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KeyVID: Keyframe-Aware Video Diffusion for Audio-Synchronized
Visual Animation

Supplementary Material

A. Details of Keyframe Localization Network363
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Figure 5. (a) We first calculate the optical flow and then take the
average across all pixels for each frame to form a curve of motion
score. The peaks (red) and valleys (green) indicate key frames. (b)
key frame prediction network from audio, described in Sec. 3.1.

.

In the Sec. 3.1 of main paper, we introduce that we need to365
know the position of key frame at the begin of inference by pre-366
dicting optical motion scores. Here is the detailed structure of this367
network. The network processes raw audio by converting it into368
a spectrogram A ∈ RCA×TA , where CA denotes the number of369
frequency channels and TA represents the temporal length. The370
original ImageBind preprocessing pipeline applies a CNN with a371
kernel stride of (10, 10) to patchify the input spectrogram, produc-372
ing feature embeddings that are then processed by a transformer-373
based encoder faudio ∈ RB×T×C . However, this results in T (e.g.374
T=19) being misaligned with the temporal resolution of the dense375
motion curve sequence (e.g. 48).376

To address this, we modify the CNN stride to (10, 4), increas-377
ing the temporal resolution of extracted features (e.g. increase to378
46). The transformer encoder then processes the updated feature379
sequence:380

Faudio = faudio(A), Faudio ∈ RB×T ′×C , (1)381

where T ′ > T reflects the increased temporal resolution. Since382
the transformer relies on positional embeddings, we interpolate383
the pretrained positional embeddings to match the new sequence384
length T ′

A and keep them frozen during training.385
The extracted features are passed through fully connected lay-386

ers to predict a sequence of confidence scores s ∈ RB×T ′
, where387

each st represents the likelihood of a keyframe occurring at time388
step t:389

s = σ(WFaudio + b), (2) 390

where W ∈ RC×1 and b ∈ RT ′
A are learnable parameters, and 391

σ(·) is the sigmoid activation function. The model is trained using 392
an L1 loss: 393

L = ∥s− ŝ∥1 , (3) 394

where ŝ represents the ground-truth keyframe labels derived from 395
optical flow analysis. 396

B. Details of Keyframe Selection 397

B.1. Detect Peak and Valley 398

To identify the local maxima (peaks) and minima (valleys) from 399
a one-dimensional motion score {M(t)}Tt=1, we perform the fol- 400
lowing steps: 401
1. Smoothing: Convolve the raw score M(t) with a short aver- 402

aging filter with a window size 5, producing a smoothed label 403
M̃(t). This helps reduce noise and minor fluctuations. 404

2. Peak Detection: Finds all local maxima by simple comparison 405
of neighboring values for M̃(t). We force a minimum distance 406
of 5 frames between any two detected peaks and requiring a 407
prominence (height relative to its surroundings) of at least 0.1. 408
This returns the indices of the local maxima. 409

3. Valley Detection: Repeat the same peak-finding procedure on 410
the negative of the smoothed signal. 411

B.2. Sample keyframes 412

In the main text, we discuss the process of selecting TK ≪ T 413
keyframes based on the motion score M(t) for each frame. Specif- 414
ically, we first pick the initial frame, then select up to TK

2
−1 peaks 415

among all detected ones (or all peaks if fewer are found). Next, 416
we include a valley between each consecutive pair of selected 417
peaks. Finally, we sample any remaining frames by an evenly 418
distributed (proportional) strategy, which approximates uniform 419
downsampling if few peaks and valleys are present. This approach 420
ensures that smooth motion or weak audio signals, producing lim- 421
ited peaks and valleys, do not degrade the consistency of training 422
for video diffusion models. 423

Algorithm 1 is the detailed pseudo-code for the full procedure, 424
including both peak and valley selection and the final proportional 425
allocation of remaining key frames. 426

C. Structure of Motion Interpolation 427

As shown in Fig. 6, we present the pipeline of motion interpo- 428
lation network as introduced in Sec. 3.3. After generating TK 429
keyframes, we use a motion interpolator to generate the missing 430
frames back to the full video sequence of length T . Interpolation 431
has been widely used in uniform frame generation [1, 24], where 432
a model predicts a fixed number of intermediate frames given the 433
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Algorithm 1: Keyframe Selection Algorithm

Input: Motion scores {M(t)}Tt=1, desired keyframe
count TK ≪ T .

Output: A set of TK keyframes.
1 Step 1: Detect peaks and valleys based on M(t).
2 Step 2: Initialize keyframe list:

Keyframes← {first frame}.
3 Step 3: Randomly select peaks

Choose up to
⌊
TK

2 − 1
⌋

from the detected peaks and add to Keyframes.
4 Step 4: Insert valleys

for each pair of consecutive peaks in
Keyframes do

Select one valley in between and add it to
Keyframes.

