N(0,1), then

2 — Var(———— )= [—— PV ). 17
Ua ar(m"‘k_lleZI’WJ) [m_'_k_l} alr(;’nﬂ) ( )

As y,j is iid sampled from N (11, 02), then Var (3", yi,5) = 32, Var(y,;) =, 02 = ™ti=ls

2
m v
2 __ n 2
We can get O, = n+k710-’v

m__ 2 Qi 2 _
=105 Similarly, o) =

We define p, = /7%=, Pb = |/ 73— Therefore, our approximation is

2W2("7Xua nXb) - WQ(XU, +pa07ZaaXb +pb0'72b)
1 1
= llHa — Hbll2 Oq T Pa0 — 0y T PO, 2-
I I3+ I (oa +pao)® — (o5 +pypo3) I3 (18)

13
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Furthermore, we focus on the second term as
(02 +p20?)% — (0F + pio?)2 |3

= (02 +p20%) — (0F + pf0?) — 2/ (02 + p202) (07 + p}or2)

(UZ - Ub) + U pb -2 \/ Uan O-apbaly)2 + (paO-’yo-b)2 + (papl70-'2y)2

K
= |log — ou )5 + Ui(pa — ) + 2 (0400 +Papb0~2, - K)

H
< loa = aul3 + o2(pa — p1)*. (19)
Then we can have an upper bound as
2W2(nx,,0x,) < llta = moll3 + 00 = 0u[l3 + 05 (P — po)* = W?(Xa, Xp) + 05 (pa — 1)°
(20)

Reversely,

H =0404 + paps0’ — \/(%%)2 + (0apb04)? + (Pa0~0b)? + (Papbo3)?

= V(7200 + 1/ (papn02)? =/ (0000)? + (0a110,)2 + (9a30)? + (Papso?)?

> \/(Uaob)2 + (Pappo2)? — \/(Uan)2 + (0apb0~y)? + (Pa0~0b)? + (Pappo?)?
(0a01)? + (Papb02)? — [(0a0b)* + (0aPb0~)? + (Pa0y03)? + (Papso?)?]
V(0000)? + (pups02)? +/(0000)* + (00p40,)? + (pa0,04)? + (Pups02)?

> — [(Uapr’Y)Q + (pao-’yo-b)Q]Q (21)
2(0a05)% + 2(papp02)? + (Tapboy)? + (Pa0~0p)?

Therefore, we have a lower bound

WV (nx, 1x,) = e — o3 + llow — all3 + 05 (pa — p1)* + 2H

aPp0~)? + (Pa0y00)*?
> W2(Xo, Xp) + 02(pa — p)> — 2 (upucy) . 2
(Xa, Xp) + 05(Pa — pb) 2(0400)% + 2(papv02)? + (0uppoy)? + (pa0y0p)? (22)

M

As for M, we will compare the value of the numerator and the denominator as
2(0400)° + 2(papy03)? + (Tappoy)” + (paff»y 1)* = [(0app07)? + (Pa0y0)*)?
= 2(040b)* + 2(paps)* 05 + (0h +12)0%0% = (9} + p2)*(0a0)%]0

= (0400)°[2 — (P} + p2)%05] + 2(pape)® 0 + (P + p2)o 02, (23)

then set aW < /== will definitely guarantee 0 < M < 1. Therefore, the approximation error

2+p
12W2(11x,, nx,) — W?(Xq, Xs)| is bounded by 02 (p, — ps)? < 02. When p, = pj, or k — 00, we
have 2W?(nx,,nx,) = W2 (X4, Xp).

Overall, the approximation gap is affected only by o, and k. Specifically, given a larger &, (p, — p)?
becomes smaller, resulting in a better estimation.

A.2 PROOF OF THE CONTINUOUS OT PROBLEM
For the continuous OT problem, we obatin the similar analysis result but without the multiplyer
Theorem 4 In Wasserstein space, if 1, and 1), are approximated by Eq. equatlon@ respectively with

the same t, then the approximation error WP (n,,,n,) — tW?8(u, v)| is bounded by ob, which is the
p-th sample moments of .

14
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Suppose the OT plan between y: and -y is 7, and OT plan between v and +y is 7.

