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KeyVID: Keyframe-Aware Video Diffusion for Audio-Synchronized
Visual Animation

Supplementary Material

A. Details of Keyframe Localization Network
from Audio
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Figure 5. (a) We first calculate the optical flow and then take the
average across all pixels for each frame to form a curve of motion
score. The peaks (red) and valleys (green) indicate key frames. (b)
key frame prediction network from audio, described in Sec. 3.1.

In the Sec. 3.1 of main paper, we introduce that we need to
know the position of key frame at the begin of inference by pre-
dicting optical motion scores. Here is the detailed structure of this
network. The network processes raw audio by converting it into
a spectrogram A € RE4*TA where C'4 denotes the number of
frequency channels and T4 represents the temporal length. The
original ImageBind preprocessing pipeline applies a CNN with a
kernel stride of (10, 10) to patchify the input spectrogram, produc-
ing feature embeddings that are then processed by a transformer-
based encoder fuugio € RZ*T*C. However, this results in T (e.g.
T=19) being misaligned with the temporal resolution of the dense
motion curve sequence (e.g. 48).

To address this, we modify the CNN stride to (10, 4), increas-
ing the temporal resolution of extracted features (e.g. increase to
46). The transformer encoder then processes the updated feature
sequence:

Faudio = faudio(A)7 Faudio € RBXT’XC7 (1)

where T” > T reflects the increased temporal resolution. Since
the transformer relies on positional embeddings, we interpolate
the pretrained positional embeddings to match the new sequence
length T and keep them frozen during training.

The extracted features are passed through fully connected lay-
ers to predict a sequence of confidence scores s € R? XT/, where
each s; represents the likelihood of a keyframe occurring at time

step ¢:

s = U(WFaudio + b)> 2

where W € R and b € R”4 are learnable parameters, and
o () is the sigmoid activation function. The model is trained using
an L1 loss:

L=ls—8, ©)

where § represents the ground-truth keyframe labels derived from
optical flow analysis.

B. Details of Keyframe Selection
B.1. Detect Peak and Valley

To identify the local maxima (peaks) and minima (valleys) from
a one-dimensional motion score { M (t)}{_;, we perform the fol-
lowing steps:

1. Smoothing: Convolve the raw score M (t) with a short aver-
aging filter with a window size 5, producing a smoothed label
M (t). This helps reduce noise and minor fluctuations.

2. Peak Detection: Finds all local maxima by simple comparison
of neighboring values for M (t). We force a minimum distance
of 5 frames between any two detected peaks and requiring a
prominence (height relative to its surroundings) of at least 0.1.
This returns the indices of the local maxima.

3. Valley Detection: Repeat the same peak-finding procedure on
the negative of the smoothed signal.

B.2. Sample keyframes

In the main text, we discuss the process of selecting Tx < T
keyframes based on the motion score M (t) for each frame. Specif-
ically, we first pick the initial frame, then select up to TTK —1 peaks
among all detected ones (or all peaks if fewer are found). Next,
we include a valley between each consecutive pair of selected
peaks. Finally, we sample any remaining frames by an evenly
distributed (proportional) strategy, which approximates uniform
downsampling if few peaks and valleys are present. This approach
ensures that smooth motion or weak audio signals, producing lim-
ited peaks and valleys, do not degrade the consistency of training
for video diffusion models.

Algorithm 1 is the detailed pseudo-code for the full procedure,
including both peak and valley selection and the final proportional
allocation of remaining key frames.

C. Structure of Motion Interpolation

As shown in Fig. 6, we present the pipeline of motion interpo-
lation network as introduced in Sec. 3.3. After generating Tk
keyframes, we use a motion interpolator to generate the missing
frames back to the full video sequence of length 7. Interpolation
has been widely used in uniform frame generation [1, 24], where

a model predicts a fixed number of intermediate frames given the
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Algorithm 1: Keyframe Selection Algorithm

Input: Motion scores { M (t)}1_,, desired keyframe
count T < T.
Output: A set of Tk keyframes.
1 Step 1: Detect peaks and valleys based on M (t).
2 Step 2: Initialize keyframe list:
Keyframes < {first_frame}.
3 Step 3: Randomly select peaks
Choose up to {TTK —
from the detected peaks and add to Keyframes.
4 Step 4: Insert valleys
for each pair of consecutive peaks in

Keyframes do
L Select one valley in between and add it to

Keyframes.