5 Step 5: Compute how many more keyframes are
needed:

R← TK −
∣∣Keyframes

∣∣.
6 if R > 0 then
7 Define a list of N remaining frames (unselected)

with some weights {w1, . . . , wN}.
8 W ←

∑N
i=1 wi

9 for i← 1 to N do
ideal sharei ← R · wi

W ;
allocatedi ← ⌊ideal sharei⌋;

10 r ← R−
∑N

i=1 allocatedi ; // Remainder
after flooring

11 if r > 0 then
for i← 1 to N do

fraci ← ideal sharei − allocatedi;
Sort frames by fraci in descending order.
for j ← 1 to r do

i∗ ← index of the j-th largest fraci;
allocatedi∗ ← allocatedi∗ + 1;

12 for i← 1 to N do
if allocatedi > 0 then

Keyframes← Keyframes ∪ {framei};

13 return Keyframes

first and last frame. However, for keyframe-based generation, the434
positions of missing and available frames vary, introducing addi-435
tional challenges.436

To address this, we adapt our keyframe generator diffusion437
model into a motion interpolator model that generates TK frames438
at once using masked frame conditioning. The overall architecture439
remains nearly unchanged, with the primary difference lying in440
how image conditions are incorporated. Rather than conditioning441
solely on the first frame, the model utilizes the features of gener-442
ated keyframes as conditions, thereby learning to synthesize the443
missing frames in between. This approach facilitates interpolation444

between non-uniformly distributed keyframes while maintaining 445
temporal consistency. A pipeline can be found in Appendix C. 446

To generate a full video with T frames in a single pass, we in- 447
corporate FreeNoise [15] to increase the number of output frames 448
during inference. This allows the interpolation model to take all 449
generated keyframes as conditioning inputs and predict all missing 450
frames in one single step.[Public]
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Figure 6. The frame interpolation models has the same structure
as the orignal keyframe generation model, but has different im-
age features for concatenation. (a) For the keyframe generation in
Sec 3.2.2, the first frame features are repeated to match the frame
length of the latent vector; (b) In frame interpolation, the condi-
tion feature from keyframes are padded with zero tensor between
keyframe locations to match the frame length.

451

D. Motion score prediction evaluation 452

Quantitative result. We evaluate the keypoint detected from the 453
predicted motion score with the ground truth score. We calculate 454
the average precision with a distance threshold t. In this way, for 455
each keypoint in ground truth motion score curve, if it can match 456
with a predicted keypoint with distance lower than t, it will be 457
consider as a successful match. The average precision means the 458
the average of Nmatch/N(total) across all instance, denoted as 459
AP@t We achieve the AP@3 = 60.57% and AP@5 = 77.92%. 460

Visualization 461

E. More Qualitative Results of Video Genera- 462

tion 463

As the generation result need to be watch with audio for the best 464
experience, we have put more visualization result into the supple- 465
mentary as mp4 files. 466

F. Experimental Details 467

For the experiments of KeyVID on three dataset AVSyncD, Land- 468
scape, and TheGreatestHit, we all train on resolution 320 × 512 469
as Dynamicrafter [24]. During the inference time, we use ddim 470
sampling with step 90. The temporal length of both key frame 471
generation and interpolation model are all 12. As our interpolation 472
module use freenoise[15] techniqual to obtain the final 48 frames 473
in one run. we change the windows size 12 and the stride 6 to fit 474
our temporal length. 475
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Figure 7. Visualization of (a) Predicted motion score from audio
with the ground truth caluate from video data; and (b) the gener-
ated video keyframe by diffusion network described in Sec. 3.2.2
before interpolations.

G. Multimodal Classifier Free Guidance476

Similar to Xing et al. [24], we introduce three guidance scales simg,477
stxt, and saud to extend video generation with additional audio con-478
trol. These scales allow balancing the influence of different con-479
ditioning modalities in video generation. The modified noise esti-480
mation function is defined as:481

ϵ̂θ (zt, cimg, ctxt, caud) = ϵθ (zt,∅,∅,∅) (4)482
483

+simg (ϵθ (zt, cimg,∅,∅)− ϵθ (zt,∅,∅,∅))484
485

+stxt (ϵθ (zt, cimg, ctxt,∅)− ϵθ (zt, cimg,∅,∅))486
487

+saud (ϵθ (zt, cimg, ctxt, caud)− ϵθ (zt, cimg, ctxt,∅)) .488

Here, cimg, ctxt, and caud represent image, text, and audio condi-489
tioning, respectively. The newly introduced audio guidance scale490
saud enables the model to integrate temporal audio cues, ensuring491
synchronized motion generation in audio-reactive video synthesis.492
By adjusting these guidance parameters, we can control the rela-493
tive impact of each modality in the final video output.494

In experiment, we choose the audio guidance scale to 7.5 and495
image guidance scale to 2, for both keyframe generation network496
and frame interpolatio network. As we add the audio guidance as a497
new feature, we compare the result from different audio guidance498
from 4.0 to 11.0 as list in Tab. 3. Although the higher audio guid-499
ance obtains a better audio synchronization score (RelSync and500
AlignSync) we finally choose the one with the best visual quality501
(FVD and FID) but still ahiveve compatible audio synchronization502
score.503

saud FID↓ FVD↓ AlignSync↑ RelSync↑

4.0 11.4 270.5 48.18 24.14
7.5 11.0 262.3 48.33 24.08
9.0 11.1 277.2 48.55 24.16
11.0 11.1 278.6 48.66 24.22

Table 3. Performance metrics for different guidance values.
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