Proof 1 The Wasserstein distance between the interpolation measure n* and n* can be written as

WE (", n") =/ dy (néﬂ m”)dﬂ(né‘, ni)
XXX

@/ dy (t xat + (1 —1t) x m(m,Q);, t X xf + (1 —t) x m(WUQ)i)dw(xf,m;’)
XXX

@/X Xdp(t xaf +(1—t) xa), txai +(1-t)x xZ(i))dﬂ(xg,x;’)
X

:/ [t x @) —t x 2y + (1 —t) x @), — (1 —t) x 2], |Pdr(af,z]), (24
XXX ple v

where the equation (a) is based on the definition of Wasserstein distance, and (b) comes from the fact
that 7, is a permutation matrix and for each row i, (i, j) is non-zero only for (i) column and

According to the triangle inequality and equation[24) we have

WE (") < /X (e att =t xaf|lP + |l sy — @) I bam(att, )
XX
Dewgluev)+ (= or [ ) = Pduti) < o0
(v "

<tWP(p,v) + (1 — t>p/ 4

p(i

el = IPdn) + (-0 | g - e pavti

(@)

=tWE(u,v) +2(1 — t)Pa?, (25)
where the last inequality is due to that v has uniform weights of samples, o& denotes the p-th moments
of samples, and 7 is the central moment. Similar, we have

WE (i, 0") 2tWE (p,v) — (1 — )P /u(z’)><z/(i) 250y = Ty IPduai) x v (i)
>tWP (1, v) + 2(1 — t)Po?. (26)

Therefore, we can conclude that WE(n#,n") — tWp(u, v)| is bounded by o¥.

B PROOF OF THEOREM

For ¢ € TI(p, 7, v), we set
WE(0.6) = [ 10— 00+ ta; = auldio(as,ay,0) @)

Itis clear that W(n, (1), €) < W2 (1, (1), €).
Based on the Hilbertian identity,
11 = t)ai + oy — apl|* = (1= O)Ja; — apl” + tlay — 2l —t(1 = O)||lz; —al* (28)
we have
WL (u(1), &) = (L= YW (1, &) + WE (7, €) — t(1 — )W (1, 7) (29)
Based on the Proposition 7.3.1 from (13)), there esists a plan ¢/ such that
W3 (u(£),€) = (1 = YW (1, €) + W54 (7, €) — t(1 = )W (1, )
> (1= t)W3 (1, €) + tW3(7,€) — t(1 — W3 (1, ), (30)

which results in the theorem that the Wasserstein space is a positively curved metric space(Theorem
7.3.2 (13)), thus we have the following relationship

W3 (1,(1),€) = (1= W3 (1, €) + W5 (7, €) — t(L = YW3 (1, ), 31)
where ¢ is the fixed measure. We can then reformulate the right-hand side of equation [31]as follows
W3 (1, 8 + [ = W3 (1, €) + W3 (7,€) = W3 (1, )]t + W5 (11, 6), (32)

which we can find this is a quadratic function with respective to ¢ and each coefficient is a constant.
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C PROOF OF THEOREM[3|

Letn: := (1 — t)x + ta’. Let m € TI(u,y) be an optimal transport plan in the sense that
Walun) = [ o= o'|Pdn(a,a) (33
XXX

For any 0 < s < t < 1, define the coupling 7, ¢ = (1,(5), 1u(t)) g1t € Tly(s) w(r), Where
w(s) = (ns)xp and w(t) = (n;)pp. Specifically, w(0) = p, w(1) = =, then

Wi /Hx—x (2, )
— [Ime(ea!) =~ mo. o) (o, )
- / (L= s)a + sa) — (1~ )z + t2') dn(a, )
(t— s) /Hx—x dr (2, ')

= (t — 5)*W5 (w(0),w(1)), (34)
Therefore if s = 0, we have proved that
Wa(p, (1)) < [t = sWa(p, 7). (35)

Then we could leverage the triangle inequality to yield

Wa(w(0),w(1))
O P (@(0), w(s)) + Walw(s), w(t)) + Wa(w(),w(1))
< (s -+ |t = 5| + [1 = thWa(e(0). (1)
= WQ(W(O)vw(l))v (36)
which means (a) and (b) should be equalities. If we dive into
Wa(w(0),w(s)) + Wa(w(s), w(t)) + Wa(w(t),w(1))
=(s+ |t —s|+ |1 — t|)Wa(w(0),w(1)) 37)

we could have the following inequalities based on equation 35]