5 Step 5: Compute how many more keyframes are
needed:
R+ Tk — |Keyframes|.
6 if R > 0 then
7 Define a list of N remaining frames (unselected)
with some weights {wy, ..., wx}.
8 W «+ Zi\il W;
9 fori < 1to N do
L ideal_share; + R - %%;
allocated; «+ |ideal_share; |;

0 | rR- Zf\il allocated; ; // Remainder
after flooring

11 if » > 0 then

fori < 1to N do

L frac; < ideal_share; — allocated;;

Sort frames by frac; in descending order.
for j < 1tordo

1" <— index of the j-th largest frac;;
L allocated;+ < allocated;~ + 1;

12 fori <+ 1to N do
if allocated; > 0 then
| Keyframes « Keyframes U {frame; };

13 return Keyframes

first and last frame. However, for keyframe-based generation, the
positions of missing and available frames vary, introducing addi-
tional challenges.

To address this, we adapt our keyframe generator diffusion
model into a motion interpolator model that generates T'x frames
at once using masked frame conditioning. The overall architecture
remains nearly unchanged, with the primary difference lying in
how image conditions are incorporated. Rather than conditioning
solely on the first frame, the model utilizes the features of gener-
ated keyframes as conditions, thereby learning to synthesize the
missing frames in between. This approach facilitates interpolation

between non-uniformly distributed keyframes while maintaining
temporal consistency. A pipeline can be found in Appendix C.

To generate a full video with 7" frames in a single pass, we in-
corporate FreeNoise [15] to increase the number of output frames
during inference. This allows the interpolation model to take all
generated keyframes as conditioning inputs and predict all missing
frames in one single step.
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Figure 6. The frame interpolation models has the same structure
as the orignal keyframe generation model, but has different im-
age features for concatenation. (a) For the keyframe generation in
Sec 3.2.2, the first frame features are repeated to match the frame
length of the latent vector; (b) In frame interpolation, the condi-
tion feature from keyframes are padded with zero tensor between
keyframe locations to match the frame length.

D. Motion score prediction evaluation

Quantitative result. We evaluate the keypoint detected from the
predicted motion score with the ground truth score. We calculate
the average precision with a distance threshold ¢. In this way, for
each keypoint in ground truth motion score curve, if it can match
with a predicted keypoint with distance lower than ¢, it will be
consider as a successful match. The average precision means the
the average of Nyatcn /N (total) across all instance, denoted as
AP@t We achieve the AP@3 = 60.57% and APQ5 = 77.92%.
Visualization

E. More Qualitative Results of Video Genera-
tion

As the generation result need to be watch with audio for the best
experience, we have put more visualization result into the supple-
mentary as mp4 files.

F. Experimental Details

For the experiments of KeyVID on three dataset AVSyncD, Land-
scape, and TheGreatestHit, we all train on resolution 320 x 512
as Dynamicrafter [24]. During the inference time, we use ddim
sampling with step 90. The temporal length of both key frame
generation and interpolation model are all 12. As our interpolation
module use freenoise[15] techniqual to obtain the final 48 frames
in one run. we change the windows size 12 and the stride 6 to fit
our temporal length.
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Figure 7. Visualization of (a) Predicted motion score from audio
with the ground truth caluate from video data; and (b) the gener-
ated video keyframe by diffusion network described in Sec. 3.2.2
before interpolations.
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G. Multimodal Classifier Free Guidance

Similar to Xing et al. [24], we introduce three guidance scales Sing,
Sxt, and Saua to extend video generation with additional audio con-
trol. These scales allow balancing the influence of different con-
ditioning modalities in video generation. The modified noise esti-
mation function is defined as:

€0 (2¢, Cimg, Cixt, Caud) = €0 (2¢, D, F, D) (@)
+Simg (€0 (¢, Cimg, T, D) — €0 (2¢, D, D, D))
+ 5wt (€6 (2t Cimg, Cixt, D) — €9 (Z¢, Cimg, T, D))
+5aud (€0 (2, Cimg, Cuxty Caud) — €0 (%t Cimg, Coxt, D)) -

Here, Cimg, Cixi, and cauq represent image, text, and audio condi-
tioning, respectively. The newly introduced audio guidance scale
Saud €nables the model to integrate temporal audio cues, ensuring
synchronized motion generation in audio-reactive video synthesis.
By adjusting these guidance parameters, we can control the rela-
tive impact of each modality in the final video output.

In experiment, we choose the audio guidance scale to 7.5 and
image guidance scale to 2, for both keyframe generation network
and frame interpolatio network. As we add the audio guidance as a
new feature, we compare the result from different audio guidance
from 4.0 to 11.0 as list in Tab. 3. Although the higher audio guid-
ance obtains a better audio synchronization score (RelSync and
AlignSync) we finally choose the one with the best visual quality
(FVD and FID) but still ahiveve compatible audio synchronization
score.

sws | FID. FVD| AlignSynct RelSynct
40 | 114 2705 48.18 24.14
75 | 1.0 2623 48.33 24.08
90 | 1.1 2772 48.55 24.16
110 | 1.1 2786 48.66 24.22

Table 3. Performance metrics for different guidance values.
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