Wa(w(0),w(s)) < sWa(w(0),w(1))

Wa(w(t),w(1)) < [1 = ¢{W2(w(0),w(1)), (38)
therefore the following inequality holds

Wa(w(s),w(t)) > [t — s|Wa(w(0),w(1)). (39)
Overall, we have proved

Wa(w(s),w(t)) = [t — s[Wa(w(0),w(1)), (40)

where w(0) = p and w(1) = ~, thereby when s = 0, we complete the proof.

D ADDITIONAL EXPERIMENTS

D.1 DISTRIBUTIONAL ATTACK RESULTS

The empirical results are shown in Figure[5](a) and (b). For CIFAR10 data, the left side two plots are
£ in FedWad, visually we observe it is a kind of combination of two pictures. The right-side are
our constructed attack data, and we successfully extract raw “cat” and “car” elements within £ (%)
which are originally from £ and v. We also visualize more results in Figure [6]
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Figure 5: Attack results (a,b): the attack data will gradually converge to the target data with identical
distribution; DP results (c): The difference | (1, ) — W(ftpertur, ¥)| on 2-dimensional Gaussian
data results in different level of distance gap with different privacy budget.

Figure 6: More results on distributional attack
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Figure 7: Toy Example
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Figure 8: Line plots: The lines of Predicted Wasserstein distance (blue) and actual Wasserstein
distance (green) between interpolating measures are overlapping. When ¢ = sq, the W(,u, v)
has minimal gap with W(u,v) ; Dot plots: Predicted distance vs. actual distance between two
interpolating measures. Orange dots are for fitting and blue dots are for predictions.

D.2 Toy ANALYSIS

We illustrate how the intuition behind TriangleWad could be applied to calculate the Wasserstein
distance between two Gaussian distributions. We sample 200 data points with different means and
the same covariance matrix for Party A, Party B and defense data. For computing local interpolating
measures, we set ¢ = 0.5 for both sides. In Figure[7] left panel shows our how interpolating measures
locating between raw data distributions, and right panel shows the approxited Wasserstein distance
and exact one, with different support size for . We set the log value for approximation error and
time. The support size does not affect accurations significantly.

D.3 PREDICTING PERFORMANCE FOR UNKNOWN ¢

In this section, we consider measuring the Wasserstein distance among three data distributions
u,v1 and vy without revealing the value of push-forward parameters. We want to calculate
W(u,v1 + v2), as mentioned in Sec For synthetic data, we consider the balanced OT

problem, where v; = Y70 a3 ~ N(12,10%),00 = Y7022, 2 ~ N(3,1) and p =

i=
Zfiﬂ o}zl ~ N(20,302). For the CIFAR10 data, we consider unbalanced OT problem, where
vi = {z, yi 1Y, ve = {z5,9; 180, w = {2}, y;}129. The labeled dataset is transformed into the

vectorial form as discussed before. For simplicity, we define v = v; + v».

We set tg = 0.3 and sampling ratios are s; € {0.1,0.35,0.60}. The randomly initialized -y has a stan-
dard deviation o (y) = 3. We then use the tuple {s;, W(n.(to),n.(s;))} to fit the function f(s) as
described in equation[10] where W(n,.(to), 7., (s;)) is calculated based on the optimization result with
the input of the constructed cost matrix C(s;) = [C1(s;), Ca(s;)]T. As observed in Figure the

predicted values ﬁ)ﬂi(nu(to)7 1 (s)) (blue line) and the true values == W (1, (to), 7, (s)) (green
line) are overlapping, which represents our method have a strong representation power. Specifically,
we find when s = t; = 0.3, the green line has an interaction with the true distance W(pu, v) for the
synthetic data, or has the minimal gap with the true distance for the CIFAR10 data. It is worthy
to note that only 7,,(to), W(n.(to), n.(s;)),s; € {0.1,0.35,0.60} are public information, while

t0,70(85) = 1w, (85) + 7, (57) are kept private.

D.4 CONTRIBUTION EVALUATION IN FL

Datasets We use all image datasets mentioned before, and follow the same data settings in (21): We
simulate N = 5 parties and consider both iid and non-iid cases, and show details in Appendix ??:
Baselines We consider 7 different baselines, in which all of them evaluate client contribution in FL:
exact calculation exactFed, accelerated GTG-Shapley with its variants (GTG-Ti/GTG-Tib) (21), MR
and OR (19), DataSV (27) and FedBary (12)).

We consider exactFed as the ground truth since it precisely calculates the marginal contribution of
adding model parameters from one party by considering all subsets, for example, 2%V for N parties.
In previous quantitative comparisons, we found that the Wasserstein distances computed by Fedwad
and our method have trivial differences with Gaussian noises. Shapley-based approaches provide
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# Clients ExactFed GTG MR DataSV FedBary (1000/5000) TriangleWad

5 31m 33s 5m 25m 7m / 20m 2m
10 3h20m 7m  40m  2h30m 14m / 40m 4m
50 - - - - 1h10m / 3h20m 20m
100 - - - - 2h20m / 6h40m 40m

Table 2: Evaluation time with different size of N: For ExactFed, GTG and MR, we only consider the
evaluation time after model training; Evaluation time of FedBary and TriangleWad increase linearly
with N. A smaller support size in FedBary results in less time, yet a larger distance gap.

Adj-OR{ @ o 8 ¢ e (X 8 O ¢ o0 ® 8 e ® o
ORTMC{ * # * * k|7 * & *k & 1{* * *k *| 7 * * LR
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Figure 9: Contribution evaluation of 5 parties with CIFAR10 data

marginal contributions, thus illustrating proportional contributions. On the other hand, FedBary and
TriangleWad provide absolute values, so we normalize them to ensure all values fall within the range
[0, 1]. Overall, Wasserstein-based approaches offer distributional views with correct contribution
topology. For case (1), all client contributions are identical due to identical distributions. Case (2)
and Case (3) resemble exactFed, while others are more sensitive. Due to computational methods,
our approach is more sensitive to features, resulting in wider differences in contribution levels. MR
and our method follow the same topology as exactFed, whereas other approximated approaches are
completely wrong in this case, e.g. Party 5, with the most noise, has the highest contribution score.
We also present the evaluation time of various algorithms. Our approach provide a linear complexity
w.r.t to the number of clients, as the evaluation of each client is independent.

D.5 Noisy DATA DETECTION

We conduct experimental results on one image dataset: CIFAR10 and three tabular datasets: Adult
Income, Stock prediction, Fraud detection. Here we randomly choose the proportion 15% of the
training dataset to perturb. For the selected training datapoints to be perturbed, we add Gaussian
noises NV (0, 1) to the original features. Then KNNShapley, InfluneceFuction, LeaveOneOut utilize
raw data to conduct value detection, while TriangleWad use encrypted data to conduct detection,
respectively. In most cases, we control o(7y) = o to make fair comparisons.

Results are shown in Figure[I0] The x-axis represents the proportion of inspected datapoints, while
the y-axis indicates the proportion of discovered noisy samples. Therefore, an effective approach
should identify more noisy samples with fewer inspected samples. For each method, we inspect
datapoints from the entire training dataset in descending order of their scores, as higher scores indicate
greater data value. For ours, we use the negative gradient because it has an inverse relationship
compared to others. Our approach significantly outperforms other methods. Notably, even when
we set a very large o(y) = 100 and |y| = 20 to increase o(ny) for image data, the first 10%
of datapoints identified as noisy by us contain 100% of the noisy feature datapoints. This result
demonstrates the high effectiveness and robustness of our approach for image data. In other cases,
ours also outperforms the best.

D.6 QUANTIFY THE DISSIMILARITY OF RAW DATA AND INTERPOLATING MEASURE

We conduct the experiments on the CIFAR10 data set. We calculate the Wasserstein distance
W(n,(t),n,(t)) when ¢ increases from 0.1 to 0.9. The result is shown in Table 3| The groundtruth
distance is 806.4. We could find our approximation serves the robustness with the relatively large push-
forward value ¢, due to the geometric property. However, in general perturbations, W(u++,vy) = 10.9
when o () = 1. When ¢ becomes 0.9, there might be a large deviation as the interpolating measure is
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Figure 10: Noisy Feature Detection on CIFAR10 and two tabular datasets: Adult and Stock. Our
approach has better noisy detection ability compared to other data valuation approaches. It is worthy
to note that others need to use raw data, while TriangleWad could be used in the private setting.

o(7) t 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 groundtruth
1 W(nu, Mv) 806.5 806.5 806.6 | 806.6 | 806.8 807.0 | 807.4 | 807.8 808.7 806.4
W(nu, 1) 20.54 | 41.09 61.6 82.2 102.7 123.3 143.8 164.4 184.9 -
5 W(nu, Mv) 806.3 806.6 | 806.9 | 807.3 807.5 807.9 | 8089 | 8I11.8 818.9 806.4
W, 1) 22.3 44.7 67.1 89.4 111.8 134.2 156.6 1789 | 201.3 -

Table 3: Given fixed v, we change the parameter ¢ from 0.1 to 0.9. Geometrically, when ¢t = 0,
Ny = i, whent — 1, n,, is closer to . Although 7),, has different distribution with 1, we could still
provide accurate estimation.

very close to the random gaussian distribution . Overall, we can set a large value of ¢ to increase the
dissimilarity of raw data and interpolating measure, to protect the privacy.

D.7 TRIANGLEWAD OTDD RESULTS

We replicate the experiment of (3)) and utilize the code from (L1) on the labeled data. We conduct
the toy example of generating isotropic Gaussian blobs for clustering. We simulate two datasets
Do = {xi,yi}Y%.Dy = {x], 4]}, Specifically, we set the data dimension to be d = 2. The
size of source data to be N, = 500, and the size of target data to be N, = 600. The number of
classes is set to be 3. We conduct the data augmentations with the corresponding class-conditional
mean and vectorized covariance. To reduce the dimension of the augmented representation, we
consider the diagonal of the covariance matrix. Then we calculate the 2-Wasserstein distance
with TriangleWad and exact OTDD. The technical details of our approach is as follows: firstly, we
construct a matrix X, = [Xq, My, , vec(E@%z)}. Therefore, we get X, € RVex(@+do) wwhere dj is the
dimension of the class-conditional mean and vectorized covariance. Secondly, we randomly initialize
v € RFX(d+do) k& — min{N,, N, }, and construct the interpolating measure 7, (t) € RNa*(d+do)
with the barycentric mapping. Similarly, X, = [xy,my,,vec(Sy.)] and ny(t) € RNex(d+do),
Finally, we calculate W(X,, X;) = = W(na(t), m(t)). This procedure is different to OTDD,
where the cost matrix is changed as d(z, z’) in equation The data is visualized in Figure In
our results, the distance calculated by OTDD is 208.23 and TriangleWad has the result of 210.18.
While TriangleWad could have relatively accurate approximation with the augmented form, there is
an issue when some data points are mislabeled. For the mislabeled part, it is very important to break
the constraint of vectorial representations. We will leave it for the future work.

% -6 -4 -2 0 2 4 6 8

Figure 11: The visualization of synthetic labeled data
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N (10, 3) N(10, 20) (d=100,400) N(10,2),N(50,3) | N (100, 20), N (50,30)
DirectWad 37.27 249.10 532.46 401.47 593.20
FedWad 41.02 276.83 575.89 401.66 607.03
TriangleWad | 40.99 [ 4573 | 25232 [ 26651 | 536.05 | 544.05 [ 401.78 | 404.01 59491 | 602.90

Table 4: Quantitative comparisons of unbalanced OT problem

D.8 EXPERIMENTS ON THE UNBALANCED OT PROBLEM

We consider two IID and two non-IID cases. Data size is n, = 80, n, = 200. For FedWad, set

ne = mg +my — 1,60 ~ N(0,1) and iterations K = 50. For TriangleWad, set n, = ng,y ~
N(0,2) (left) or (0, 5) (right). For all cases, we set dimension d, = dj = d¢ = d, = d = 100
except the second case we also add d = 400. FedWad could not guarantee to find the interpolating in
high-dimensional case. The result is shown in Table 4}
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